Amplitude Analyses

BELLE II Physics Week, 30 Nov 2020 (originally for B Workshop, Neckarzimmern, 2015) Jonas Rademacker

Special thanks to Antimo Palano, Marco Pagapallo, and Patricia Magalhães, from whose excellent talks I lifted a particularly large number of plots.

Why Amplitude Analyses?

• QM is intrinsically complex:

Wave functions/transition amplitudes etc: $\psi = a e^{i\alpha}$. Observable: $|\psi|^2$.

Only half the information. How do I get the rest?

- Note that the rest is very interesting CP violation in the SM comes from phases!
- Answer: Interference effects:

 $\psi_{\text{total}} = a e^{i\alpha} + b e^{i\beta} + ...$ $|\psi_{\text{total}}|^2 = |a e^{i\alpha} + b e^{i\beta} + ...| = a^2 + b^2 + 2ab \cos(\alpha - \beta) + ...$

Dalitz plot analyses - lots of interfering amplitudes!

3 body decays

$$d\Gamma = |\mathcal{M}_{fi}|^2 d\Phi$$

= $|\mathcal{M}_{fi}|^2 \left| \frac{\partial \Phi}{\partial (s_{12}, s_{13})} \right| ds_{12} ds_{13}$
= $\frac{1}{(2\pi)^2 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

Jonas Rademacker: Amplitude Analyses

S13♠

3 2 Μ

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$
Neckarzimmern 18 Feb 2015 5

Jonas Rademacker: Amplitude Analyses

S134

3 2 Μ

3 2 Μ

S13_↑

3 M ______2 1

$$(m_{1} + m_{3})^{2} + \dots + m_{2})^{2} + \dots + (M - m_{3})^{2} + \sum_{ij}^{S_{12}} m_{ij}^{2}$$

Jonas Rademacker: Amplitude Analyses

Jonas Rademacker: Amplitude Analyses

What happens if nothing happens

What really happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if something with spin happens

Why you must do an amplitude analyses if you want to find *real* new resonances in multi body decays.

 $D^{\circ} \rightarrow K_{S} \pi \pi$

CDF <u>PHYSICAL REVIEW D 86, 032007</u> (2012) (no claim of any bogus resonance is made in this paper, it's a completely sound paper about CPV in charm).

Why you must do an amplitude analyses if you want to find real new resonances in multi body decays.

Real Dalitz plots

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

Real Dalitz pots

2.4M $D^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}$ decays (LHCb)

Phys. Lett. B728 (2014) 585

1

0

18

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

B-workshop

Jonas Rademacker: Amplitude Analyses

- Let us assume(!) that the full amplitude can be calculated as the sum of essentially independent two body processes.
- Doing this results in the so-called "isobar" model.

- We don't know anything about the strong interaction dynamics.
- As a first approximation, we treat each particle as point particle.
- We want a Lorentzinvariant matrix element...

 ε_R^{σ} say R has spin 1 (e.g. K*(892), $\rho(770)$ etc)

$$\frac{1}{s_{23} - m_R^2 - im_R\Gamma}$$

$$p_{1\,\mu} \quad \varepsilon_R^{\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \, \varepsilon_R^{\nu} \quad q_{23\,\nu}$$

$$\sum_{\text{all }\lambda} \qquad p_{1\,\mu} \ \varepsilon_R^{\lambda\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \varepsilon_R^{\lambda\nu} \ q_{23\,\nu}$$

Jonas Rademacker: Amplitude Analyses

$$\sum_{\text{all }\lambda} \varepsilon_R^{\lambda\mu*} \varepsilon_R^{\lambda\nu} = -g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}$$

$$\sum_{\text{all }\lambda} \qquad p_{1\,\mu} \ \varepsilon_R^{\lambda\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \, \varepsilon_R^{\lambda\nu} \ q_{23\,\nu}$$

Jonas Rademacker: Amplitude Analyses

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu}p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R\Gamma} \quad q_{23\,\nu}$$

27

Express in terms of s_{ij} if you wish, using $p_i \cdot p_j = s_{ij} - m_i^2 - m_2^2$

$$\left(-p_1 \cdot q_{23} + \frac{(p_1 \cdot p_R)(q_{23} \cdot p_R)}{p_R^2} \right) \frac{1}{s_{23} - m_R^2 - im_R\Gamma}$$
Spin factor (here for L=1) B-workshop Neckarzimmern 18 Feb 2015 27

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu}p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R\Gamma} \quad q_{23\,\nu}$$

require momenta

Angular Momenta

 $\vec{L} = 2 \ \vec{d} \times \vec{q_r}$ C

classical mechanics

$$L = \sqrt{l(l+1)}$$
 QN

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma} \quad q_{23\,\nu}$$

Blatt Weisskopf Penetration Factors

L	$B_L(q)$	$B_L'(q,q_0)$	
0	1	1	
1	$\sqrt{\frac{2z}{1+z}}$	$\sqrt{\frac{1+z_0}{1+z}}$	
2	$\sqrt{rac{13z^2}{(z-3)^2+9z}}$	$\sqrt{\frac{(z_0-3)^2+9z_0}{(z-3)^2+9z}}$	
	where $z = (q d)^2$	and $z_0 = (q_0 d)^2$	

classical mechanics: L = 2 qd

QM: $L^2 = I(I+1)$

Blatt Weisskopf Penetration Factors

Angular Momenta

require momenta

$$p_{1\,\mu} B_L'(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma} B_L'(q_{rR}, d_R) q_{23\,\nu}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L .

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma} B_L(q_{rR}, d_R) q_{23\,\nu}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L .

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma(m_{23})} B_L(q_{rR}, d_R) q_{23\,\nu} \quad \mathsf{J}=\mathsf{I}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L.

$$\Gamma(m_{23}) = \Gamma_0 \frac{(q_{23}/m_{23}) B_L(q_{23})}{(q_0/m_R) B_L(q_0)}$$

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma(m_{23})} B_L(q_{rR}, d_R) q_{23\,\nu} \quad J=1$$

Mass dependent width (ignoring ang. mom)

dashed: fixed width

solid: mass dependent width $(q_{max}/m_{max}) B_{r}(q_{max})$

$$\Gamma(m_{23}) = \Gamma_0 \frac{(q_{23}/m_{23}) D_L(q_{23})}{(q_0/m_R)} B_L(q_0)$$

Breit Wigner with angular momentum effects (only)

$$A_R = p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma(m_{23})} B_L(q_{rR}, d_R) q_{23\,\nu}$$

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23})$$

sensitivity to phases is one of the
 key reasons amplitude analyses
 are so interesting.

$$P(s_{12}, s_{23}) = \frac{\left|\mathcal{M}_{fi}\right|^2 \left|\frac{d\Phi}{ds_{12} ds_{23}}\right|}{\int \left|\mathcal{M}_{fi}\right|^2 \left|\frac{d\Phi}{ds_{12} ds_{23}}\right| ds_{12} ds_{23}}\right|$$

$$=\frac{\left|\mathcal{M}_{fi}\right|^{2}}{\int \left|\mathcal{M}_{fi}\right|^{2} ds_{12} ds_{23}}$$
 within kin boundary

Fitters frequently used at LHCb: MINT (esp for >3 body) AmpGen (descendent of MINT) Laura++ z-fit/tensor flow and GooFit-based fitters

Isobar Model + non-resonant

- "Classic" experimentalists' model: Isobar model with resonances described by Breit Wigner lineshapes, plus "non-resonant" term (also called "contact term", and, amongst theorists, "background").
- Despised by theorists especially the non-resonant term (but in practice it's often needed to describe the data).

Jonas Rademacker

Sum of Breit Wigners

Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico

$$\mathcal{M}_{fi} = \sum_{R} c_{R} e^{i\theta_{R}} A_{R}(s_{12}, s_{23})$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$K^{*}(892)^{\pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$\bar{K^{*}(1410)^{\pm}}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$ \rho(1450) $	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^*(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_{R} e^{i\theta_{R}} A_{R}(s_{12}, s_{23})$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$K^{*}(892)^{\pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$\tilde{K^{*}(1410)^{\pm}}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
<i>ω</i> (782)	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$ \rho(1450) $	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^*(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23}) + a_0 e^{i\theta_0}$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$K^{*}(892)^{\pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^{*}(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{\tilde{*}}(1410)^{\pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^{*}(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23}) + a_0 e^{i\theta_0}$$

$$FF_{R} = \frac{\int \left| \mathbf{c}_{R} e^{i\theta_{R}} A_{R}(s_{12}, s_{23}) \right|^{2} ds_{12} ds_{23}}{\int \left| \sum_{j} \mathbf{c}_{j} e^{i\theta_{j}} A_{j}(s_{12}, s_{23}) \right|^{2} ds_{12} ds_{23}}$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	a	δ [°]	Fit fractions [%]
$K^{*}(892)^{\pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_{2}^{*}(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{\tilde{*}}(1410)^{\pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$ \rho(1450) $	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^{*}(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} (t) \approx (r_D^{K\pi})^2 + r_D^{K\pi} y'_{K\pi} \Gamma t + \frac{x'_{K\pi}^2 + y'_{K\pi}^2}{4} (\Gamma t)^2$$

where
$$\begin{pmatrix} x'_{K\pi} \\ y'_{K\pi} \end{pmatrix} = \begin{pmatrix} \cos \delta_{K\pi} & \sin \delta_{K\pi} \\ \cos \delta_{K\pi} & -\sin \delta_{K\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Time-dependent CPV $D^{\circ} \rightarrow K_{S}\pi\pi$

CLEO-c Phys. Rev. D 72, 012001 (2005).

B-workshop

Time-dependent CPV D^o→K_Sππ

(Belle preliminary) (by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (ser	nsitivity to phases) gives
No CPV	$egin{array}{c} x(\%) \ y(\%) \end{array}$	$\begin{array}{c} 0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09} \\ 0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06} \end{array}$		S 50000 40000
No dCPV	q/p arg $q/p(^o)$	$\begin{array}{r} 0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}\\ -6\pm11^{+3+3}_{-3-4}\end{array}$		
			M ² ₊ GeV ²	M ² (GeV ²)

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

Jonas Rademacker: Amplitude Analyses

B-workshop

Time-dependent CPV $D^{\circ} \rightarrow K_{S}\pi\pi$

(Belle preliminary) (by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) gives
No CPV	x(%) u(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$ $0.30 \pm 0.15^{+0.04+0.03}_{-0.09-0.09}$	No evidence of CP violation
No dCPV	$\frac{ q/p }{\arg q/p(^{o})}$	$\begin{array}{c} 0.90 \pm 0.10 _ 0.05 _ 0.06 \\ 0.90 _ 0.16 + 0.05 + 0.06 \\ -0.15 - 0.04 - 0.05 \\ -6 \pm 11 _ 3 - 4 \end{array}$	
·			$M_{+}^2 \text{ GeV}^2$ $M_{-}^2 (\text{GeV}^2)$

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

Jonas Rademacker: Amplitude Analyses

B-workshop

Time-dependent CPV D°→K_Sππ

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) give	
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09} {}^{+0.06}_{-0.09}$ 0.30 + 0.15^{+0.04}_{-0.03}	No evidence of CP violation	
No dCPV	$\frac{ q/p }{\arg q/p(^{o})}$	$\begin{array}{c} 0.30 \pm 0.13 _ 0.05 _ 0.06 \\ 0.90 _ 0.16 + 0.05 _ 0.06 \\ -0.15 - 0.04 _ 0.05 \\ -6 \pm 11 _ 3 _ 4 \end{array}$	Significant systematic uncertainty from amplitude model dependence. (Could be limiting with future LHCb/upgrade statistics.)	
			$M_{\star}^2 \text{ GeV}^2$ $M_{\star}^2 (\text{GeV}^2)$	

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

Jonas Rademacker: Amplitude Analyses

B-workshop

 $M_{\pi\pi}^2 \, GeV^2$

"Isobar" Model

• "Isobar": Describe decay as series of 2-body processes.

- Usually: each resonance described by Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. But not much as long as resonances are reasonably narrow, don't overlap too much.
- General consensus: Isobar OK-ish for P, D wave, but problematic for Swave.Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

- Single narrow resonance well described by Breit Wigner
- Overlapping broad resonances less so. Theoretically problematic: violates unitarity. From a practical point of view problematic as you might get the wrong phase motion.

Isobar Model with sum of Breit Wigners

<u>link to video</u>

<u>link to video</u>

Flatté Formula

- Consider f₀(980) (width $\Gamma \approx 40-100$ MeV). Decays to $\pi \pi$ and KK. To KK only above ~987.4 MeV.
- The availability of the KK final state above 987.4 MeV increases the phase space and thus the width above this threshold.
- Need to take this into account even if I only look at f₀(980)→ππ.

$$\Gamma_{f_0}(s) = \Gamma_{\pi}(s) + \Gamma_K(s)$$

$$\Gamma_{\pi}(s) = g_{\pi} \sqrt{s/4 - m_{\pi}^2},$$

$$\Gamma_{K}(s) = \frac{g_{K}}{2} \left(\sqrt{s/4 - m_{K^+}^2} + \sqrt{s/4 - m_{K^0}^2} \right)$$

K-matrix

$$S_{fi} = \langle f|S|i \rangle = I + 2iT$$
$$T = K(I - iK)^{-1}$$
$$K_{ij} = \sum_{\alpha} \frac{\sqrt{m_{\alpha}\Gamma_{\alpha i}}\sqrt{m_{\alpha}\Gamma_{\alpha j}}}{m_{\alpha}^2 - m^2}$$

- For single channel: Reproduces Breit Wigner
- For single resonance that can decay to different final state: Reproduces Flatté.

K-matrix

- Note that the K-matrix approach is still an approximation.
- While it ensures unitarity (by construction), it is not completely theoretically sound/motivated (and violates analyticity).
- And it does not in any way address this:

What theorists think of all this

Sum of Breit Wigners

Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico

Amplitude Models and their issues

 Let's look at this (effectively 2-body scattering) problem, first:

Describing this with sums of Breit Wigner line shapes violates some fundamental principles, in particular unitarity (which then breaks the relation between magnitude and phase of the amplitude). OK-ish for narrow resonances that do not overlap too much.

• We'll postpone the discussion this for a few slides:

Amplitude Models and their issues

 Let's look at this (effectively 2-body scattering) problem, first:

Describing this with sums of Breit Wigner line shapes violates some fundamental principles, in particular unitarity (which then breaks the relation between magnitude and phase of the amplitude). OK-ish for narrow resonances that do not overlap too much.

• We'll postpone the discussion this for a few slides:

3-body Dalitz plot (theory)

Bastian Kubis

$$\mathcal{F}(s) = a \Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}^{\text{this}}$$

$$\frac{\text{Omnès}}{\text{takes into}}$$

$$account just this + \cdots + \cdots$$

B_d→J/ψππ, dispersion relation-based description of ππ S-wave

 \rightarrow pairwise interaction only (with correct $\pi\pi$ scattering phase)

 \rightarrow full 3-particle rescattering, only overall normalization adjustable

Bastian Kubis

→ full 3-particle rescattering, 2 adjustable parameters (additional "subtraction constant" to suppress inelastic effects)

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"

Formalism applied to $D \rightarrow \pi \pi K$

 full fit in terms of 7 complex subtraction constants (-1 phase, -1 overall normalisation) Niecknig, BK in progress

 $t \; [{\rm GeV}^2]$

Models available

• Three-body FSI (beyond 2+1)

shown to be relevant on charm sector

Models available

• Three-body FSI (beyond 2+1)

3-body hadronic decay

Birmingham - 17/06/2020

Models available

Three-body FSI (beyond 2+1)

multi meson model - $D^+ \rightarrow K^- K^+ K^+$

alternative to isobar model

backup

• starts from Chiral Theory

• A_{ab}^{JI} unitary scattering amplitude for $ab \to K^+K^$ full FSI: coupled channel

Hadronic FSIThe niversity of Manchester
$$K_3^+$$
 K_3^+ Hadronic FSIThe niversity of Manchester $I3th Novembro 2020$ Patricia Magalhães

multi meson model - $D^+ \rightarrow K^- K^+ K^+$

alternative to isobar model

• starts from Chiral Theory

• $A_{ab}^{JI} \rightarrow$ unitary scattering amplitude for $ab \rightarrow K^+K^-$

→ full FSI: coupled channel

-> parameters have physical meaning: resonance masses and coupling constants

relative phase between partial waves is NOT fitted

Theoretical model

PHYSICAL REVIEW D 98, 056021 (2018)

arXiv:1805.11764 [hep-ph]

Multimeson model for the $D^+ \rightarrow K^+K^-K^+$ decay amplitude R. T. Aoude,^{1,2} P. C. Magalhães,^{1,3,*} A. C. dos Reis,¹ and M. R. Robilotta⁴

$$T^{S} = T^{S}_{NR} + T^{00} + T^{01}$$

$$T^P = T^P_{NR} + T^{11} + T^{10}$$

• free parameters

parameter	value		
F	$94.3^{+2.8}_{-1.7}\pm1.5{\rm MeV}$		
m_{a_0}	$947.7^{+5.5}_{-5.0}\pm 6.6{ m MeV}_{-5.0}$		
m_{S_o}	$992.0^{+8.5}_{-7.5}\pm8.6{ m MeV}_{-7.5}$		
m_{S_1}	$1330.2^{+5.9}_{-6.5}\pm5.1\mathrm{MeV}$		
m_{ϕ}	$1019.54^{+0.10}_{-0.10}\pm0.51{\rm MeV}$		
G_{ϕ}	$0.464^{+0.013}_{-0.009}\pm0.007$		
c_d	$-78.9^{+4.2}_{-2.7}\pm1.9{\rm MeV}$		
c_m	$106.0^{+7.7}_{-4.6}\pm3.3{\rm MeV}$		
$ ilde{c}_d$	$-6.15^{+0.55}_{-0.54}\pm0.19{\rm MeV}$		
$ ilde{c}_m$	$-10.8^{+2.0}_{-1.5}\pm0.4{\rm MeV}$		

180

1600

1400

0095 GeV²

LHCb

fitted to Heb data JHEP 1904 (2019) 063

$\mathrm{FF}_{\mathrm{NR}}$	FF^{00}	FF^{01}	FF^{10}	FF^{11}	$\mathrm{FF}_{\mathrm{S-wave}}$
14 ± 1	29 ± 1	131 ± 2	7.1 ± 0.9	0.26 ± 0.01	94 ± 1

good fit with fewer parameters than the isobar

13th Novembro 2020

Patricia Magalhães

LHCb

Tool kit for meson-meson interactions in 3-body decay⁶⁵

• Any 3-body decay amplitude

NEW MAGALHAES, A.dos Reis, Robilotta PRD 102, 076012 (2020)

Hadronic FSI

_

Tool kit for meson-meson interactions in 3-body decay⁶⁵

Any 3-body decay amplitude

NEW MAGALHAES, A.dos Reis, Robilotta PRD 102, 076012 (2020)

🦕 provide the building block 🖲

- includes multiple resonances in the same channel (as many as wanted)
- free parameter (massas and couplings) to be fitted to data.

\rightarrow Available to be implement in data analysis!!

Hadronic FSI

The University of Manchester

- 13th Nove

13th Novembro 2020

Patricia Magalhães

Three $\pi^-\pi^+$ S-wave parametrisation in B⁻ $\rightarrow \pi^-\pi^+\pi^-$

Model-Independent line shapes

a1(1260) line shape in D $\rightarrow \pi\pi\pi\pi$, CLEO-data

Model-Independent line shapes

Use known resonances as interferometer to obtain modelindependent amplitude and phase of resonance. Example: LHCb Pentaquark discovery in Λ_b⁰→J/ψpK⁻

Fully model-independent

Use as input only the well-understood angular distributions of S, P, D, F, ... resonances (expanded in terms of Legendre Polynomials) in K-p, and the measured K-p mass spectrum, to model J/\u03c6p mass spectrum (blue). Is the peak just a reflection? No!

See also

- JPAC (Mikhasenko et al): "<u>Dalitz-plot decomposition for three-body decays</u>" Phys.Rev.D 101 (2020) 3, 034033.
 Very useful especially when dealing with complicated spin structures.
- Krinner, Greenwald, Ryabchikov, Grube, Paul, "Ambiguities in model-independet partial-wave analysis" Phys. Rev. D 97, 114008
 Identifies and overcomes difficulties in model-independent amplitude analyses.

Das Model

The Model

- There are, for most cases we care about, no theoretically sound amplitude models...
- However, there are "good enough" models. What's good enough depends on the purpose.
- So what to do? Suggest a mix of....
 - model-independent approaches
 - "good enough" models of various levels of sophistication
 - improve models (there is and that's fairly new real, tangible, progress!)

