Multi-track Signals of LLPs from an EFT Perspective

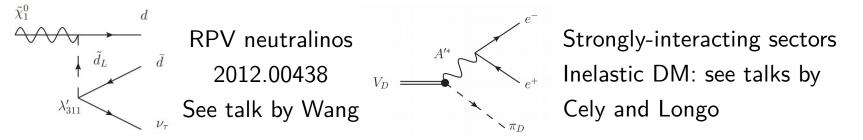
Nikita Blinov

December 11, 2020

LLPs @ Belle II, DESY

Based on work with Brian Shuve, Albany Blackburn, Mason Acevedo and Mavis Stone (Harvey Mudd College)

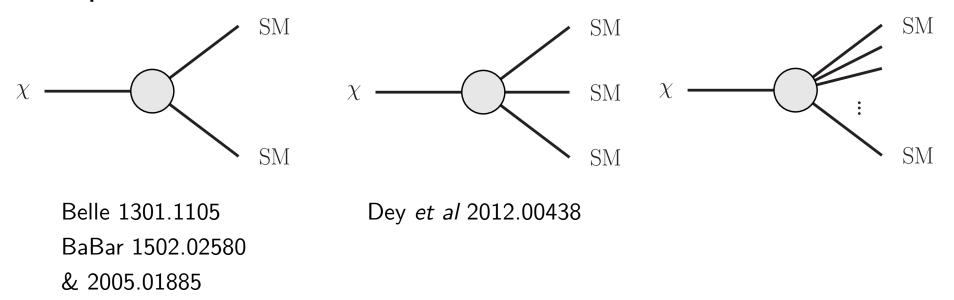
Existing Searches for Long-Lived Particles


• Searches tailored for specific models:

fixed production and decay channels/topologies

E.g. heavy neutrinos (Belle – 1301.1105); two body decays (BaBar - 1502.02580), dark Higgses (BaBar - 2005.01885)

• Difficult or impossible to apply to slight variations


Selections on total number of tracks, mass peaks, total energy in event prevent easy extension

• How to ensure analyses remain relevant and widely applicable in the future?

LLPs in General

- Production and decay in general decoupled
- For a given production channel, many decays possible

*Other BSM states can be present in final state too: e.g., iDM and SIMP-like decays (see, e.g., Duerr *et al* 1911.03176, Berlin *et al* 1801.05805)

Classifying Possible Final States

- Specialize to SM-only final states
- Interactions of LLP with SM must preserve
 - 1) Lorentz symmetry
 - 2) Gauge symmetries of SM

Effective Field Theory allows to organize all "valid" interactions

$$\mathcal{L} \supset \frac{1}{\Lambda^{n-4}} \chi \, O_{\rm SM}$$

Lifetime and Operator Dimensions

- Given an operator of dimension \boldsymbol{n}

$$\Gamma \sim m_\chi \left(\frac{m_\chi}{\Lambda}\right)^{2(n-4)}$$

O(1) meter decay lengths obtained for

$$\Lambda \sim 10^{16/(2n-8)} {
m GeV}$$

for $n{>}8,~\Lambda{<}100$ GeV, so focus on $\dim \mathcal{O}_{\rm SM} \leq 8 - \dim \chi$

Scale of new physics **charged** under SM

Available Operators

- Spin 0 LLP: $\mathcal{O}_{SM} \in SMEFT$ $8: (\bar{L}R)(\bar{L}R) + h.c.$ $Q_{quqd}^{(1)}$ $(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$ use results of, e.g., $Q_{quqd}^{(8)}$ $(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$ Grzadkowski *et al* (1008.4884) $Q_{leau}^{(1)}$ $(\bar{l}_{p}^{j}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{t})$ Lehman (1410.4193) $Q_{lequ}^{(3)}$ $(\bar{l}_{p}^{j}\sigma_{\mu
 u}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu
 u}u_{t})$ Alonso et al (1405.0486) Passarino and Trott (1610.08356)... $\dim \mathcal{O}_{\rm SM} = 6$
- Spin $\frac{1}{2}$ LLP: equivalent to SM + sterile neutrino see Liao & Ma 1612.04527 $(\bar{L}R)(+h.c.)$

$(\bar{L}N)\epsilon(\bar{L}e)$
$(ar{L}N)\epsilon(ar{Q}d)$
$(ar{L}d)\epsilon(ar{Q}N)$

 $N=\chi\,\dim\chi\mathcal{O}_{
m SM}=6$ ⁶

Available Final States

• Spin 0 LLP decay

$\dim \chi \mathcal{O}_{\rm SM}$	leptonic	semi-leptonic	hadronic	photonic
5	$ar{\ell}_i\ell_i$		$ar{q}_i q_i,gg$	$\gamma\gamma$
6	νν			
7	$ \frac{\bar{\ell}_i \ell_j \gamma, \bar{\ell}_i \ell_j \bar{\ell}_k \ell_l,}{\bar{\ell}_i \ell_j \bar{\nu}_k \nu_l} $	$ar{\ell}_i\ell_jar{q}_kq_l,ar{ u}\ellar{d}u,\ \ell_iu_ju_kd_l$	$ggg,ar{q}_iq_j\gamma,ar{q}_iq_jg,\ ar{q}_iq_jar{q}_kq_l,ar{ u}_i u_jar{q}_kq_l,ar{ u}_i u_jar{d}_kar{d}_l$	$\gamma\gamma$
8	$ar{\ell}_i\ell_j u_k u_l$	$ar{d_i}u_j u_k\ell_l,\;ar{\ell_i}d_jd_kd_l$	$ar{ u}_i u_j d_k d_l, \ ar{q}_i q_j u_k u_l$	$ u_i u_j\gamma$

• Spin ½ LLP decay

$\dim \chi \mathcal{O}_{\rm SN}$	1 leptonic	semi-leptonic	hadronic	photonic
6	$ar{\ell}_i\ell_j u_k$	$\ell_i u_j ar{d}_k$	$egin{aligned} ar{d}_i d_j u_k, ar{u}_i u_j u_k, \ ar{u}_i d_j d_k \end{aligned}$	$ u\gamma$
7	$ar{\ell_i}\ell_j u_k, u_iar{ u}_j u_k$	$\ell_i u_j \bar{d}_k$	$egin{array}{lll} ar{d}_i d_j u_k, ar{u}_i u_j u_k, \ u_i d_j d_k \end{array}$	

Red: violates B or B-L

Available Final States

• Spin 0 LLP decay

$\dim \chi \mathcal{O}_{\rm SM}$	leptonic	semi-leptonic	hadronic	photonic
5	$ar{\ell}_i\ell_i$		$ig[ar q_i q_i, gg ig]$	$\gamma\gamma$
6	νν			
7	$ar{\ell_i}\ell_j\gamma,ar{\ell_i}\ell_jar{\ell_k}\ell_l,\ ar{\ell_i}\ell_jar{ u}_k u_l$	$egin{aligned} ar{\ell}_i\ell_jar{q}_kq_l,ar{ u}\ellar{d}u,\ \ell_iu_ju_kd_l \end{aligned}$	$ggg, ar{q}_i q_j \gamma, ar{q}_i q_j g, \ ar{q}_i q_j ar{q}_k q_l, ar{ u}_i u_j ar{q}_k q_l, ar{ u}_i u_j ar{d}_k ar{d}_l$	$\gamma\gamma$
8	$ar{\ell}_i\ell_j u_k u_l$	$\left(ar{d}_i u_j u_k \ell_l, \ ar{\ell}_i d_j d_k d_l ight)$	$ar{ u}_i u_j d_k d_l, \; ar{q}_i q_j u_k u_l$	$ u_i u_j\gamma$

• Spin ½ LLP decay

DVs with >2 charged tracks possible!

$\dim \chi \mathcal{O}_{\rm SM}$	leptonic	semi-leptonic	hadronic	photonic
6	$ar{\ell}_i\ell_j u_k$	$\ell_i u_j \bar{d}_k$	$egin{array}{lll} (ar{d}_i d_j u_k, ar{u}_i u_j u_k, \ u_i d_j d_k \end{array} egin{array}{lll} & u_i d_j d_k \end{array}$	$ u\gamma$
7	$ar{\ell_i}\ell_j u_k, u_iar{ u}_j u_k$	$\ell_i u_j \bar{d}_k$	$egin{array}{lll} (ar{d}_i d_j u_k, ar{u}_i u_j u_k, \ ar{u}_i d_j d_k \end{array} \end{array}$	

Red: violates B or B-L

Multiple Tracks from Displaced Vertices

 Displaced decays to multiple charged particles generic within the EFT framework

 e^-

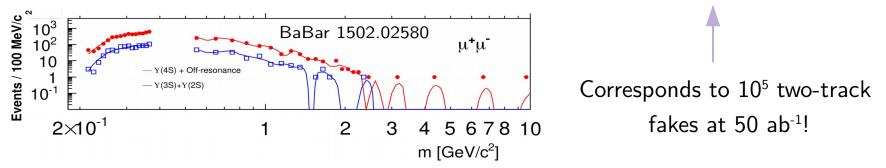
• An sample search:

1) Number of displaced vertices, $N_{dv} \ge 2$

- 2) Number of tracks per vertex, $N_{tr} \ge 3$
- 3) 0.2 cm \leq d \leq 60 cm
- 4) p_T>100 MeV, tracks well separated

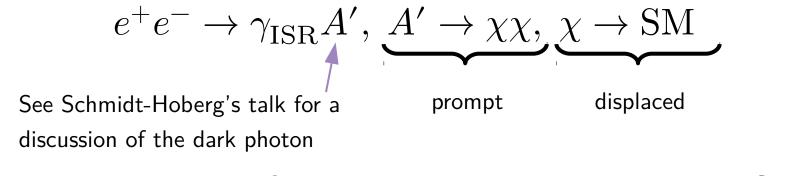
Multiple Tracks from Displaced Vertices

- Displaced decays to multiple charged particles generic within the EFT framework
 Relax if b/g under
- control • An sample search: 1) Number of displaced vertices, $N_{dy} \ge 2$ 2) Number of tracks per vertex, $N_{tr} \ge 3$ 3) 0.2 cm \leq d \leq 60 cm e^- 4) p_T>100 MeV, tracks well separated


Backgrounds

• Genuine SM LLPs: K^{\pm} , $K_{L,S}$. These decay in fiducial region with probability ~0.05-0.9.

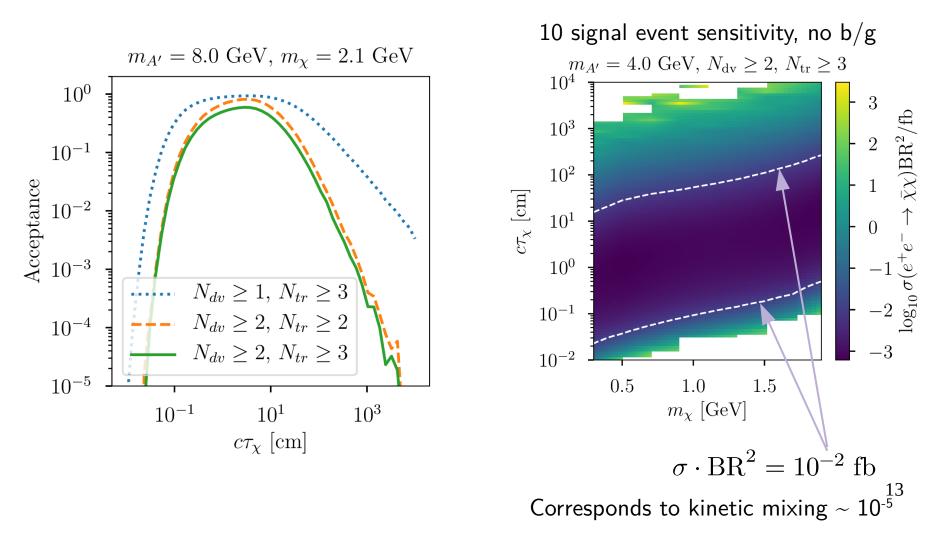
About 1 K per hadronic event: $\sim 10^{11}$ K for 50 ab⁻¹ BaBar (1306.2895)


$$\begin{array}{l} {\rm Br}\,(K^+\to\pi^+\pi^-\pi^+)\sim 0.06\\ {\rm Br}\,(K^+\to\pi^+\pi^-e^+\nu_e)\sim 10^{-5}\\ {\rm Other\ dangerous\ branching\ fractions\ similar\ \widehat{}}\end{array}$$

• Random track crossings: from BaBar 1502.02580, probability of fake single, two-track vertices $\sim 10^{-6}$

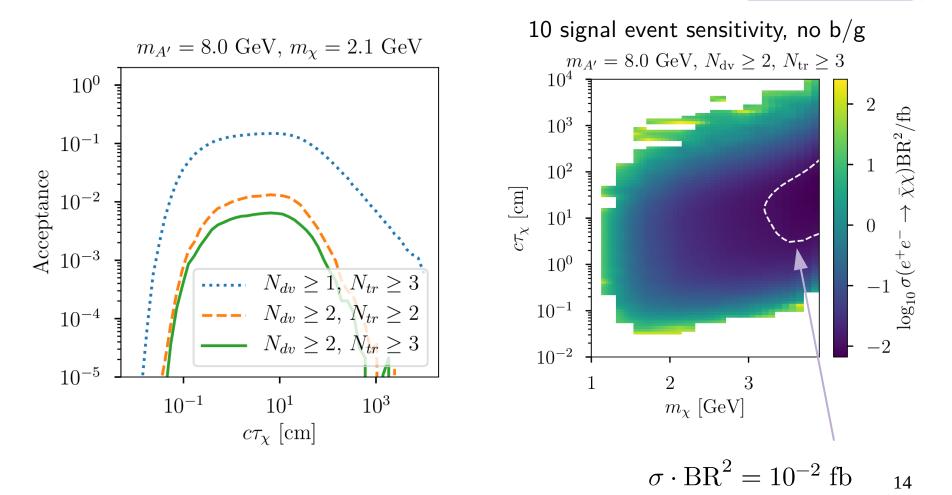
Demanding $N_{dv} \ge 2$, $N_{tr} \ge 3$ should reduce b/g to O(1) level

Radiative Return Example



Existing searches for dark photons require γ in ECAL acceptance BaBar 1406.2980, 1702.03327

Rates a factor \sim 20 larger if no γ tag required $\label{eq:gamma} \log s/m_e^2$


Leptonic Decays

$$\chi \mathcal{O}_{SM} = \chi (\bar{e}_R \gamma_\mu e_R) (\bar{\mu}_R \gamma^\mu \mu_R)$$

Semi-Leptonic Decays

 $\chi \mathcal{O}_{SM} = \chi(\bar{Q}u_R) \cdot (\bar{L}e_R) \rightarrow \chi \left[\bar{e}_L e_R \bar{u}_L u_R + \left| \bar{\nu}_L e_R \bar{d}_L u_R \right| \right]$

Future Work and Conclusion

Searches for displaced vertices + tracks offer sensitivity to broad classes of LLPs

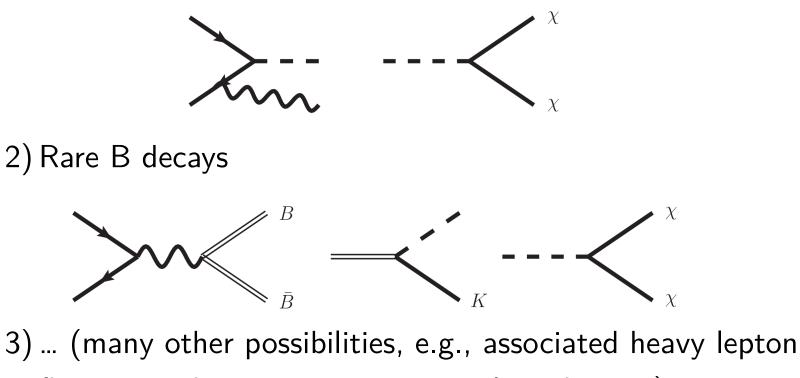
- More reliable background estimates needed (in progress)
- Quantify hadronization uncertainties (compare chiral PT + vector mesons vs Pythia – in progress)
- Any other model-independent constraints on EFT operators (or from their UV completions)?

Appendix

Hadronization

• Even operators with only two quarks can lead to multiple charged tracks. E.g.,

$$\chi(\bar{\nu}_L e_R)(\bar{d}_L u_R) \to B\chi(\bar{\nu}_L e_R) {\rm tr} \; \Sigma^\dagger C$$

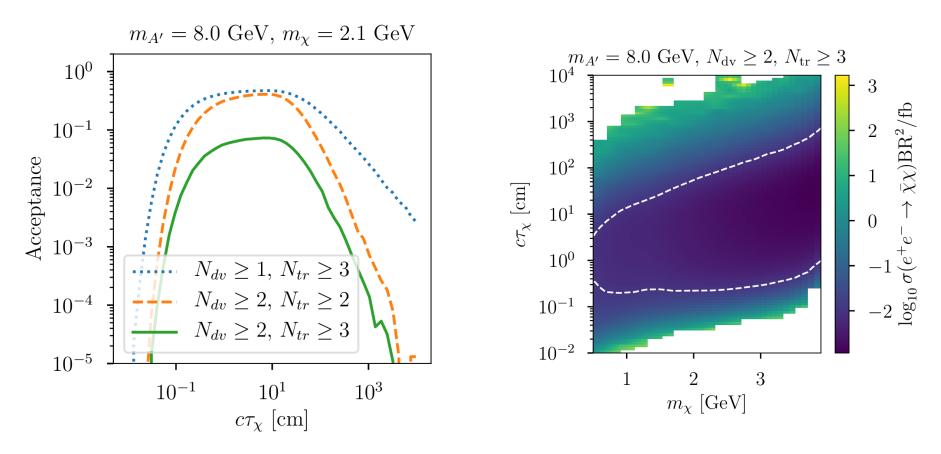

$$\supset B\chi(\bar{\nu}_{L}e_{R})\left[\frac{\pi^{+}}{f_{\pi}} + \frac{\eta\pi^{+}}{f_{\pi}^{2}} + \frac{\pi^{+}\pi^{-}\pi^{+}}{f_{\pi}^{3}}\right]$$

 To produce events, use Pythia to hadronize or chiral perturbation theory (+ vector mesons)

LLP Production Channels

Search can be adapted to any production channel.

1) Radiative return


flavour production, neutrino portal production)

LLP Production Channels

• Search can be adapted to any production channel. 1) Radiative return χ χ 2) Rare B decays \bar{R} K χ 3) ... (many other possibilities, e.g., associated heavy lepton flavour production, neutrino portal production)

Hadronic Decays

$$\chi \mathcal{O}_{SM} = \chi (\bar{u}_R \gamma_\mu u_R) (\bar{u}_R \gamma^\mu u_R)$$

