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What this talk will try to achieve



An (exclusion) limit is a measurement

Limits are just one-sided confidence (or Bayesian credibility) regions, that is,
they are measurements, just as a standard central values +/- uncertainties (point

estimates).

There’s nothing exotic or special in the conceptual treatment of systematic
uncertainties in limits that’s not already in the treatment of systematic
uncertainties in point estimates or two-sided confidence/credibility regions.

(In fact, because the small sample size typically dominates the precision in
exclusion limits, systematic uncertainties are usually less relevant in limits than in
two-sided confidence regions or point estimates — limits are never “precision
measurements”)



Systematic uncertainties isn’t statistics

In fact, no statistics reference tells you which systematic sources to consider in
a particular problem and how to determine their effects— this is up to the
experimenter and her subjective judgement/understanding of the measurement
process.

Statistical concepts just offer some conceptual means to guide their inclusion in
the results and achieve a shared interpretation.

Rarely there is an unique, rigorously correct way to assess systematic
uncertainties. Typically there are various reasonable ways.

Each has pros and cons that need to be balanced by the experimenter
depending on the scientific goal at hand.

This is not to say that “anything goes”: typically there are also (many more)
wrong/unreasonable ways to assess systematic uncertainties.



I’d be happy Iif this talk could bring us closer
to be able to (i) understand the implications
and interpretations of some of the

reasonable approaches (ii) identify (and
discard) the wrong approaches



What this talk won’t be

You won’t get technical/empiric recipes, black boxes, or recommendations for tools

This is something many seek — | purposely choose not to provide it

[J most ready-made recipes/tools/black boxes apply only to few simple cases —
may not work as expected in your thesis problem. And — what is worse — you
wouldn’t know it.

[Jeven if they apply to your problem, it’'s hardly a good idea to use casually
something that impacts the results w/o appreciating limitations and implications.

There’s a common prejudice that the statistical extraction of results (limit or else) is
some sort of intellectual sophistry. Or, at best, a final technical appendix to the real
scientific work, which is done elsewhere. | disagree.

Statistics is the language of science. It requires sufficient competence to ensure
command of the techniques and understanding of implications.

You wouldn’t trust black boxes while defining your analysis strategy, optimizing
your selection, or definining a fit model.

You shouldn’t trust black boxes when dealing with statistical procedures.



Preliminaries



Preliminaries

Setting limits is part of statistical inference.

Central to any inference is the model p(x|m), a mathematical construct that
connects the physics parameter of interest m (i.e., cross section) with the
observable quantity x (data, i.e. number of signal candidates).

The *assumption™ of the model is the common assumption to all statistical
approaches

When interpreted as a function of the data x (i.e., fixing m = mo), p(x|mo) is the
probability density function: expresses the probability for each data observation
had the true value of the parameter been mo.

When interpreted as a function of parameter m (fixing x = Xo) p(xo|m) = L(m) is
the likelihood: expresses the likelihood to observe data xo for different choices of
possibles m values.



Accelerated recap: Bayesian/frequentist inference

Measuring m consists In

(i) devising a model p(x|m) that conforms the phenomenon under study and
connects the unobserved parameter m (i.e., cross section) to the observable
quantity x (data, i.e. number of signal candidates in a distribution)

(i) observing x
(iii) using the model and the data to infer information on m.

Bayesians — combine the model with prior probabilities for m to determine the
posterior probability p(m|x), which expresses the probability for each value of
parameter m given the data. (“Prior” == known or chosen before observing x)

Frequentists cannot define p(m|x)— they use the model and the probabilities for all
other possible outcomes for x to determine for which values of m the model would
produce the observed data x with highest probability

Don’t want to spend time on the conceptual implications of each. We are free to
choose either option provided that we do it in a conceptually consistent way and are

aware of limitations and implications
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Interpretation of results — coverage

An important aspect is to ensure proper communication of results. When a
HEP paper reports an exclusion limit, we (consciously or unconsciously)
tend to interpret the result as frequentist regardless of the approach used

PHYSICAL REVIEW LETTERS 125, 161806 (2020)

® (Received 26 July 2020; accepted 8 September 2020; published 14 October 2020)

We present a search for the direct production of a light pseudoscalar a decaying into two photons with
the Belle II detector at the SuperKEKB collider. We search for the process e e~ — ya, a — yy in the mass
range 0.2 < m, < 9.7 GeV/c? using data corresponding to an integrated luminosity of (445 4 3) pb~.
Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike
particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for
ALPs and set 95% confidence level upper limits on the coupling strength g,,, of ALPs to photons at the

level of 10> GeV~!. The limits are the most restrictive to date for 0.2 < m, < 1 GeV/c2

We expect that if ~100 experiments were to search for ALPS with our procedure,
~95 would report an exclusion range that does not contain the true value of the
coupling strength (and ~5 an exclusion range that does contain it)

That is we implicitly assume “coverage”.

Hence, for proper communication of results it is generally believed (even by
Bayesians HEP collegues) that coverage is a desirable property.
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Toy limit example

Looking for a a signal over a background in a
spectrum of data

Fit data with a model that allows for signal
and background, “the (S+B) model”

p(z|Ns) = Ns[Signal-bump|(z) + (1 — Ns)[Flat-bekg|(z)

The estimate of the signal yield Ns from data
may be consistent or close to zero, which
allows for setting an exclusion limit for the
signal

(This is a toy example to illustrate the conceptual workflow — won’t spend time on
peripheral details. Concepts would equally apply if it were a counting experiment
instead of a fit, if data x and parameter m = Ns were multidimensional X and m etc.)
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Sayesian lImits



Probabillity for the parameter given the data
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Once you got the posterior, that’s easy

Have likelihood L(Ns) = p(x|Ns) from data.
Assume prior p(Ns) [e.g., uniform]

Integrate (marginalize) the posterior

Likelihood Prior

p(:zr|Ns)p(Ns)
. P(z|Ns)p(Ns)dN,

P(Ns|z) =

until reaching a fractional area
corresponding to the desired Bayesian
credibility level, e.g. 95%.

(let’s call the posterior’s probability content
“Bayesian credibility” — it keeps
transparent the inherent subjectivity)

The corresponding signal yield defines the upper limit — may depend on prior.

14



-requentist limits



Back to our example — toys

Assume a signal strength Nsi(a choice for the true
value of signal yield Ns) and generate toy
simulations by drawing pseudodata drawn from the
S+B model, each of same luminosity as the
experimental data.

Fit each toy of each ensemble with the S+B model
and get a result for Ns

Then plot the distributions of the Ns results

16



p-value = 1- CL

The location of the data
observation relative to the
curves corresponding to
the two hypotheses (“B-
only” or “S+B”) offers a
measure of compatibility
of the data with either.

The fractional integral of the S+B curve over values as bcgk-like as the one we
observed, or more, is the p-value for the “S+B hypothesis”.

The smallest such p-value, the highest the incompatibility of our data with the S+B
hypothesis: it would be unlikely to observe our data if model S+B was the one
realized in nature. That is, our data disfavor the S+B model, or “exclude the S+B
model at a confidence level CL = 1- p” (e.g., 95% CL if p-value = 5%)

17



Testing multiple signal strengths

We only tested one hypothesis of por
signal strength (i.e. our limit only [ PCISSE
excludes a specific BF value) e

Typically one is interested to testa = &1 ¥
whole range of signal strengths B
(e.g, BF < 10-9). |

Repeat the previous procedure on
multiple ensembles of toys, each
ensemble generated assuming a
different signal strength

Your measurement excludes at 90% CL the signal strength yielding a p-value of
5% in data, and all higher strengths.

(This toy example illustrates the general, first-principle approach to construct a
frequentist limit that is, to study the properties of your estimator in toys. Massive
toy generation is often avoided by exploiting the asymptotic properties of the
likelihoods — but those are all special cases of this general one)



Remember p(x|m) = p(m|x)

Bayesian posterior pdf

Curves above have different meanings

p(m|x) is the posterior probability for the parameter m: it expresses the
probability that each value of m is true given the data. p(x|m) is the probability

density function: it expresses the probability to observe data given a value of

m. 19



This Is iImportant

P(A|B) is NOT equal to P(B|A).
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Systematic uncertainties



The model

The model p(x|m) is assumed. One’s best approximation/idealization of the actual
relation between m and x relevant for the problem at hand.

~ Monte Carlo modeling
|
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Systematics = the model is imperfect

To account for the uncertainty associated with the model approximation/
Idealization, allow for additional dependencies on unknown nuisance parameters in
the model— p(x|m,s).

The values s are unknown and uninteresting but do influence the results.

Lack of knowledge of s introduces an uncertainty in the p(x|m.s) shape.

Not only you don’t know exactly what value of x would be observed if m had a

definite value, you don’t even know exactly how probable each possible x value is.

The uncertainty in the shape of p(x|m) reflects into the systematic uncertainty of the
iInference.
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So what”?

Systematic uncertainties increase the dimensionality of our inference: they add
unknown parameters.

“Well, I've got an additional unknown parameter. What’s the big deal?”

Do nothing and treat s as just an additional parameter to be inferred from the data
(“let’s fit it”). E.g, determine a two-dimensional confidence region in the (m, s) space
that then gets projected onto the space of the parameter of interes m to set the
desired limit.

In practice this is rarely a good idea.

[ Using the finite statistical information of our data to determine s in addition to m is
a waste of statistical power that degrades the statistical precision on m.

] The technical and computational complexity of constructing confidence regions in
nigh number of dimensions gets quickly intractable.

Hence, both frequentist and Bayesian devise methods to reduce the number of
parameters to be inferred.

24



Sayesian treatment of nuisance parameters



Marginalization over the nuisance parameters

Bayesians reduce dimensionality by “averaging” over the space of the unknown
nuisance parameters.

A straightforward generalization of the standard Bayesian treatment.

Assume a prior for any of the nuisance parameters s and integrate (oft-called
“marginalize”) over the nuisance parameters to obtain a posterior that no longer

depend on the nuisance parameters.

p(m|z) = . p(z|m, s)p(m, s)ds _ P(z|m)p(m) _ P(z|m)p(m)
| [.p(z|m, s)p(m,s)dsdm [ P(x|m)P(m)dm P(x)

The price to pay is an enhanced dependence on the subjective assumptions on
the priors, which may get critical in high dimensions and may spoil the
requirement of coverage that we all want for our results.

The point is that “averaging” the effects of an unknown, over an arbitrary/
subjective metric even, offers no guarantee that the final result will bracket the

true value with the desired probability content.

26



-requentist treatment nuisance parameters



Profiling the likelihood

Reduce the dimensionality of the problem by derivation: replace the likelihood with
a lower-dimensional function obtained by maximizing the likelihood wrt the

nuisance parameters (“profiling”).

For each point moin the space of true m values, the likelihood L(mo,s) gets
replaced by its profile-likelihood PL(mo,S(mo)), where §(mo) is the value that
maximizes L(m,s) in that point.

The profile-likelihood is not a likelihood in that it does not meet all the nice
mathematical properties of the likelihood but is demonstrated to approximate it

very well in many cases.

28



In practice



Coming back to our example

The S+B model now depends on an additional
(nuisance) parameter: the detector resolution o

Assume to know that o ranges between the
extremes o0s and op from simulation or control
sample studies.

This is a common condition in many cases:
even if we don’t know the value of a nuisance
parameter and its model, we are typically able
to reliably bracket it within a range

p(z|Ns, 0) = Ng[Signal-bump|(z, o) + (1 — N;)[Flat-bckg|(z)

30



Bayesian case

Assume a prior for the distribution of o between 0a and opb and marginalize

0. P(T|Ns, 0)p(N;, 0)do P(z|NJ)p(N,)  P(z|N,)p(Ny,)

p(Nelr) = Ju. J7 p(2|N. 0)p(Ny, 0)dodN, ~ [y PIN,)P(N)dN, —  P(x)

(1)
Then continue as in the case of no systematics:
integrate the posterior p(Ns|x) from zero until the
value of the integral is 95%: the corresponding value
of Ns is an upper limit on the signal yield at 95% CL.

Note that now the posterior p(Ns|x) differs from the
no-systematics case, since it has been
“marginalized” (think about a fancy ‘average’) not
only over the values of Ns but also over the values of
0.
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Frequentist case

Here there is a further complication.

In the case without nuisance parameters, limit setting requires repeating the
measurement over ensembles of toys generated at different true values of m.

We just learned that the “repeating the measurement” part is straightforward: just
replace likelihood with a profile likelihood.

But what about the toys? Which true values of o should one use in their
generation?

This is a very important point where decisions have important implications on
results, but that gets unfortunately often overlooked (or voluntarily swept under
the carpet).

People typically focus lots of attention on how to treat nuisance parameters in
*fitting™ (that is when repeating the measurement). But how to treat them in
*generation® has usually significant impact on the variance of the final results.
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How to treat nuisance parameters in generation

“olugin method” — only generate toys using the very o value ¢ estimated on data.
Equivalent to assume that the true values of the nuisance parameters are *exactly”
those measured in data. This is by far the most used (..requires less work...)

“supremum p-value method” — generate multiple ensembles of toys, each at a
different true value of o chosen over a grid that scans the full allowed range. For
each tested signal strength, use the true value o yielding the worse p-value (the one
yielding the weakest limit). I've only seen this used by the CKMFitter group in the
early 2000s (most work)

In medio stat virtus?

“Berger and Boos:” generate multiple ensambles of toys at ¢ values sampled in a
plausible range centered on their estimates 0 in data. JASA, 89, 427 (1994
https://arxiv.org/pdf/0810.3229.pdf  Phys. Rev. Lett 100 161802.
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https://arxiv.org/pdf/0810.3229.pdf

Plug-in at work

Produce an ensemble of S+B toys
assuming in generation a true value Nl
for the signal yield and a true value G for
the resolution — G has been previously
estimated in simulation/control samples.

For each set of toys generated at true
value Nsi, construct the profile likelihood
L(Ns, &’) by maximizing L(Ns, o) with
respect to o and then maximize over Ns
to get the distribution of Ns and
construct a curve

Repeat for all sensible choices of true values Nsk

The resulting limit covers the true value of Nsonly if the true value of o in reality is the

value 0 assumed in generation. Undercoverage is possible otherwise.
34



Generate with Ns = Ng! Ns = Ng¢?

O =0b

Oa+ €

Generate witho=0a o

Supremum at work

For each tested value Ns, construct the confidence band by using the curve
corresponding to the true o value that makes our limit weakest. The resulting limit
covers the true value regardless of the unknown value of the resolution 35



An hybrid approach — Cousins-Highlands

Marginalize the likelihood until it is
free from any nuisance parameter
dependence and then proceed
switching to with a frequentist
procedure

Very much used in the late 90’s,

INSTRUMENTS
Nuclear Instruments and Methods in Physics Research A320 (1992) 331-335 & METHODS

North-Holland iN PHYSICS
RESEARCH
SectionA
e

Incorporating systematic uncertainties into an upper limit

Robert D. Cousins
Physics Department, University of California, Los Angeles, CA 90024, USA

Virgil L. Highland
Physics Department, Temple University, Philadelphia, PA 19122, USA

Received 27 March 1991 and in revised form 19 February 1992

We discuss the problem of incorporating the uncertainty in the experimental sensitivity into the calculation of an upper
confidence limit on a branching ratio or similar quantity. If the number of events is small or zero but without background, the
correction to the usual result is given by a simple, easily applied formula. The case of an accurately known background also has a
simple solution.

The main limitation of this hybrid method is that it does not have fully Bayesian
properties nor it has fully frequentists properties, which makes it hard to qualify its
performance and determine a straightforward interpretation
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What can go wrong

(in addition to technical bugs, snafus, etc.)



Coverage

The single most serious failure of any limit setting procedure is to screw the coverage
(exclude something that exists). Remember: coverage is a frequentist concept but it
IS generally seen as desirable in HEP also by Bayesian experimenters too.

Experimental Limits on the Decays K; °—> u*u-, e*e-, and u*e* 1

Alan R. Clark, T. Elioff,* R, C. Field, H. J. Frisch, Rolland P, Johnson,
Leroy T. Kerth, and W, A, Wenzel ,
Lawrence Radiation Labovatory, Univevsity of California, Berkeley, California
(Received 9 April 1971)

We have performed a search at the Bevatron for the decays K,;'—u*y", e*e”, and pte®
with a double magnetic spectrometer using wire spark chambers. Over 10° observed
K L°—'1r+7r' decays determine the normalization for the di-lepton decay modes. No e*e”
or p*e* events were observed. For each of these decays the upper limit on the branch-
ing ratio relative to all modes is 1.57 x 10™° (90% confidence level). For the decay K 2
—u'y”, the limit is 1.82x 10™° (90% confidence level).

K, IJP) =1/2(07)

See related reviews:
Vua, Vus the Cabibbo Angle, and CKM Unitarity
CP Violation in K Decays
AS = AQ in K° Decays

v~ Charge conjugation x Parity (CP) or Lepton Family number (LF) violating modes, or AS = 1 weak neutral current (
S1) modes

I3 utu= (6.84 +£0.11) x 107° 225 38



Coverage — Bayesian case

In the Bayesian approach, coverage is more fragile as it’s not built-in by
construction in the procedures.

The conceptual average’ associated with the marginalization over various
nuisance-parameter scenarios, with an arbitrary metric, exposes to potentially large
violations of coverage

The measurement lives in one and only nuisance-parameter scenario (though
unknown): averaging over scenarios might compensate/cancel the effects
associated with the actual realized scenario, leading to unrealistic optimistic results.

Health checks

a Prior sensitivity: repeat the measurement with different choices of prior densities
and study the dependence of the results. Large sensitivity to prior choice suggest
that results are driven by the subjective assumptions than data

o Coverage: generate ensembles of toys for various values of the physics and
nuisance parameters, repeat the procedure on them and check that the resulting
limits exclude the true values with the desired Bayesian credibility

39



Coverage - frequentist case

In the frequentist approach, coverage is built-in in the procedure.

A limit based on likelihood-ratio ordering (aka Feldman-Cousins) where the
confidence band is constructed in the full dimensionality of all physics and nuisance
parameters and then projected into the physics parameters has rigorous coverage.

However, the necessary simplifications associated with realistic numbers of
dimensions may and do jeopardize the coverage properties.

Using profile-likelihoods, use only a subset (if not one value only as in plugin) of
possible true values of nuisance parameters in toy generation, etc, are all subject to
cause undercoverage.

o Coverage: generate ensembles of toys for various values of the physics and
nuisance parameters, repeat the procedure on them and check that the resulting
limits exclude the true values with the desired CL.
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What you shouldn’t be doing

(but probably have done, are doing, and may do...)



Ingenious systematic embedding

It is still common to encounter “creative” ways of accounting for systematic effects
In limits. Most are based on somehow embedding systematics with the statistical
portion of the inference and then use result in standard limit-setting procedure.

Typical example: likelihood of the data is convolved with a “likelihood” for the
nuisance parameter (typically assumed Gaussians) to construct a pseudolikelihood
that is then used in a standard limit procedure (Bayesian or frequentist).

Stuff like that has no statistical support — you are on your own.

o the “likelihood” assumed for the nuisance parameter is arbitrary. If you were to
know a model for your nuisance parameters, then they would no longer be
nuisance parameters and would naturally be included in your p(x|m,s) model.

o the resulting pseudolikelihood has unknown properties

In many case results are not strongly wrong, despite the conceptual anarchy,
especially when systematics are a small perturbation of the statistical fluctuations.

But these procedures should be deprecated.
42



Summary

Limits are not exotic animals, they are measurements just as your standard point
estimates or two-sided confidence regions

Treatment of systematic uncertainties in limits is subjected to the same assumptions,
limitations, implications of other forms of measurements. Stay away from black boxes,
ready recipes etc. make an effort to understand the concepits: it’s just as fun and
creative as other parts of your analysis.

The HEP community expects coverage from your result.
Systematic uncertainties are a parametrization of imperfect knowledge of the model

Bayesians treat them just as any physics parameters: “average” over the arbitrary metric
determined by priors.

Frequentist replace the likelihood with a lower-dimensional function that has nice
properties but is not a likelihood. In addition, they should ensure to treat correctly the
nuisance parameter unknowns in generation too.

Whatever is your inference philosophy (Bayesian or frequentist or else): (i) use a
statistical procedure consistently (eg, don’t mix Bayesian and frequentist) (ii) document it
in detail including assumptions/simplifications etc (iii) make sure results have coverage
or say it clearly if they don’t. 13



8BasICS of confidence-band construction

» Good starting point * Very good book at the . Advanced book - Ultimate bible
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G. Cowan,“Statistical F. James, “Statistical Methods in G. Casella, R. Berger, A. Stuart, et al “Kendall’s Advanced
data analysis” Experimental Physics, data analysis®  “Statistical Inference Theory of Statistics Vol 2A”
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For the bravest of all..(sec 4

CDF/MEMO/STATISTICS/PUBLIC/8662
Version 4.00
June 13, 2007

P Values: What They Are and How to Use Them

Luc Demortier!
Laboratory of Experimental High-Energy Physics
The Rockefeller University

“Far too many scientists have only a shaky grasp
of the statistical techniques they are using. They
employ them as an amateur chef employs a cook
book, believing the recipes will work without un-
derstanding why. A more cordon bleu attitude to
the maths involved might lead to fewer statistical
souffiés failing to rise.”

in “Sloppy stats shame science,” The Economist,
Vol. 371, No. 8378, pg. 74 (June 5" 2004).

Abstract

This note reviews the definition, calculation, and interpretation of p values
with an eye on problems typically encountered in high energy physics. Special
emphasis is placed on the treatment of systematic uncertainties, for which several
methods, both frequentist and Bayesian, are described and evaluated. After a
brief look at some topics in the area of multiple testing, we examine significance
calculations in spectrum fits, focusing on a situation whose subtlety is often not
recognized, namely when one or more signal parameters are undefined under
the background-only hypothesis. Finally, we discuss a common search procedure
in high energy physics, where the effect of testing on subsequent inference is

incorrectly ignored.

R = L
https://www-cdf.fhal.gov/~luc/statistics/cdf8662.pdf
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