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Why Amplitude Analyses?

• QM is intrinsically complex: 
 
Wave functions/transition amplitudes etc: ψ = a eiα. Observable: |ψ|2.  
 
Only half the information. How do I get the rest?


• Note that the rest is very interesting - CP violation in the SM comes from phases!


• Answer: Interference effects: 
 
ψtotal    =  a eiα + b eiβ + … 
|ψtotal|2 =  |a eiα + b eiβ + …| = a2 + b2 + 2ab cos(α – β) + …
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Dalitz plot analyses - lots of interfering amplitudes!
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Intermediate state Amplitude |cj | Phase �j (�)
K�(892)+�� 1.656 ± 0.012 137.6 ± 0.6
K�(892)��+ (14.9 ± 0.7)� 10�2 325.2 ± 2.2
K�

0 (1430)+�� 1.96 ± 0.04 357.3 ± 1.5
K�

0 (1430)��+ 0.30 ± 0.05 128 ± 8
K�

2 (1430)+�� 1.32 ± 0.03 313.5 ± 1.8
K�

2 (1430)��+ 0.21 ± 0.03 281 ± 9
K�(1680)+�� 2.56 ± 0.22 70 ± 6
K�(1680)��+ 1.02 ± 0.2 103 ± 11
KS�0 1.0 (fixed) 0 (fixed)
KS� (33.0 ± 1.3)� 10�3 114.3 ± 2.3
KSf0(980) 0.405 ± 0.008 212.9 ± 2.3
KSf0(1370) 0.82 ± 0.10 308 ± 8
KSf2(1270) 1.35 ± 0.06 352 ± 3
KS�1 1.66 ± 0.11 218 ± 4
KS�2 0.31 ± 0.05 236 ± 11
non-resonant 6.1 ± 0.3 146 ± 3

Dº Ksπ+π–

Many interfering decay 
paths contribute to the 

same final state

A(s+, s�)

=
X

k

ak(s+, s�) e
i�k(s+,s�)

Described by a 
sum of complex 

amplitudes

s+ /GeV2

s –
 /G

eV
2

Dº
|A(s+, s–)|2 

represented 
in a Dalitz 

plot
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3 body decays

M

1

2

3
d� = |Mfi|2d�

= |Mfi|2
����

@�

@(s12, s13)

���� ds12ds13

=
1

(2⇡)2 32M3
|Mfi|2ds12ds13

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

s12

s13

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

s12

s13

(m1 + m2)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

s12

s13

(m1 + m2)2 (M – m3)2
sij ⌘ (pi + pj)

2 ⌘ m2
ij
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3-body phase space

s12

s13

(m1 + m3)2

(m1 + m2)2 (M – m3)2
sij ⌘ (pi + pj)

2 ⌘ m2
ij

5



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

3-body phase space
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(m1 + m3)2
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13

(m1 + m3)2
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(M – m2)2
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13
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(m1 + m2)2
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3-body phase space
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3-body phase space
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3-body phase space

sij ⌘ (pi + pj)
2 ⌘ m2

ij

!

"

#

$

Dalitz plot Analysis

! The region of kinematically allowed phase space described by these constraints is here.

! Kinematic boundaries of the three-body decay phase space.

! In this example, B0 → D0K+π− phase space is shown. a = π−, b = D0, c = K+.

36
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What happens if nothing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij

!

"

#

$

Isobar formalism

! The figure shows how various intermediate two-body states appear in the Dalitz plot.
! Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

d� =
1

(2⇡)2 32M3
|Mfi|2ds12ds13x

M

1

2

3

Mfi = 1
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What really happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

D Mfi =?

Ks

π+

π–

s(Ksπ–)

s(
K s
π+

)

D→Ksπ+π–

Ba
Ba

r P
hy

s.
 R

ev
. L

et
t. 

10
5,

 0
81

80
3 

(2
01

0)
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http://inspirehep.net/record/853279
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!
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Isobar formalism

! The figure shows how various intermediate two-body states appear in the Dalitz plot.
! Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

What happens if one thing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

M 1

2

3
s12

s 1
3

R
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! The figure shows how various intermediate two-body states appear in the Dalitz plot.
! Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
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What happens if one thing 
happens
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Isobar formalism

! The figure shows how various intermediate two-body states appear in the Dalitz plot.
! Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel
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s 1
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! Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

! Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47

What happens if two things 
happens

d� =
1

(2⇡)2 32M3
|Mfi|2ds12ds13
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! Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

! Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π
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Isobar formalism

! The figure shows how various intermediate two-body states appear in the Dalitz plot.
! Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

What happens if something 
with spin happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

M 1

2

3
s12

s 1
3

R

!

"

#

$

! Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

! Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47

!
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$

! Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

! Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47
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Why you must do an amplitude analyses if you want 
to find real new resonances in multi body decays.

15

introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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FIG. 5 (color online). Asymmetry between the numbers of
reconstructed D!þ and D!& candidates as a function of the
soft pion’s pT .

T. AALTONEN et al. PHYSICAL REVIEW D 86, 032007 (2012)

032007-10

 ππ resonance 
near m2= 2GeV2?

m2(ππ)/GeV2

Dº→KSππ

CDF PHYSICAL REVIEW D 86, 032007 
(2012) (no claim of any bogus resonance 
is made in this paper, it’s a completely 
sound paper about CPV in charm).

http://prd.aps.org/pdf/PRD/v86/i3/e032007
http://prd.aps.org/pdf/PRD/v86/i3/e032007
http://prd.aps.org/pdf/PRD/v86/i3/e032007
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Why you must do an amplitude analyses if you want 
to find real new resonances in multi body decays.
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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FIG. 5 (color online). Asymmetry between the numbers of
reconstructed D!þ and D!& candidates as a function of the
soft pion’s pT .

T. AALTONEN et al. PHYSICAL REVIEW D 86, 032007 (2012)

032007-10

Not a (new 
or old)  ππ 
resonance

m2(ππ)

m
2 (K

Sπ
)

Dº→KSππ
CDF PHYSICAL REVIEW D 86, 032007 
(2012) (no claim of any bogus resonance 
is made in this paper, it’s a completely 
sound paper about CPV in charm).

Structure due 
to angular 
distribution in 
D→K*(KSπ)π

http://prd.aps.org/pdf/PRD/v86/i3/e032007
http://prd.aps.org/pdf/PRD/v86/i3/e032007
http://prd.aps.org/pdf/PRD/v86/i3/e032007
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Real Dalitz plots
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Real Dalitz pots
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Figure 2: Dalitz plots for (a) D+
! ⇡�⇡+⇡+ and (b) D+

s ! ⇡�⇡+⇡+ candidates selected within
±2�̃ around the respective m̃ weighted average mass.

4 Binned analysis

4.1 Method

The binned method used to search for localised asymmetries in the D+
! ⇡�⇡+⇡+

decay phase space is based on a bin-by-bin comparison between the D+ and D� Dalitz
plots [19,20]. For each bin of the Dalitz plot, the significance of the di↵erence between the
number of D+ and D� candidates, S i

CP , is computed as

S
i
CP ⌘

N+
i � ↵N�

ip
↵(N+

i +N�
i )

, ↵ ⌘
N+

N� , (1)

where N+
i (N�

i ) is the number of D+ (D�) candidates in the ith bin and N+ (N�) is
the sum of N+

i (N�
i ) over all bins. The parameter ↵ removes the contribution of global

asymmetries which may arise due to production [21, 22] and detection asymmetries, as
well as from CPV . Two binning schemes are used, a uniform grid with bins of equal size
and an adaptive binning where the bins have the same population.

In the absence of localised asymmetries, the S
i
CP values follow a standard normal

Gaussian distribution. Therefore, CPV can be detected as a deviation from this behaviour.
The numerical comparison between the D+ and D� Dalitz plots is made by a �2 test,
with �2 =

P
i(S

i
CP )

2. A p-value for the hypothesis of no CPV is obtained considering that
the number of degrees of freedom (ndf) is equal to the total number of bins minus one,
due to the constraint on the overall D+/D� normalisation.

A CPV signal is established if a p-value lower than 3⇥10�7 is found, in which case it
can be converted to a significance for the exclusion of CP symmetry in this channel. If no
evidence of CPV is found, this technique provides no model-independent way to set an
upper limit.

4

ρ(770)
f(980)

σ(500)?
2.4M D±→π±π∓π± decays (LHCb)

Phys. Lett. B728 (2014) 585
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Calculating amplitudes
• Let us assume(!) that 

the full amplitude can 
be calculated as the 
sum of essentially 
independent two 
body processes. 

• Doing this results in 
the so-called “isobar” 
model.

M

1

2

3
R

19

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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Calculating amplitudes
• We don’t know anything 

about the strong 
interaction dynamics. 

• As a first 
approximation, we treat 
each particle as point 
particle. 

• We want a Lorentz-
invariant matrix 
element… 

M

1

2

3
R

20
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Calculating amplitudes

M

1

2

3
R

1

s23 �m2
R � imR�

RELATIVISTIC BREIT-WIGNER 

31 

RELATIVISTIC BREIT-WIGNER 

31 

RELATIVISTIC BREIT-WIGNER 

31 
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Calculating the amplitudes

M

1

2

3
R q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

say R has spin 1 (e.g. K*(892), ρ(770) etc)
q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

1

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫"⌫Rp1µ "µ⇤R

"⇤R

1

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫p1µ

X

all �

"�µ⇤R

"⇤R

"�⌫R
1

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫p1µ

X

all �

"�µ⇤R

"⇤R

"�⌫R

X

all �

"�µ⇤R "�⌫R = �gµ⌫ +
pµRp

⌫
R

p2R

1

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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spin factor

Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

✓
�p1 · q23 +

(p1 · pR)(q23 · pR)
p2R

◆
1

s23 �m2
R � imR�

spin factor (here for L=1) 27
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

Express in terms of sij if you wish, using pi · pj = sij �m2
i �m2

2

✓
�p1 · q23 +

(p1 · pR)(q23 · pR)
p2R

◆
1

s23 �m2
R � imR�

spin factor (here for L=1) 27
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R
Angular Momenta 
require momenta

l=1
l=1

d

L =
p

l(l + 1)

classical mechanics

QM

in decay rest frame

~L = 2 ~d⇥ ~qr

~qr

�~qr

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Blatt Weisskopf Penetration 
Factors

classical 
mechanics: 
L = 2 qd 

QM: 
L2 = l(l+1)

– 3–

Barrier Factor BL: The maximum angular momentum L

in a strong decay is limited by the linear momentum q —

the relative momentum of the decay particles in the center of

mass frame of the decaying resonance. Decay particles moving

slowly with an impact parameter (meson radius) d of order

1 fm have difficulty generating sufficient angular momentum to

conserve the spin of the resonance. The Blatt-Weisskopf [14,15]

functions BL, given in Table 2, weight the reaction amplitudes

to account for this spin-dependent effect. These functions are

normalized to give BL = 1 for z = (|q| d)2 = 1. Another

common formulation, B′
L, also in Table 2, is normalized to give

B′
L = 1 for z = z0 = (|q0| d)2 where q0 is the value of q when

mab = mr. An important difference between the BL and the

B′
L is that the former include explictly the centrifugal barrier,

while it is to be moved to the dynamical functions in the case

of B′
L.

Table 2: Blatt-Weisskopf barrier factors weight
the reaction amplitudes to account for spin-
dependent effects (c.f. Sec. VIII.5 of Ref. 14) .
Two formulations with different normalization
conditions (described in text) are shown. BL is
commonly used in Dalitz plot analyses; B′

L is
commonly used with the helicity formalism.

L BL(q) B′
L(q, q0)

0 1 1

1

√

2z

1 + z

√

1 + z0

1 + z

2

√

13z2

(z−3)2+9z

√

(z0−3)2+9z0

(z−3)2+9z

where z = (|q| d)2 and z0 = (|q0| d)2

Dynamical Function Tr: The dynamical function Tr is de-

rived from the S-matrix formalism [5]. In general, the am-

plitude that a final state f couples to an initial state i is

Sfi = 〈f |S|i〉, where the scattering operator S is unitary:

June 18, 2012 15:23

30



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

Blatt Weisskopf Penetration 
Factors

1/4 L2 = 1/4 l(l+1) for l = …
1 2 3 4

classical 
mechanics: 
L = 2 qd 

QM: 
L2 = l(l+1)

0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

(qd)^2

B_
L(
q)
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R
Angular Momenta 
require momenta

l=1
l=1

d

in decay rest frame

~qr

�~qr

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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B0
L(qrM , dM )

<latexit sha1_base64="rstWoUsYRP3iyxk4p1iePiuF5gU="></latexit>

B0
L(qrR, dR)

<latexit sha1_base64="3DnMq5D6AD9chsdPQ1FNRahd03Y="></latexit>
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)
�gµ⌫ +

pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.
break-up momentum

33
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum

34

J=1
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum

34

J=1
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

break-up momentum

34

J=1
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Calculating the amplitudes
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q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

centrifugal barrier factor

break-up momentum

34

J=1
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

centrifugal barrier factor

the same as numerator, but 
calculated for “nominal” (peak) 

resonance mass.

break-up momentum

34

J=1
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Mass dependent width 
(ignoring ang. mom)

!

"

#

$

Breit-Wigner Lineshape.

! Comparison between resonances lineshapes without (dashed) and with a mass-dependent Γ (solid

line).

39

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

dashed: fixed width 

solid: mass dependent width
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Breit Wigner with angular 
momentum effects (only)

!

"

#

$

Breit-Wigner with Blatt-Weisskopf penetration factors

! Breit-Wigner lineshape with different angular momentum factors.

41

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)
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Amplitude Model
q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

AR =

Mfi =
X

R

cRe
i✓RAR(s12, s23)

P (s12, s23) =
|Mfi|2

��� d�
ds12 ds23

���
R
|Mfi|2

��� d�
ds12 ds23

��� ds12 ds23

=
|Mfi|2R

within kin boundary

|Mfi|2 ds12 ds23

sensitivity to phases is one of the 
key reasons amplitude analyses 

are so interesting.
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Fitters frequently used at LHCb: 
MINT (esp for >3 body) 
AmpGen (descendent of MINT) 
Laura++ 
z-fit/tensor flow and 
GooFit-based fitters
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Isobar Model + non-resonant

• “Classic” experimentalists’ model: Isobar model with 
resonances described by Breit Wigner lineshapes, plus 
“non-resonant” term (also called “contact term”, and, 
amongst theorists, “background”). 

• Despised by theorists - especially the non-resonant term 
(but in practice it’s often needed to describe the data).

M=

38

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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2
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1
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1
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+ ++ ….+

+c1c0 + 1

s23 �m2
1 � im1�1(s23)

….
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Sum of Breit Wigners
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Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico 
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Amplitude Model
Mfi =

X

R

cRe
i✓RAR(s12, s23)

the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8

MEASUREMENT OF CP-VIOLATION ASYMMETRIES . . . PHYSICAL REVIEW D 86, 032007 (2012)

032007-9

CDF: PHYSICAL REVIEW D 86, 032007 (2012)example:

41

http://prd.aps.org/pdf/PRD/v86/i3/e032007
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the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8

MEASUREMENT OF CP-VIOLATION ASYMMETRIES . . . PHYSICAL REVIEW D 86, 032007 (2012)

032007-9

CDF: PHYSICAL REVIEW D 86, 032007 (2012)example:

41

http://prd.aps.org/pdf/PRD/v86/i3/e032007
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the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8

MEASUREMENT OF CP-VIOLATION ASYMMETRIES . . . PHYSICAL REVIEW D 86, 032007 (2012)

032007-9

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

+a0e
i✓0

example:
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the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
distributions in data.
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
distributions in data.
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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Mixing formalism for 2-body 
WS decays
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Introduction D0 ! KShh measurements New result in D0 ! KS⇡+⇡�
at Belle Summary backup

Final result

Fit results(Belle preliminary):

Fit case Parameter Fit new result Belle 2007

No CPV
x(%) 0.56± 0.19+0.03+0.06

�0.09�0.09 0.80± 0.29+0.09+0.10
�0.07�0.14

y(%) 0.30± 0.15+0.04+0.03
�0.05�0.06 0.33± 0.24+0.08+0.06

�0.12�0.08

No dCPV
|q/p| 0.90+0.16+0.05+0.06

�0.15�0.04�0.05 0.86+0.30+0.06
�0.29�0.03 ± 0.08

arg q/p(o) �6± 11+3+3
�3�4 �14+16+5+2

�18�3�4

No dCPV)no direct CP-violation: Af = Af when f = f̄

2.5� from no-mixing point in (x,y) plane.

No hint for indirect CPV.

Longke LI (USTC) KShh measuremets September 1, 2013 18 / 20

Introduction D0 ! KShh measurements New result in D0 ! KS⇡+⇡�
at Belle Summary backup

Dalitz model and plot

Dalitz plot and proper-time fit
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Significant systematic uncertainty from 

amplitude model dependence. (Could be 
limiting with future LHCb/upgrade statistics.)
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“Isobar” Model

• “Isobar”: Describe decay as series of 2-body processes. 
 
 

• Usually: each resonance  described by Breit Wigner lineshape (or similar) times 
factors accounting for spin.


• Popular amongst experimentalists, less so amongst theorists: violates unitarity. But 
not much as long as resonances are reasonably narrow, don’t overlap too much.


• General consensus: Isobar OK-ish for P, D wave, but problematic for S-
wave.Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

45

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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Isobar Model with sum of 
Breit Wigners

• Single narrow resonance well described by Breit Wigner 

• Overlapping broad resonances less so. Theoretically 
problematic: violates unitarity. From a practical point of 
view problematic as you might get the wrong phase 
motion.
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R2 R3

1

s12 �m2
2 � im2�2(s12)
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1 � im1�1(s12)

1

s12 �m2
3 � im3�3(s12)+ + …
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Flatté Formula
• Consider f0(980) (width Γ ≈ 40-100 MeV). Decays to 
π π and KK. To KK only above ~987.4 MeV.  

• The availability of the KK final state above 987.4 
MeV increases the phase space and thus the width 
above this threshold. 

• Need to take this into account even if I only look at 
f0(980)→ππ.

BWJ!s" #
1

M2
R $ s$ iMR!

!J"
R !s"

; (5)

whereMR is the nominal mass of the resonance, and !!J"
R !s"

is the ‘‘mass dependent width.’’ In the general case, !!J"
R !s"

is expressed as [20]

!!J"
R !s" # !R

!
ps
pr

"
2J%1

!
MR

s1=2

"

F2
R; (6)

where pr is the momentum of either daughter in the
resonance rest frame, calculated with the resonance mass
equal to the nominal MR value, ps is the momentum of
either daughter in the resonance rest frame when the reso-
nance mass is equal to s1=2, J is the spin of the resonance,
and !R is the width of the resonance.

The function TJ in Eq. (3) describes the angular corre-
lations between the B decay products. We distinguish the
following three cases:

(1) Scalar-pseudoscalar !J # 0" decay—If R is a scalar
state, the decay amplitude Eq. (3) takes the simplest form
with T0 & 1. We treat the scalar f0!980" as a special case,
for which we try two parametrizations for the s-dependent
width !f0!s": by Eq. (6), and following the parametrization
by Flatté [21]

!f0!s" # !!!s" % !K!s"; (7)

where
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and g! and gK are coupling constants for f0!980" ! !!
and f0!980" ! KK, respectively.

(2) Vector-pseudoscalar !J # 1" decay—In the case of a
pseudoscalar-vector decay of the B meson, the Lorentz-
invariant expression for T1 is given by
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where R23 is an intermediate resonance state decaying to
h2h3 final state.

(3) Tensor-pseudoscalar !J # 2" decay—For a
pseudoscalar-tensor decay, T2 takes the form
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We do not consider resonant states of higher spin in our
analysis.

There is also the possibility of a so-called ‘‘nonreso-
nant’’ amplitude. In the Dalitz analysis of D meson decays
to three-body final states the nonresonant amplitude is
often parametrized as a complex constant. In the case of
B meson decays, where the available phase space is much
larger, it is rather unlikely that the nonresonant amplitude
will have a constant value over the entire phase space;
some form factors should be introduced. Unfortunately,
at the moment there is no theoretical consensus on the
properties of nonresonant B meson decays. In our analysis
we use an empirical parametrization that in the case of the
K%!%!$ final state is

A nr!K%!%!$" # anr1 e
$"s13ei#

nr
1 % anr2 e

$"s23ei#
nr
2 ; (11)

where s13 & M2!K%!$", s23 & M2!!%!$", and anr1;2, and
#nr
1;2 and " are fit parameters. In a certain limit this pa-

rametrization is equivalent to a constant. Several alterna-
tive parametrizations (mentioned below) are also
considered to estimate the model dependence.

An important feature that should be taken into account in
the construction of the matrix element for the decay B% !
K%K%K$ is the presence of the two identical kaons in the
final state. This is achieved by symmetrizing the matrix
element with respect to the interchange of the two kaons of
the same charge, that is s13 $ s23. Because of symmetri-
zation the nonresonant amplitude for the K%K%K$ final
state becomes

A nr!K%K%K$" # anr!e$"s13 % e$"s23"ei#nr
; (12)

where s13 & M2!K%
1 K

$", s23 & M2!K%
2 K

$".
Given the amplitude for each decay type, the overall

matrix elements can be written as a coherent sum

M #
X

j
ajei#jAj %Anr; (13)

TABLE II. Blatt-Weisskopf penetration form factors. pr is the
momentum of either daughter in the meson rest frame. ps is the
momentum of either daughter in the candidate rest frame (same
as pr except the parent mass used is the two-track invariant mass
of the candidate rather than the mass of the meson). R is the
meson radial parameter.

Spin J Form factor F!J"
R

0 1

1
#############

1%R2p2
r

p
#############

1%R2p2
s

p

2
#########################

9%3R2p2
r%R4p4

r

p
#########################

9%3R2p2
s%R4p4

s

p

A. GARMASH et al. PHYSICAL REVIEW D 71, 092003 (2005)

092003-8

BWJ!s" #
1

M2
R $ s$ iMR!

!J"
R !s"

; (5)

whereMR is the nominal mass of the resonance, and !!J"
R !s"

is the ‘‘mass dependent width.’’ In the general case, !!J"
R !s"

is expressed as [20]

!!J"
R !s" # !R

!
ps
pr

"
2J%1

!
MR

s1=2

"

F2
R; (6)

where pr is the momentum of either daughter in the
resonance rest frame, calculated with the resonance mass
equal to the nominal MR value, ps is the momentum of
either daughter in the resonance rest frame when the reso-
nance mass is equal to s1=2, J is the spin of the resonance,
and !R is the width of the resonance.

The function TJ in Eq. (3) describes the angular corre-
lations between the B decay products. We distinguish the
following three cases:

(1) Scalar-pseudoscalar !J # 0" decay—If R is a scalar
state, the decay amplitude Eq. (3) takes the simplest form
with T0 & 1. We treat the scalar f0!980" as a special case,
for which we try two parametrizations for the s-dependent
width !f0!s": by Eq. (6), and following the parametrization
by Flatté [21]
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to three-body final states the nonresonant amplitude is
often parametrized as a complex constant. In the case of
B meson decays, where the available phase space is much
larger, it is rather unlikely that the nonresonant amplitude
will have a constant value over the entire phase space;
some form factors should be introduced. Unfortunately,
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An important feature that should be taken into account in
the construction of the matrix element for the decay B% !
K%K%K$ is the presence of the two identical kaons in the
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state becomes
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K-matrix

• For single channel: Reproduces Breit Wigner 

• For single resonance that can decay to different 
final state: Reproduces Flatté.

Sfi = hf |S|ii = I + 2iT

T = K(I � iK)�1

Kij =
X

↵

p
m↵�↵i

p
m↵�↵j

m2
↵ �m2

51



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

K-matrix

N RELATIVISTIC BREIT-WIGNER’S 

33 

Consider two poles in a single channel: 
N RELATIVISTIC BREIT-WIGNER’S 

33 

Consider two poles in a single channel: 

Sfi = hf |S|ii = I + 2iT

T = K(I � iK)�1

Kij =
X

↵

p
m↵�↵i

p
m↵�↵j

m2
↵ �m2
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K-matrix
• Note that the K-matrix approach is still an approximation. 

• While it ensures unitarity (by construction), it is not 
completely theoretically sound/motivated (and violates 
analyticity). 

• And it does not in any way address this:

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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What theorists think of all 
this
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Sum of Breit Wigners
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Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico 



Jonas Rademacker                                                                    Intro to Amplitude Analyses                        BELLE II Physics Week, 30 Nov 2020                            

Amplitude Models and their 
issues

• Let’s look at this (effectively 2-body scattering) problem, 
first: 
 
 
Describing this with sums of Breit Wigner line shapes 
violates some fundamental principles, in particular unitarity 
(which then breaks the relation between magnitude and 
phase of the amplitude). OK-ish for narrow resonances 
that do not overlap too much. 

• We’ll postpone the discussion this for a few slides:

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
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right-hand cut
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left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)
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dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8 57
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3-body Dalitz plot (theory)

58
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takes into account 
this

Omnès 
takes into 

account just this
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−→ crossed-channel scattering between s-, t-, and u-channel

B. Kubis, Three-body decays beyond the isobar model – p. 8

Bastian Kubis
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Bd→J/ψππ, dispersion relation-based 
description of ππ S-wave

59
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Figure 3. 〈Y 0
0 〉 (left) simultaneously fitted with 〈Y 0

2 〉 (right), using 3 parameters without D-wave
contribution (FIT I, red, solid), and improving step by step by adding a Breit–Wigner-parametrized
D-wave contribution (FIT II, blue, dashed) and by allowing for 4 free parameters, also supplemented
by the D-wave contribution (FIT III, green, dotted).

i.e. including data up to
√
s = 1.02 GeV and the angular moments 〈Y 0

0 〉 and 〈Y 0
2 〉 only.

We obtain χ2
LHCb/ndf = 2.20. In this limited energy range the Breit–Wigner description,

including the f0(500), ρ(770) and ω(782), requires 16 fit constants, while we have three

(FIT I, II) or four (FIT III) free parameters and find χ2/ndf = 2.0 (FIT I), χ2/ndf = 1.5

(FIT II) and χ2/ndf = 1.3 (FIT III). The calculated angular moments for the three fit

models in comparison to the data are shown in Fig. 3.

Probably the most striking feature of our solution is the pronounced effect of the ω that

leads to the higher peak in Fig. 3. As mentioned above, this isospin-violating contribution

is fixed completely from an analysis of the pion vector form factor, however, its appearance

here is utterly different, since the coupling strength is multiplied by a factor of −3. This

not only enhances the impact of the ω on the amplitude level to about 50%, but also

implies that the change in phase of the signal is visible a lot more clearly: while in case

of the vector form factor the ω amplitude leads to an enhancement on the ρ-peak and

some depletion on the right wing, forming a moderate distortion of the line shape, here

we obtain a depletion on the ρ-peak accompanied by an enhancement on the right wing.

While the current data do not show the ω peak clearly, improved experimental data are

urgently called for, since an experimental confirmation of the ω effect on B̄0
d → J/ψπ+π−

would allow one to establish that the B̄0
d decay indeed provides a rather clean d̄d source.

A key feature of the formalism employed here is its correct description of the S-wave.

Figure 4 shows the comparison of the S-wave amplitude strength of the LHCb Breit–

Wigner parametrization with the ones obtained in FIT I–III, as well as the comparison of

the corresponding phases. In the elastic region, the phase of the non-strange scalar form

factor δΓn = arg(Γn
π) coincides with the ππ phase shift δ00 that we use as input for the

Omnès matrix, in accordance with Watson’s theorem. Right above the KK̄ threshold, δΓn

drops quickly, which causes the dip in the region of the f0(980), visible in the modulus

of the amplitudes as well as the non-Breit–Wigner bump structure in the f0(500) region.
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Figure 12: Dalitz fit projections of (a) m(⇡+
⇡
�), (b) cos(✓⇡+⇡�), (c) cos ✓J/ and (d) � for

the 5R Model + ⇢(1700) (Best Model). The points with error bars are data compared with
the overall fit, shown by the (blue) solid line. The individual fit components are signal, shown
with a (red) dashed line, background, shown with a (black) dotted line, and K

0
S , shown with a

(green) dashed line.

that the CP -odd fraction is (44.0±1.4)%. The structure near the peak of the ⇢(770) is
due to ⇢� ! interference. The fit fraction ratio is found to be

�(B
0
! J/ !(782), ! ! ⇡+⇡�)

�(B
0
! J/ ⇢(770), ⇢! ⇡+⇡�)

= (1.07+0.32+0.29
�0.22�0.22)⇥ 10�2,

where the uncertainties are statistical and systematic, respectively; wherever two uncer-
tainties are quoted in this paper, they will be of this form. The systematic uncertainties
will be discussed in detail in Sec. 6.3.

The 7R model fit gives the ratio of observed decays into ⇡+⇡� for f0(980)/f0(500) equal
to (0.6+0.7+3.3

�0.4�2.6)⇥ 10�2. To determine the statistical uncertainty, the full error matrix and
parameter values from the fit are used to generate 500 data-size sample parameter sets.
For each set, the fit fractions are calculated. The distributions of the obtained fit fractions
are described by bifurcated Gaussian functions. The widths of the Gaussians are taken as
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LHCb fit 
(projection on m(ππ)

Daub, Hanhart, Kubis’ fit to background 
subtracted, efficiency corrected LHCb data 

with m(ππ) < 1.02 GeV

3 fit parameters (model I and III) 
4 fit parameters for model II

16 fit parameters 
for Breit Wigner 
description of 

signal in the region 
< 1.02 GeV Daub, Hanhart, Kubis: JHEP 1602 (2016) 009

http://inspirehep.net/record/1390113?ln=en
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Formalism applied to φ→πππº

60

Experimental comparison to φ → 3π

• successive slices through Dalitz plot: Niecknig, BK, Schneider 2012
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Bastian Kubis

A simple Dalitz plot: φ → 3π
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• analyzed in terms of:
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Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?

B. Kubis, Three-body decays beyond the isobar model – p. 5
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B. Kubis, Three-body decays beyond the isobar model – p. 11

Bastian Kubis
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−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?
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Formalism applied to D→ππK

61

Bastian Kubis

 7 fit parameters
Fit limited to  
M(Kπ) < M(η’) + M(K) ≈ 1.45GeV 
elastic approximation breaks down 
beyond.

(Slices through) Dalitz plotD+ → π+π+K−
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• Omnès fit: χ2/ndof ≈ 1.42

("isobar model" + non-resonant background waves)
• full dispersive solution: χ2/ndof ≈ 1.11

−→ visible improvement similar to φ → 3π

• full fit in terms of 7 complex subtraction constants
(–1 phase, –1 overall normalisation) Niecknig, BK in progress

B. Kubis, Three-body decays beyond the isobar model – p. 14
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multi meson model -

Triple-M

starts from Chiral Theory 

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.
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alternative to isobar model

A

unitary scattering amplitude for ab ! K+K�
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multi meson model -

parameters have physical meaning: resonance masses and coupling constants 

relative phase between partial waves is NOT fitted

Triple-M

starts from Chiral Theory 

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.
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parameter value

F 94.3+2.8
−1.7± 1.5MeV

ma0 947.7+5.5
−5.0± 6.6MeV

mSo 992.0+8.5
−7.5± 8.6MeV

mS1 1330.2+5.9
−6.5± 5.1MeV

mφ 1019.54+0.10
−0.10± 0.51MeV

Gφ 0.464+0.013
−0.009± 0.007

cd −78.9+4.2
−2.7± 1.9MeV

cm 106.0+7.7
−4.6± 3.3MeV

c̃d −6.15+0.55
−0.54± 0.19MeV

c̃m −10.8+2.0
−1.5± 0.4MeV

Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The
magenta histogram represents the contribution from the background.

the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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FFNR FF00 FF01 FF10 FF11 FFS−wave

14 ± 1 29 ± 1 131 ± 2 7.1 ± 0.9 0.26 ± 0.01 94 ± 1

Table 4. Relative fractions (%) of the various components of the Triple-M amplitude. The uncer-
tainties correspond to the combined statistical and systematic uncertainties.

with

TS = TS
NR + T 00 + T 01 (7.5)

and

TP = TP
NR + T 11 + T 10 . (7.6)

The relative contribution of each individual component of the Triple-M amplitude is

determined by integrating the modulus squared of each term in the right-hand side of

eq. (7.2) over the phase space of the D+→ K−K+K+ decay,

FFNR =

∫
ds12 ds13 |TNR(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

, FFJI =

∫
ds12 ds13 |T JI(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

. (7.7)

Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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We propose an approach to describe the Dþ → K−KþKþ decay amplitude, based on chiral effective
Lagrangians, which can be used to extract information about KK̄ scattering. It relies on factorization and its
main novel feature is the role played by multimeson interactions characteristic of chiral symmetry. Our trial
function is an alternative to the widely used isobar model and includes both nonresonant three-body
interactions and two-body rescattering amplitudes, based on coupled channels and resonances, for S- and
P-waves with isospin 0 and 1. The latter are unitarized in the K-matrix approximation and represent the
only source of complex phases in the problem. The nonresonant component, given by chiral symmetry as a
real polynomium, is an important prediction of the model, which goes beyond the (2þ 1) approximation.
Our approach allows one to disentangle the two-body scalar contributions with different isospins,
associated with the f0ð980Þ and a0ð980Þ channels. We show how the KK̄ amplitude can be obtained from
the decay Dþ → K−KþKþ and discuss extensions to other three-body final states.

DOI: 10.1103/PhysRevD.98.056021

I. INTRODUCTION

Nonleptonic weak decays of heavy-flavored mesons are
extensively used in light meson spectroscopy. Owing to a
rich resonant structure, these decays provide a natural place
to study hadron-hadron interactions at low energies. In
particular, almost 20 years ago, three-body decays of
charmed mesons could confirm the existence of the con-
troversial scalar states f0ð600Þ (or sigma) [1] and K$

0ð800Þ
(or kappa) [2]. More comprehensive investigations can be
done nowadays, using the very large and pure samples
provided by the LHC experiments, and still more data is
expected in the near future, with Belle II experiments.
Three-body hadronic decays of heavy-flavored mesons

involve combinations of different classes of processes,
namely heavy-quark weak transitions, hadron formation
and final-state interactions (FSI), whereby the hadrons
produced in the primary vertex are allowed to interact in
many different ways before being detected. Final-state
processes include both proper three-body interactions
and a wide range of elastic and inelastic coupled channels

involving resonances. In this framework, a question arises
concerning how to obtain information about two-body
scattering amplitudes from the abundant data on three-
body systems.
The key issue of this program is the modeling of the

decay amplitudes. Most amplitude analyses have been
performed using the so-called isobar model, in which
the decay amplitude is represented by a coherent sum
of both nonresonant and resonant contributions. This
approach, albeit largely employed [3], has conceptual
limitations. The outcome of isobar model analyses are
resonance parameters such as fit fractions, masses and
widths, which are neither directly related to any underlying
dynamical theory nor provide clues to the identification of
two-body substructures. Thus, the systematic interpretation
of the isobar model results is rather difficult.
This situation motivated in the past decade efforts

towards building models that are based on more solid
theoretical grounds. Those models improve essentially the
two-meson interaction description in the FSI, with the use
of dispersion relations and chiral perturbation theory. Most
of them work in the quasi-two-body (2þ 1) approximation,
where interactions with the third particle are neglected.
Recently, a collection of parametrizations based on analytic
and unitary meson-meson form factors for D and B three-
body hadronic decays within the (2þ 1) approximation
was presented in Ref. [4]. Three-body FSIs were also
considered and, in particular, shown to play a significant
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c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Tool kit for meson-meson interactions in 3-body decay 
NEW MAGALHAES, A.dos Reis, Robilotta 

PRD 102, 076012 (2020)Any 3-body decay amplitude

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)

+=

+=(b)

(a) +T W WW
F

A

AF

FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)

11

in fig.4 (a), and it is a real function because, at this point we are still dealing with a bare

resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.
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FIG. 4: Scattering amplitudes T and kernels K: (a) tree level; (b) first perturbative correction; (c)

second perturbative correction; (d) full amplitude.

The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.
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is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)
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are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents
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final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related
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where D is the denominator given in (7). The imaginary part of D gives rise to a finite
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In order to go beyond the (2 + 1) approximation, one would need to tackle a rather

complicated three-body problem, which involves both multiple scattering series and proper

three-body interactions, as indicated in Fig.6. It is worth stressing that these FSIs are not a

matter of choice, since they are compulsory contributions to the problem. Part of this sector

can be tackled by means of Fadeev techniques[8] or Khuri-Treiman formalism [10, 34] but

this kind of effort is still incipient to describe the full dynamics of heavy mesons nonleptonic

decays.
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well known for systems involving pions, kaons and etas, within the phase space provided by
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includes multiple resonances in the same channel (as many as wanted)

free parameter (massas and couplings) to be fitted to data.
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is a higher order kernel and the s-channel is represented by three successive K0 interactions.
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form
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Available to be implement in data analysis!!

provide the building block
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Three π–π+ S-wave parametrisation in B–→π–π+π–
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 19

S-wave model projections

Isobar K-matrix QMI

|A|2

Phase

B+ B-
f0(980)

f0(1500)

stat. } stat. + syst.{

CP violation is pretty evident here!

CP 
violation

CP 
violation

slide by Daniel O’Hanlon

LHCb: Phys. Rev. D101 (2020) 012006 

https://old.inspirehep.net/record/1753654
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Model-Independent line 
shapes

67

a1(1260) line shape in D→ππππ, CLEO-data

Figure 6.3: Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent a1(1640) lineshape. The fitted knots are displayed as points with error bars and

the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and

width from the nominal fit is superimposed (red area). The latter is chosen to agree with the

interpolated spline at the point <(A) = 1, =(A) = 0.

Figure 6.4: Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent a1(1260) lineshape. The fitted knots are displayed as points with error bars and

the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and

width from the nominal fit is superimposed (red area). The latter is chosen to agree with the

interpolated spline at the point <(A) = 1, =(A) = 0.

Figure 6.5: Magnitude-squared (a), phase (b) and Argand diagram (c) of the quasi-model-

independent ⇡(1300) lineshape. The fitted knots are displayed as points with error bars and

the black line shows the interpolated spline. The Breit-Wigner lineshape with the mass and

width from the nominal fit is superimposed (red area). The latter is chosen to agree with the

interpolated spline at the point <(A) = 1, =(A) = 0.

28
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Model-Independent line 
shapes

68

Use known resonances as interferometer to obtain model-
independent amplitude and phase of resonance. 

Example: LHCb Pentaquark discovery in Λb0→J/ψpK–

Re A  
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http://inspirehep.net/record/1382595
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Fully model-independent
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Use as input only the well-understood angular distributions of S, P, D, F, 
… resonances (expanded in terms of Legendre Polynomials) in  K–p, 
and the measured K–p mass spectrum, to model J/ψp mass spectrum 

(blue). Is the peak just a reflection? No!
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This means it’s not the 
kind of reflection 

introduced earlier with 
the example of 

D→KSππ

http://inspirehep.net/record/1449086
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See also

• JPAC (Mikhasenko et al): “Dalitz-plot decomposition for three-body decays" 
Phys.Rev.D 101 (2020) 3, 034033.  
Very useful especially when dealing with complicated spin structures.


• Krinner, Greenwald, Ryabchikov, Grube, Paul, “Ambiguities in model-independet 
partial-wave analysis” Phys. Rev. D 97, 114008 
Identifies and overcomes difficulties in model-independent amplitude analyses.
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https://inspirehep.net/literature/1758460
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Das Model

• There are, for most cases we care about, no 
theoretically sound amplitude models…


• However, there are “good enough” models. What’s 
good enough depends on the purpose.


• So what to do? Suggest a mix of….


• model-independent approaches


• “good enough” models of various levels of 
sophistication


• improve models (there is - and that’s fairly new - 
real, tangible, progress!)

71

The Model

http://www.youtube.com/watch?v=OQIYEPe6DWY&feature=kp
http://www.youtube.com/watch?v=_g4x82CuNPM

