MC matching

Frank Meier

2020 Belle II Physics Week 30 November 2020

Introduction

- MC matching useful to
 - optimize selection requirements, e.g. label training data for MVAs
 - calculate signal efficiencies
 - study background sources
- two steps
 - 1. relate mdst dataobjects (tracks, ECL cluster, KLM cluster) with MC particles (with weights)
 - 2. relate reconstructed particles with MC particles
- interpretation of MC matches necessary
- MC matching in a nut shell
 - modularAnalysis.matchMCTruth('Upsilon4S', path=path)
 - use isSignal==1 to identify signal

MC matching for tracks

- compare overlap of hits of MC particle and hits used for pattern recognition of track
- track might mainly consist of background hits (case 1)
- true hits might be split between two or more track candidates (case 2)
- one track might use hits of two or more MC particles (case 3)
- ► certain level of efficiency and purity ⇒ relation set between MC particle and track

alternative approach based on kinematics under development

MC matching for photons

 comparison of true deposited energy (from GEANT) in ECL cluster with energy of MC particle and reconstructed energy

©Torben Ferber

MC matching for photons

- relation between ECL cluster based particle (γ , neutron, K_{L}^{0}) and MC particle set if
 - ▶ weight (energy of ECL cluster) > 20 % of reconstructed particle energy
 - weight > 30 % of MC particle energy
- clusterMCMatchWeight returns weight between ECL cluster and MC particle match of reconstructed particle
- highest weighted relation used for MC matching

Frank Meier (Duke University)

MC matching

MC matching failures

- clone tracks
 - isCloneTrack and isOrHasCloneTrack
- ► fake tracks
- wrong charge
 - analysis variable isWrongCharge
- overlapping cluster
 - can be studied via nMCMatches
- cluster split-offs
- beam background

Duke

MC matching errors

matchMCTruth('Upsilon4S', path=path)

- sets relations between Particles and MCParticles
- ▶ recursively matches all daughter particles (since light-2002-janus and release-05-00-00)
- bit-wise error flags indicate what went wrong in MC matching (variable mcErrors)

$c_Correct = 0$	This Particle and all its daughters are perfectly reconstructed.
c MissFSR = 1	A Final State Radiation (FSR) photon is not reconstructed (based on MCParticle::c_lsFSRPhoton).
c MissingResonance = 2	The associated MCParticle decay contained additional non-final-state particles (e.g. a rho)
	that weren't reconstructed. This is probably O.K. in most cases.
c_DecayInFlight = 4	A Particle was reconstructed from the secondary decay product of the actual particle.
	This means that a wrong hypothesis was used to reconstruct it, which e.g. for tracks might mean
	a pion hypothesis was used for a secondary electron.
$c_MissNeutrino = 8$	A neutrino is missing (not reconstructed).
c_MissGamma = 16	A photon (not FSR) is missing (not reconstructed).
c_MissMassiveParticle = 32	A generated massive FSP is missing (not reconstructed).
$c_MissKlong = 64$	A Klong is missing (not reconstructed).
$c_{MisID} = 128$	One of the charged final state particles is mis-identified (wrong signed PDG code).
c_AddedWrongParticle = 256	A non-FSP Particle has wrong PDG code, meaning one of the daughters (or their daughters)
	belongs to another Particle.
c_InternalError = 512	There was an error in MC matching. Not a valid match. Might indicate fake/background
	track or cluster.
$c_{MissPHOTOS} = 1024$	A photon created by PHOTOS was not reconstructed (based on MCParticle::c_IsPHOTOSPhoton).
c_AddedRecoBremsPhoton = 2048	A photon added with the bremsstrahlung recovery tools (correctBrems or correctBremsBelle) has
	no MC particle assigned, or it doesn't belong to the decay chain of the corrected lepton mother

isSignal variables

- convenience aliases for mcErrors variable
- isSignal: mcErrors == 0
- isSignalAcceptMissingNeutrino: mcErrors == 0 or mcErrors == 8
- isSignalAcceptMissingGamma: mcErrors == 0 or mcErrors == 16
- isSignalAcceptBremsPhotons: mcErrors == 0 or mcErrors == 2048
- ▶ isSignalAcceptMissingMassive: mcErrors ∈ [0, 32, 64, 96]
- ▶ isSignalAcceptWrongFSPs: mcErrors ∈ [0, 128, 256, 384]
- ▶ isSignalAcceptMissing: mcErrors ∈ [0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120]
- create_isSignal_alias(aliasName, flags)
 - create_isSignal_alias("isSignalAcceptMissingNeutrinoAndMissingGamma", [8, 16]): mcErrors ∈ [0, 8, 16, 24]
- ▶ since light-1911-heracles and release-05-00-00 three possible return values: 0, 1, and NaN
 - isSignal variables can no longer be used as booleans
 - ► NaN if no MC partner found (running on data or matchMCTruth not run or fake tracks / cluster)

Decay string arrows

- ▶ MC matching interpretation configured via decay arrow, markers, and keywords
- four different allowed arrow types
 - ▶ → decays via intermediate resonances and / or with radiative photons are counted as signal
 - =norad=> if in actual decay photon was radiated it is not counted as signal; intermediate resonances do not have to be specified
 - =direct=> if actual decay proceeds via intermediate resonance it is not counted as signal; decays with radiative photons are counted as signal
 - exact=> intermediate resonances and radiative photons have to be specified explicitly, otherwise decay is not counted as signal
- example:
 - \blacktriangleright generated decay: $B^+ \to J\!/\!\psi\,K^+$ with $J\!/\!\psi \to e^+e^-$ and final state photon
 - B+:default -> K+ e+ e- \Rightarrow isSignal == 1
 - B+:noFSR =norad=> K+ e+ e− ⇒ isSignal == 0 and mcErrors == 1
 - ▶ B+:nores =direct=> K+ e+ e- \Rightarrow isSignal == 0 and mcErrors == 2
 - ▶ B+:exact =exact=> K+ e+ e- \Rightarrow isSignal == 0 and mcErrors == 3

Decay string marker and keywords

- markers for inclusive decays
 - @ marked (composite) particle can be any particle and decay is still counted as signal
 - (misID) marked (final state) particle can be other particle type and decay is still counted as signal
 - even if there are more massive final state particles than specified, decay is counted as signal
 - missing π^0 are not counted as signal
- (decay) decay in flight of marked particle counted as signal, $e.g. \pi \rightarrow \mu \nu_{\mu}$
- ?nu neutrinos are ignored in MC matching (isSignal works like isSignalAcceptMissingNeutrino)
- ?addbrems Bremsstrahlung correction photons are ignored in MC matching (isSignal works like isSignalAcceptBremsPhotons)
- ?gamma missing photon(s) are ignored in MC matching (isSignal works like isSignalAcceptMissingGamma)
- ▶ 0, (misID), and (decay) have to be placed in front of particle
- ..., ?nu , ?addbrems , and ?gamma have to be placed at the end of the decay string

Frank Meier (Duke University)

MC matching

Duke

MC reconstruction

- determine how many events of certain type have been generated, especially for inclusive decays
- create particle lists of generated particles using fillParticleListFromMC(decayString, cut, path)
 - ▶ useful to select only primary MC particles using mcPrimary in cut string
 - add argument "addDaughters=True" to recursively create particles for all daughters and set relation to mother MC particle
- b define decay chain using reconstructMCDecay(decayString, cut, path) (supersedes outdated findMCDecay)

- sample with
 - a) $D^0 \rightarrow K^- \pi^+ \pi^0$ b) $D^0 \rightarrow K^{*-} \pi^+$ with $K^{*-} \rightarrow K^- \pi^0$ c) $D^0 \rightarrow K^- \pi^+ \pi^0 \gamma_{\text{FSR}}$ d) $D^0 \rightarrow K^- \pi^+ \pi^0$ with $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ e) $D^0 \rightarrow K^{*-} \mu^+ \nu_{\mu}$

decay string

- 1. DO -> K- pi+ pi0
- 2. D0 =direct=> K- pi+ pi0
- 3. DO =exact=> K- pi+ pi0
- 4. D0 -> K- (decay)pi+ pi0
- 5. DO -> K- (misID)pi+ pi0 ?nu
- 6. DO -> K- (misID)(decay)pi+ pi0 ?nu

isSignal == 1

	sample	e with
--	--------	--------

deo	cay string	isSignal == 1
1.	D0 -> K- pi+ pi0	a), b), c)
2.	DO =direct=> K- pi+ piO	
3.	DO =exact=> K- pi+ piO	
4.	DO -> K- (decay)pi+ piO	
5.	DO -> K- (misID)pi+ piO ?nu	
6.	DO -> K- (misID)(decay)pi+ pi0 ?nu	1

sample with

dee	cay string	isSignal == 1
1.	D0 -> K- pi+ pi0	a), b), c)
2.	DO =direct=> K- pi+ pi0	a) and c)
3.	DO =exact=> K- pi+ piO	
4.	DO -> K- (decay)pi+ piO	
5.	DO -> K- (misID)pi+ piO ?nu	
6.	DO -> K- (misID)(decay)pi+ piO ?nu	

sample with

dee	cay string	isSignal == 1
1.	DO -> K- pi+ pi0	a), b), c)
2.	DO =direct=> K- pi+ pi0	a) and c)
3.	DO =exact=> K- pi+ piO	only a)
4.	DO -> K- (decay)pi+ piO	
5.	DO -> K- (misID)pi+ piO ?nu	
6.	DO -> K- (misID)(decay)pi+ pi	0 ?nu

sample with

decay string	isSignal == 1
1. DO -> K- pi+ piO	a), b), c)
2. DO =direct=> K- pi+ pi0	a) and c)
3. D0 =exact=> K- pi+ pi0	only a)
4. D0 -> K- (decay)pi+ pi0	a), b), c), and d)
5. DO -> K- (misID)pi+ pi0 ?nu	
6. DO -> K- (misID)(decay)pi+ pi0 ?nu	

sample with

decay string	isSignal == 1
1. DO -> K- pi+ pi0	a), b), c)
2. DO =direct=> K- pi+ pi0	a) and c)
3. DO =exact=> K- pi+ piO	only a)
4. D0 -> K- (decay)pi+ pi0	a), b), c), and d)
5. DO -> K- (misID)pi+ piO ?nu	a), b), c), and e)
6. DO -> K- (misID)(decay)pi+ pi0 ?nu	

► sample with

decay string	isSignal == 1
1. DO -> K- pi+ piO	a), b), c)
2. DO =direct=> K- pi+ pi0	a) and c)
3. D0 =exact=> K- pi+ pi0	only a)
4. D0 -> K- (decay)pi+ pi0	a), b), c), and d)
5. DO -> K- (misID)pi+ piO ?nu	a), b), c), and e)
6. DO -> K- (misID)(decay)pi+ pi0 ?nu	a), b), c), d), and e)

MC classification

- ► TopoAna tool
 - requires PDG code and mother-daughter relations of all generated particles of an event tool mc_gen_topo() automatically creates list of necessary variables / aliases
 - example called usingMCGenTopo in examples folder of analysis package
 - tutorial at February 2020 B2GM (slides)
- TauDecayMarker module
 - assigns identifier to tau particles
 - use wrapper function labelTauPairMC to call the module
 - identifier stored in analysis variables tauPlusMCMode, tauMinusMCMode, tauPlusMCProng, and tauMinusMCProng
- GenMCTag tool
 - ▶ generalization of TauDecayMarker: identifier for each particle decay in an event
 - presentation in analysis software meeting (slides)
 - open pull request here (any help appreciated)

Fix of hierarchic MC matching

Duke

- ▶ problem was present in release-04-02-08 and light-2002-ichep, is fixed since release-05-00-00
- less restrictive MC exception flags of mother were propagated to daughters
 - ▶ mother was classified as signal even if daughter itself classified as background
 - ▶ D0:dir =direct=> K- pi+ pi0 $\Rightarrow D^0 \rightarrow K^- \rho^+$ should not be counted as signal
 - ▶ B- -> D0:dir pi- pi0 ⇒ decays via intermediate resonance like $B^- \to D^{*0}\pi^-$ or $B^- \to D^0\rho^-$ should be counted as signal
 - ▶ B^- with decay chain DO → K- rho+ would have been accepted as signal
- MC acceptance flags of daughters were ignored by mother
 - ▶ D0 -> K- pi+ ... (missing massive particle, *e.g.* $\pi^+\pi^-$ accepted)
 - ▶ B- -> DO pi-
 - ▶ B^- with sub-decay DO → K- pi+ pi- pi- would have been classified as background
- now arrow types and MC acceptance flags are properly propagated

Duke

Known MC issues

- MC matching of radiative photons not working in continuum samples
 - error in generation and not in analysis \Rightarrow fixed for MC14
- ► NaN returned for photons matched to beam background cluster (fake cluster) BII-7223
- ▶ MC matching for decays with only one (non-neutrino) daughter
 - \blacktriangleright accepting missing resonance implemented for cases like $\tau^+ \! \rightarrow \rho^+ \nu_\tau$
 - $B^+ \to K^+ \nu \nu$ causes issue

Summary

- MC matching not an exact science
- ▶ matching between tracks and cluster with simulated MC particles in reconstruction
- interpretation of MC matching needed: Define signal via decay string grammar and / or use dedicated isSignal variable
- isSignal is not a boolean (NaN cases)
- store mcErrors in your ntuple
- ▶ several bug fixes in release-05 \Rightarrow use latest software release