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What this talk will try to achieve



An (exclusion) limit is a measurement
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Limits are just one-sided confidence (or Bayesian credibility) regions, that is, 
they are measurements, just as a standard central values +/- uncertainties (point 
estimates).

There’s nothing exotic or special in the conceptual treatment of systematic 
uncertainties in limits that’s not already in the treatment of systematic 
uncertainties in point estimates or two-sided confidence/credibility regions.

(In fact, because the small sample size typically dominates the precision in 
exclusion limits, systematic uncertainties are usually less relevant in limits than in 
two-sided confidence regions or point estimates — limits are never “precision 
measurements”)



Systematic uncertainties isn’t statistics

4

In fact, no statistics reference tells you which systematic sources to consider in 
a particular problem and how to determine their effects— this is up to the 
experimenter and her subjective judgement/understanding of the measurement 
process.

Statistical concepts just offer some conceptual means to guide their inclusion in 
the results and achieve a shared interpretation.

Rarely there is an unique, rigorously correct way to assess systematic 
uncertainties. Typically there are various reasonable ways. 

Each has pros and cons that need to be balanced by the experimenter 
depending on the scientific goal at hand.

This is not to say that “anything goes”: typically there are also (many more) 
wrong/unreasonable ways to assess systematic uncertainties.
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I’d be happy if this talk could bring us closer 
to be able to (i) understand the implications 
and interpretations of some of the 
reasonable approaches (ii) identify (and 
discard) the wrong approaches



What this talk won’t be
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You won’t get technical/empiric recipes, black boxes, or recommendations for tools

This is something many seek — I purposely choose not to provide it


 most ready-made recipes/tools/black boxes apply only to few simple cases — 
may not work as expected in your thesis problem. And  —  what is worse — you 
wouldn’t know it.

even if they apply to your problem, it’s hardly a good idea to use casually 

something that impacts the results w/o appreciating limitations and implications.

There’s a common prejudice that the statistical extraction of results (limit or else) is 
some sort of intellectual sophistry. Or, at best, a final technical appendix to the real 
scientific work, which is done elsewhere. I disagree.

Statistics is the language of science. It requires sufficient competence to ensure 
command of the techniques and understanding of implications. 

You wouldn’t trust black boxes while defining your analysis strategy, optimizing 
your selection, or definining a fit model.  

You shouldn’t trust black boxes when dealing with statistical procedures.



Preliminaries



Preliminaries
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Setting limits is part of statistical inference.  

Central to any inference is the model p(x|m), a mathematical construct that 
connects the physics parameter of interest m (i.e., cross section) with the 
observable quantity x (data, i.e. number of signal candidates).

The *assumption* of the model is the common assumption to all statistical 
approaches

When interpreted as a function of the data x (i.e., fixing m = m0), p(x|m0) is the 
probability density function: expresses the probability for each data observation 
had the true value of the parameter been m0. 

When interpreted as a function of parameter m (fixing  x = x0) p(x0|m) = L(m) is 
the likelihood: expresses the likelihood to observe data x0 for different choices of 
possibles m values.



Accelerated recap: Bayesian/frequentist inference
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Measuring m consists in                                                                                           

(i) devising a model p(x|m) that conforms the phenomenon under study and 

connects the unobserved parameter m (i.e., cross section) to the observable 
quantity x (data, i.e. number of signal candidates in a distribution) 


(ii) observing x        

(iii) using the model and the data to infer information on m.

Bayesians — combine the model with prior probabilities for m to determine the 
posterior probability p(m|x), which expresses the probability for each value of 
parameter m given the data. (“Prior” == known or chosen before observing x)

Frequentists cannot define p(m|x)— they use the model and the probabilities for all 
other possible outcomes for x to determine for which values of m the model would 
produce the observed data x with highest probability

Don’t want to spend time on the conceptual implications of each. We are free to 
choose either option provided that we do it in a conceptually consistent way and are 
aware of limitations and implications



Interpretation of results — coverage
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An important aspect is to ensure proper communication of results. When  a 
HEP paper reports an exclusion limit, we (consciously or unconsciously) 
tend to interpret the result as frequentist regardless of the approach used

We expect that if ~100 experiments were to search for ALPS with our procedure, 
~95 would report an exclusion range that does not contain the true value of the 
coupling strength (and ~5 an exclusion range that does contain it)


That is we implicitly assume “coverage”. 

Hence, for proper communication of results it is generally believed (even by 
Bayesians HEP collegues) that coverage is a desirable property. 



Toy limit example
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Looking for a a signal over a background in a 
spectrum of data

Fit data with a model that allows for signal 
and background, “the (S+B) model”


The estimate of the signal yield N̂s from data 
may be consistent or close to zero, which 
allows for setting an exclusion limit for the 
signal

x

x

x

(This is a toy example to illustrate the conceptual workflow — won’t spend time on 
peripheral details. Concepts would equally apply if it were a counting experiment 
instead of a fit, if data x and parameter m = Ns were multidimensional x⃗ and m⃗ etc.)



Bayesian limits



Probability for the parameter given the data
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0 1 2 3 4 5

True signal yield Ns

Likelihood of your data Prior probability (your assumption)

Normalization
Posterior probability

p(m|x) = p(x|m)⇥ p(m)

p(x)



Once you got the posterior, that’s easy
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until reaching a fractional area 
corresponding to the desired Bayesian 
credibility level, e.g. 95%.                   

(let’s call the posterior’s probability content 
“Bayesian credibility” — it keeps 
transparent the inherent subjectivity)

Have likelihood L(Ns) = p(x|Ns) from data.  
Assume prior p(Ns) [e.g., uniform]

Integrate (marginalize) the posterior 

Likelihood Prior

The corresponding signal yield defines the upper limit — may depend on prior.



Frequentist limits



Back to our example — toys
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Assume a signal strength Nsj (a choice for the true 
value of signal yield Ns) and generate toy 
simulations by drawing pseudodata drawn from the 
S+B model, each of same luminosity as the 
experimental data.

Fit each toy of each ensemble with the S+B model 
and get a result for N̂s 

Then plot the distributions of the N̂s results

S+B toys



p-value = 1- CL
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The location of the data 
observation relative to the 
curves corresponding to 
the two hypotheses (“B-
only” or “S+B”)  offers a 
measure of compatibility 
of the data with either.

The fractional integral of the S+B curve over values as bcgk-like as the one we 
observed, or more, is the p-value for the “S+B hypothesis”. 

The smallest such p-value, the highest the incompatibility of our data with the S+B 
hypothesis: it would be unlikely to observe our data if model S+B was the one 
realized in nature. That is, our data disfavor the S+B model, or “exclude the S+B 
model at a confidence level CL = 1- p” (e.g., 95% CL if p-value = 5%)

Background-like observation signal-like observation



Testing multiple signal strengths
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We only tested one hypothesis of 
signal strength (i.e. our limit only 
excludes a specific BF value)

Typically one is interested to test a 
whole range of signal strengths 
(e.g, BF < 10-9).

Repeat the previous procedure on 
multiple ensembles of toys, each 
ensemble generated assuming a 
different signal strength 

Your measurement excludes at 90% CL the signal strength yielding a p-value of 
5% in data, and all higher strengths.
(This toy example illustrates the general, first-principle approach to construct a 
frequentist limit that is, to study the properties of your estimator in toys. Massive 
toy generation is often avoided by exploiting the asymptotic properties of the 
likelihoods — but those are all special cases of this general one)



Remember p(x|m) ≠ p(m|x)
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Bayesian posterior pdf

Curves above have different meanings


p(m|x) is the posterior probability for the parameter m: it expresses the 
probability that each value of m is true given the data. p(x|m) is the probability 
density function: it expresses the probability to observe data given a value of 
m.

estimate



This is important
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P(A|B) is NOT equal to P(B|A).


Variable A: “pregnant”, “not pregnant”


Variable B: “male”, “female”.


P(pregnant | female) ~ 3% but


P(female | pregnant) >>> 3% !



Systematic uncertainties



The model
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The model p(x|m) is assumed. One’s best approximation/idealization of the actual 
relation between m and x relevant for the problem at hand.

Monte Carlo modeling Data driven modeling
 Effective modeling


- Sideband subtraction

- Same-charge candidates

- Mixed-event candidates

- ABCD methods

- …
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Empirical modeling 



Systematics = the model is imperfect
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To account for the uncertainty associated with the model approximation/
idealization, allow for additional dependencies on unknown nuisance parameters in 
the model— p(x|m,s).  


The values s are unknown and uninteresting but do influence the results.  


Lack of knowledge of s introduces an uncertainty in the p(x|m,s) shape.


Not only you don’t know exactly what value of x would be observed if m had a 
definite value, you don’t even know exactly how probable each possible x value is.  

The uncertainty in the shape of p(x|m) reflects into the systematic uncertainty of the 
inference.    



So what?
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Systematic uncertainties increase the dimensionality of our inference: they add 
unknown parameters.

“Well, I’ve got an additional unknown parameter. What’s the big deal?”

Do nothing and treat s as just an additional parameter to be inferred from the data 
(“let’s fit it”). E.g, determine a two-dimensional confidence region in the (m, s) space 
that then gets projected onto the space of the parameter of interes m to set the 
desired limit.

In practice this is rarely a good idea.


Using the finite statistical information of our data to determine s in addition to m is 
a waste of statistical power that degrades the statistical precision on m.

The technical and computational complexity of constructing confidence regions in 

high number of dimensions gets quickly intractable.

Hence, both frequentist and Bayesian devise methods to reduce the number of 
parameters to be inferred.



Bayesian treatment of nuisance parameters



Marginalization over the nuisance parameters
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Bayesians reduce dimensionality by “averaging” over the space of the unknown 
nuisance parameters. 

A straightforward generalization of the standard Bayesian treatment. 

Assume a prior for any of the nuisance parameters s and integrate (oft-called 
“marginalize”) over the nuisance parameters to obtain a posterior that no longer 
depend on the nuisance parameters.

The price to pay is an enhanced dependence on the subjective assumptions on 
the priors, which may get critical in high dimensions and may spoil the 
requirement of coverage that we all want for our results.

The point is that “averaging” the effects of an unknown, over an arbitrary/
subjective metric even,  offers no guarantee that the final result will bracket the 
true value with the desired probability content. 



Frequentist treatment nuisance parameters
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Profiling the likelihood

Reduce the dimensionality of the problem by derivation: replace the likelihood with 
a lower-dimensional function obtained by maximizing the likelihood wrt the 
nuisance parameters (“profiling”).

For each point m0 in the space of true m values, the likelihood L(m0,s) gets 
replaced by its profile-likelihood PL(m0,ŝ(m0)), where ŝ(m0) is the value that 
maximizes L(m,s) in that point.

The profile-likelihood is not a likelihood in that it does not meet all the nice 
mathematical properties of the likelihood but is demonstrated to approximate it 
very well in many cases.



In practice



Coming back to our example
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The S+B model now depends on an additional 
(nuisance) parameter: the detector resolution σ

Assume to know that σ ranges between the 
extremes σa and σb from simulation or control 
sample studies.

This is a common condition in many cases: 
even if we don’t know the value of a nuisance 
parameter and its model, we are typically able 
to reliably bracket it within a range

S+B fits with various σ values 



Bayesian case
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Assume a prior for the distribution of σ between σa and σb and marginalize 

Then continue as in the case of no systematics: 
integrate the posterior p(Ns|x) from zero until the 
value of the integral is 95%: the corresponding value 
of Ns is an upper limit on the signal yield at 95% CL. 


Note that now the posterior p(Ns|x) differs from the 
no-systematics case, since it has been 
“marginalized” (think about a fancy ‘average’) not 
only over the values of Ns but also over the values of 
σ.



Frequentist case
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Here there is a further complication.

In the case without nuisance parameters, limit setting requires repeating the 
measurement over ensembles of toys generated at different true values of m.

We just learned that the “repeating the measurement” part is straightforward: just 
replace likelihood with a profile likelihood.

But what about the toys? Which true values of σ should one use in their 
generation?

This is a very important point where decisions have important implications on 
results, but that gets unfortunately often overlooked (or voluntarily swept under 
the carpet). 

People typically focus lots of attention on how to treat nuisance parameters in 
*fitting* (that is when repeating the measurement). But how to treat them in 
*generation* has usually significant impact on the variance of the final results.
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How to treat nuisance parameters in generation
“plugin method” —  only generate toys using the very σ value σ̂ estimated on data.  
Equivalent to assume that the true values of the nuisance parameters are *exactly* 
those measured in data. This is by far the most used (..requires less work…)

“supremum p-value method” — generate multiple ensembles of toys, each at a 
different true value of σ chosen over a grid that scans the full allowed range. For 
each tested signal strength, use the true value σ yielding the worse p-value (the one 
yielding the weakest limit). I’ve only seen this used by the CKMFitter group in the 
early 2000s (most work)


In medio stat virtus? 

“Berger and Boos:” generate multiple ensambles of toys at σ values sampled in a 
plausible range centered on their estimates  σ̂ in data.                     JASA, 89, 427 (1994)
https://arxiv.org/pdf/0810.3229.pdf      Phys. Rev. Lett 100 161802.                                                                                            

https://arxiv.org/pdf/0810.3229.pdf
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Plug-in at work

The resulting limit covers the true value of Ns only if the true value of σ in reality is the 
value σ̂ assumed in generation. Undercoverage is possible otherwise.

Produce an ensemble of S+B toys 
assuming in generation a true value Nsj 

for the signal yield and a true value σ̂ for 
the resolution — σ̂ has been previously 
estimated in simulation/control samples.


For each set of toys generated at true 
value Nsj , construct the profile likelihood 
L(Ns, σ̂’) by maximizing L(Ns, σ) with 
respect to σ and then maximize over Ns 
to get the distribution of N̂s and 
construct a curve

Repeat for all sensible choices of true values Nsk 
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Supremum at work

G
en

er
at

e 
w

ith
 σ

 =
 σ

a 
σ 

= 
σ a

 +
 ε

 

……..σ 
= 
σ b

Generate with Ns = Ns1 Ns = Ns2 Ns = Nsn

…
…

..

… …

……..

……..
… … …

For each tested value Ns, construct the confidence band by using the curve 
corresponding to the true σ value that makes our limit weakest. The resulting limit 
covers the true value regardless of the unknown value of the resolution  
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An hybrid approach — Cousins-Highlands

Marginalize the likelihood until it is 
free from any nuisance parameter 
dependence and then proceed 
switching to with a frequentist 
procedure

Very much used in the late 90’s,


The main limitation of this hybrid method is that it does not have fully Bayesian 
properties nor it has fully frequentists properties, which makes it hard to qualify its 
performance and determine a straightforward interpretation



What can go wrong

(in addition to technical bugs, snafus, etc.)



Coverage
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The single most serious failure of any limit setting procedure is to screw the coverage 
(exclude something that exists). Remember: coverage is a frequentist concept but it 
is generally seen as desirable in HEP also by Bayesian experimenters too.



Coverage  — Bayesian case
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In the Bayesian approach, coverage is more fragile as it’s not built-in by 
construction in the procedures.

The conceptual `average’ associated with the marginalization over various 
nuisance-parameter scenarios, with an arbitrary metric, exposes to potentially large 
violations of coverage

The measurement lives in one and only nuisance-parameter scenario (though 
unknown): averaging over scenarios might compensate/cancel the effects 
associated with the actual realized scenario, leading to unrealistic optimistic results.

Health checks


Prior sensitivity: repeat the measurement with different choices of prior densities 
and study the dependence of the results. Large sensitivity to prior choice suggest 
that results are driven by the subjective assumptions than data

Coverage: generate ensembles of toys for various values of the physics and 
nuisance parameters, repeat the procedure on them and check that the resulting 
limits exclude the true values with the desired Bayesian credibility



Coverage - frequentist case
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In the frequentist approach, coverage is built-in in the procedure. 

A limit based on likelihood-ratio ordering (aka Feldman-Cousins) where the 
confidence band is constructed in the full dimensionality of all physics and nuisance 
parameters and then projected into the physics parameters has rigorous coverage.

However, the necessary simplifications associated with realistic numbers of 
dimensions may and do jeopardize the coverage properties.

Using profile-likelihoods, use only a subset (if not one value only as in plugin) of 
possible true values of nuisance parameters in toy generation, etc, are all subject to 
cause undercoverage.  


Coverage: generate ensembles of toys for various values of the physics and 
nuisance parameters, repeat the procedure on them and check that the resulting 
limits exclude the true values with the desired CL.



What you shouldn’t be doing 

(but probably have done, are doing, and may do…)



Ingenious systematic embedding
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It is still common to encounter “creative” ways of accounting for systematic effects 
in limits. Most are based on somehow embedding systematics with the statistical 
portion of the inference and then use result in standard limit-setting procedure. 

Typical example: likelihood of the data is convolved with a “likelihood” for the 
nuisance parameter (typically assumed Gaussians) to construct a pseudolikelihood 
that is then used in a standard limit procedure (Bayesian or frequentist). 

Stuff like that has no statistical support — you are on your own.


the “likelihood” assumed for the nuisance parameter is arbitrary. If you were to 
know a model for your nuisance parameters, then they would no longer be 
nuisance parameters and would naturally be included in your p(x|m,s) model.

the resulting pseudolikelihood has unknown properties

In many case results are not strongly wrong, despite the conceptual anarchy, 
especially  when systematics are a small perturbation of the statistical fluctuations. 
But these procedures should be deprecated.



Summary
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Limits are not exotic animals, they are measurements just as your standard point 
estimates or two-sided confidence regions

Treatment of systematic uncertainties in limits is subjected to the same assumptions, 
limitations, implications of other forms of measurements. Stay away from black boxes, 
ready recipes etc. make an effort to understand the concepts: it’s just as fun and 
creative as other parts of your analysis.

The HEP community expects coverage from your result. 

Systematic uncertainties are a parametrization of imperfect knowledge of the model

Bayesians treat them just as any physics parameters: “average” over the arbitrary metric 
determined by priors. 

Frequentist replace the likelihood with a lower-dimensional function that has nice 
properties but is not a likelihood. In addition, they should ensure to treat correctly the 
nuisance parameter unknowns in generation too.

Whatever is your inference philosophy (Bayesian or frequentist or else): (i) use a 
statistical procedure consistently (eg, don’t mix Bayesian and frequentist) (ii) document it 
in detail including assumptions/simplifications etc (iii) make sure results have coverage 
or say it clearly if they don’t.



Basics of confidence-band construction
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G. Cowan,“Statistical 
data analysis”

F. James, “Statistical Methods in 
Experimental Physics, data analysis”

G. Casella, R. Berger, 
“Statistical Inference

A. Stuart, et al “Kendall’s Advanced 
Theory of Statistics Vol 2A”

• Good starting point • Very good book at the 
right level for HEP • Advanced book • Ultimate bible



For the bravest of all..(sec 4)
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https://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf


