Measurement of strong-phase difference between D^0 and $\bar{D^0} \to K^0_{\rm S/L} \pi^+ \pi^-$ and the role of model-dependent inputs at BESIII

Anita

Belle II Physics Week

December 04, 2020

Outline

ullet Introduction - CPV in SM, CKM angle ϕ_3

- $D^0
 ightarrow K^0_{
 m S} \pi^+ \pi^-$ strong-phase measurement
 - statistical advantage
 - $D^0
 ightarrow K_{
 m L}^0 \pi^+ \pi^-$ inclusion
- $D^0
 ightarrow K^0_{
 m S,L} \pi^+ \pi^-$ amplitude models
 - Importance
 - Formulation
 - Preliminary fits

Beijing Spectrometer (BES-III) (NIM A 614, 345 (2010))

\mathcal{CP} violation in Standard Model

• Direct precision measurement of ϕ_3 is crucial for testing SM description of *CP* violation and for NP.

\mathcal{CP} violation in Standard Model

• Direct precision measurement of ϕ_3 is crucial for testing SM description of *CP* violation and for NP.

The golden channel $-\phi_3$ measurement

•
$$B^- \rightarrow DK^-, D \rightarrow K^0_S \pi^+ \pi^- \text{ (BPGGSZ [1])}$$

$$B^-$$
 decay amplitude:
 $\mathcal{A}_{B^-}(m_+^2, m_-^2) = \mathcal{A}_D(m_+^2, m_-^2) + r_B e^{i(\delta_B - \phi_3)} \mathcal{A}_{\bar{D}}(m_+^2, m_-^2)$

$$(m_+^2, m_-^2) \equiv (s_{K_{\rm S}^0 \pi^+}, s_{K_{\rm S}^0 \pi^-})$$

• N(B) =
$$\mathcal{F}(\phi_3, r_B, \delta_B, \Delta \delta_D(m_+^2, m_-^2)) \Rightarrow$$
 Binned analysis

Suppressed to favored *B* decay amplitudes

0

Strong-phase difference between D^0 and \overline{D}^0 decays

$$N_i^{\pm} = h_B \left[K_{\pm i} + r_B^2 K_{\mp i} + 2\sqrt{K_i K_{-i}} (x_{\pm} c_i \pm y_{\pm} s_i) \right]$$

 $\begin{array}{l} h_B: \mbox{ Normalization constant} \\ (x_{\pm}, y_{\pm}) = (r_B \cos(\delta_B \pm \phi_3), r_B \sin(\delta_B \pm \phi_3)) \\ \mathcal{K}_i: \mbox{ Flavor tagged yield in } i^{th} \mbox{ bin of Dalitz plot} \\ c_i(s_i): \mbox{ Amplitude averaged cosine(sine) of the} \\ \mbox{ strong-phase difference } (\Delta \delta_D) \mbox{ over the } i^{th} \mbox{ bin of DP.} \end{array}$

The parameters of interest:

$$c_i(s_i) = \frac{\int_i |A_D(m_+^2, m_-^2)| |A_{\bar{D}}(m_-^2, m_+^2)| \cos(\sin)[\Delta \delta_D(m_+^2, m_-^2)] dm_+^2 dm_-^2}{\sqrt{\int_i |A_D(m_+^2, m_-^2)|^2 dm_+^2 dm_-^2 \int_i |A_{\bar{D}}(m_-^2, m_+^2)|^2 dm_+^2 dm_-^2}}$$

Precision measurement because...

- Crucial for model-independent ϕ_3 measurement in $B^\pm \to DK^\pm$ and other B decays
- High precision strong-phase measurement needed for $D^0 \overline{D}^0$ mixing and CPV in charm. (PRL, **122**, 231802 (2019))

BEPC-II and BES-III

- Symmetric collider
- Quantum-correlated $D^0 \overline{D}^0$ pairs produced in e^+e^- collision at $\psi(3770)$ ($\sqrt{s} = 3.773$ GeV) resonance. (2.93 fb⁻¹)
- $2 \times M_{D^0} = 3.73 \text{ GeV} \approx M_{\psi}$

 \Rightarrow Negligible background because there are no extra particles

•
$$J^{PC}(\psi(3770)) = 1^{--}$$

 $|\psi(3770)\rangle = \frac{1}{\sqrt{2}}(|D^0\rangle|\bar{D}^0\rangle - |\bar{D}^0\rangle|D^0\rangle) = \frac{1}{\sqrt{2}}(|D_{CP-}\rangle|D_{CP+}\rangle - |D_{CP+}\rangle|D_{CP-}\rangle)$
["antisymmetric state"]
 $C = -1$
 \Rightarrow Flavor & CP tagging!
 e^+
 $\psi^{(3770)}$
 $\psi^{(3770)}$
 e^-

Model-independent strong-phase measurement $D^0 \to K^0_{\rm S} \pi^+ \pi^-$ expected yields

• Number of *CP*-even or *CP*-odd tagged $D^0 \rightarrow K^0_S \pi^+ \pi^-$ events in the *i*th bin of the DP:

$$M_i^{\pm} = h_{CP\pm} \left(K_i - (2\mathcal{F}_{CP} - 1)2\mathbf{c}_i \sqrt{K_i K_{-i}} + K_{-i} \right)$$

 $c_i^2 + s_i^2 \leq 1$

• $D^0 \overline{D}^0 \rightarrow (K^0_S \pi^+ \pi^-)^2$ yield in the i^{th} bin of D^0 decay and j^{th} bin of \overline{D}^0 decay Dalitz plots:

$$M_{ij} = h_{corr} \left[K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right]$$

Inclusion of $D^0 \rightarrow K^0_{\rm L} \pi^+ \pi^-$ mode

- Provides boost in statistics
 - Combinatorics: $N(K_S^0\pi^+\pi^- vs. K_L^0\pi^+\pi^-) = 2 \times N(K_S^0\pi^+\pi^- vs. K_S^0\pi^+\pi^-)$
 - Only $K^0_{
 m S} o \pi^+\pi^-$ (pprox 70% ${\cal BF}$) reconstruction.
- Introduces additional constraint in the log-likelihood function along with extra parameters to fit.

Decay mode	Data yield [11]
$K_{\rm S}^{0}\pi^{+}\pi^{-}$ vs. $K_{\rm S}^{0}\pi^{+}\pi^{-}$	899 ± 31
$K_{\rm S}^{0}\pi^{+}\pi^{-}$ vs. $K_{\rm L}^{0}\pi^{+}\pi^{-}$	3438 ± 72

$D^0 ightarrow K^0_{ m L} \pi^+ \pi^-$ expected yields

• CP-tagged yield:

$$M_{i}^{'\pm} = h_{CP\pm}^{'} \left(K_{i}^{'} - (2\mathcal{F}_{CP} - 1)2c_{i}^{'}\sqrt{K_{i}^{'}K_{-i}^{'}} + K_{-i}^{'} \right)$$

•
$$D^0 \bar{D}^0 \to K^0_S \pi^+ \pi^-(i)$$
 vs. $K^0_L \pi^+ \pi^-(j)$ yield:
 $M'_{ij} = h'_{corr} \left[K_i K'_{-j} + K_{-i} K'_j - 2\sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j) \right]$

Better precision expected because:

In comparison to PRD82, 112006(2010) (CLEO-collaboration), • Larger data set. CLEO: 0.818 fb^{-1} , BESIII: 2.93 fb^{-1}

- Partial reconstruction technique: $(K_{\rm S}^0\pi^+\pi^- vs. K_{\rm S}^0\pi^+\pi^-_{\rm miss})$ and $(K_{\rm S}^0\pi^+\pi^- vs. K_{\rm S}^0\pi^0\pi^+\pi^-)$ in addition to fully reconstructed $K_{\rm S}^0\pi^+\pi^- vs. K_{\rm S}^0\pi^+\pi^-$
- Inclusion of $K_{\rm L}^0 \pi^+ \pi^-$ modes: Missing momentum technique – loose selection criteria requiring no hadronic showers. $\Rightarrow \sim 30\%$ boost in $K_{\rm L}^0$ relative reconstruction efficiency
- Extra tag modes included e.g. $\pi^+\pi^-\pi^0$ CP tag (BF = 1.49%) and $K^0_S(\pi^0\pi^0_{\rm miss})\pi^+\pi^-$

$D^0 o {\cal K}^0_{ m L} \pi^+ \pi^-$ expected yields

• CP-tagged yield:

$$M_{i}^{'\pm} = h_{CP\pm}^{'} \left(K_{i}^{'} - (2\mathcal{F}_{CP} - 1)2c_{i}^{'}\sqrt{K_{i}^{'}K_{-i}^{'}} + K_{-i}^{'} \right)$$

Summary of tags and yields (PRD, 101, 112002 (2020))

Tag type	Modes
Flavor	$K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}, K^{+}\pi^{-}\pi^{+}\pi^{-}, K^{+}e^{-}\nu_{e}$
CP-even	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, \pi^+\pi^-\pi^0, K^0_L\pi^0$
<i>CP</i> -odd	$K^0_{ m S}\pi^0, K^0_{ m S}\eta, ilde{K^0_{ m S}}\eta', K^0_{ m S}\omega, K^0_{ m L}\pi^0\pi^0^{-1}$
Mixed CP	$\kappa_{ m S}^0\pi^+\pi^-$

Tag type	DT	yield
	$K_{ m S}^{0}\pi^{+}\pi^{-}$	$K_{ m L}^{0}\pi^{+}\pi^{-}$
Flavor	23457±319	40642±423
CP-even	2528±124	$5003{\pm}178$
CP-odd	$1725{\pm}106$	$1485{\pm}117$
$K_{ m S}^{0}\pi^{+}\pi^{-}$	1833±82	3438±72

Extraction of $c_i^{(\prime)}$ and $s_i^{(\prime)}$

$$-2\log \mathcal{L} = -2\sum_{i=1}^{8} InP(N_{i}^{obs}, \langle N_{i}^{exp} \rangle)_{CP, K_{\mathrm{S}}^{0}\pi^{+}\pi^{-}} \\ -2\sum_{i=1}^{8} InP(N_{i}^{obs}, \langle N_{i}^{exp} \rangle)_{CP, K_{\mathrm{L}}^{0}\pi^{+}\pi^{-}} \\ -2\sum_{n=1}^{72} InP(N_{n}^{obs}, \langle N_{n}^{exp} \rangle)_{K_{\mathrm{S}}^{0}\pi^{+}\pi^{-}, K_{\mathrm{S}}^{0}\pi^{+}\pi^{-}} \\ -2\sum_{n=1}^{128} InP(N_{n}^{obs'}, \langle N_{n}^{exp} \rangle)_{K_{\mathrm{L}}^{0}\pi^{+}\pi^{-}, K_{\mathrm{S}}^{0}\pi^{+}\pi^{-}} \\ +\chi^{2}$$

 $P(N^{obs}, \langle N^{exp} \rangle)$: Poisson probablity to observe N^{obs} events given the expected number $\langle N^{exp} \rangle$.

$$\chi^{2} = \sum_{i} \left(\frac{c_{i}' - c_{i} - \Delta c_{i}}{\delta \Delta c_{i}} \right)^{2} + \sum_{i} \left(\frac{s_{i}' - s_{i} - \Delta s_{i}}{\delta \Delta s_{i}} \right)^{2}$$

 $(c'_i - c_i)$ and $(s'_i - s_i)$: Observed difference (model-independent) Δc_i and Δs_i : Predicted difference (amplitude model) $\delta \Delta c_i$ and $\delta \Delta c_i$: Conservative uncertainties on predicted values

Predicted values of $c_i^{(\prime)}$ and $s_i^{(\prime)}$

• c_i, s_i : $D^0 \rightarrow K^0_S \pi^+ \pi^-$ amplitude model (Phys. Rev. D98, 112012 (2018))

• c'_i, s'_i : Estimated model that involves assumptions on parameter values. (more later)

$c_i^{(')}$ and $s_i^{(')}$ results

- This analysis (Phys. Rev. D, **101**, 112002 (2020))
- Model predicted values (Phys. Rev. D, 98, 112012 (2018)
- CLEO 2010 results (Phys. Rev. D, 82, 112006 (2010))

$c_i^{(')}$ and $s_i^{(')}$ results

$c_i^{(')},\,s_i^{(')}$ results for $D^0 o K^0_{ m S/L}K^+K^-$ decay mode

Model-dependent parameters (Importance & determination)

$$D^{0} \rightarrow K_{\rm S}^{0}\pi^{+}\pi^{-} - \text{the baseline model (PRD, 98, 112012 (2018))}$$
$$\mathcal{A}\left(M_{K_{\rm S}^{0}\pi^{+}}^{2}, M_{K_{\rm S}^{0}\pi^{-}}^{2}\right) = \sum_{\substack{r \neq (K\pi/\pi\pi)_{L=0}}} a_{r}e^{i\phi_{r}}\mathcal{A}_{r}(M_{K_{\rm S}^{0}\pi^{+}}^{2}, M_{K_{\rm S}^{0}\pi^{-}}^{2}) + \mathcal{F}_{1}(M_{\pi^{+}\pi^{-}}^{2})$$
$$+ \mathcal{A}_{k\pi(L=0)}(M_{K_{\rm S}^{0}\pi^{-}}^{2}) + \mathcal{A}_{K\pi(L=0)}(M_{K_{\rm S}^{0}\pi^{+}}^{2})$$

$$D^0
ightarrow K_{
m L}^0 \pi^+ \pi^- -$$
 building up from $D^0
ightarrow K_{
m S}^0 \pi^+ \pi^-$

- 1. The DCS resonant components g
- 2. CP eigenstate amplitudes,

$$\begin{array}{ll} \text{gain a } 180^{\circ} \text{ phase shift, } i.e. & \begin{array}{c} A_{K^{0}\pi\pi}^{DCS} \\ \overline{A_{K^{0}\pi\pi}^{CF}} = -\tan^{2}\theta_{c} \ \hat{\rho}_{(D^{0} \rightarrow K_{S}^{0}f_{c}^{k})} \\ A(D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = & (\hat{\rho}_{k} = r_{k}e^{i\delta_{k}}: \text{ U-spin breaking}) \\ A(D^{0} \rightarrow K_{L}^{0}\pi^{+}\pi^{-}) = & A_{K_{S}^{0}\pi\pi}^{CP} & (\hat{\rho}_{k} = r_{k}e^{i\delta_{k}}: \text{ U-spin breaking}) \\ A(D^{0} \rightarrow K_{L}^{0}\pi^{+}\pi^{-}) = & A_{K_{S}^{0}\pi\pi}^{CP} & A_{K_{S}^{0}\pi\pi}^{CP} = \frac{1}{\sqrt{2}}[A_{K^{0}\pi\pi}^{CF} - A_{K^{0}\pi\pi}^{DCS}] \text{ and,} \\ \sum A_{K^{0}\pi\pi}^{CF} - \sum A_{K^{0}\pi\pi}^{DCS} + \sum A_{K_{L}^{0}\pi\pi}^{CP} & A_{K_{L}^{0}\pi\pi}^{CP} = \frac{1}{\sqrt{2}}[A_{K^{0}\pi\pi}^{CF} - A_{K^{0}\pi\pi}^{DCS}] \\ \end{array}$$

$$\begin{array}{c} A_{K_{S}^{0}\pi\pi}^{CP} = \frac{1}{\sqrt{2}}[A_{K^{0}\pi\pi}^{CF} - A_{K^{0}\pi\pi}^{DCS}] \\ A_{K_{S}^{0}\pi\pi}^{CP} = \frac{1}{\sqrt{2}}[A_{K^{0}\pi\pi}^{CF} + A_{K^{0}\pi\pi}^{DCS}] \\ \end{array}$$

$$\begin{array}{c} A_{K_{S}^{0}\pi\pi}^{CP} = \frac{1}{1 + \tan^{2}\theta_{c}\hat{\rho}_{k}} \approx \left(1 - 2 \times \tan^{2}\theta_{c}r_{k}e^{i\delta_{k}}\right) \end{array}$$

F Σ

7

P

$$D^{0} \to K_{\rm S}^{0} \pi^{+} \pi^{-} \quad \text{the baseline model (PRD, 98, 112012 (2018))}$$
$$\mathcal{A}\left(M_{K_{\rm S}^{0} \pi^{+}}^{2}, M_{K_{\rm S}^{0} \pi^{-}}^{2}\right) = \sum_{r \neq (K\pi/\pi\pi)_{L=0}} a_{r} e^{i\phi_{r}} \mathcal{A}_{r}(M_{K_{\rm S}^{0} \pi^{+}}^{2}, M_{K_{\rm S}^{0} \pi^{-}}^{2}) + \mathcal{F}_{1}(M_{\pi^{+} \pi^{-}}^{2})$$
$$+ \mathcal{A}_{k\pi(L=0)}(M_{K_{\rm S}^{0} \pi^{-}}^{2}) + \mathcal{A}_{K\pi(L=0)}(M_{K_{\rm S}^{0} \pi^{+}}^{2})$$

$$D^{0} \rightarrow K_{L}^{0}\pi^{+}\pi^{-} - \text{building up from } D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$$
2. *CP* eigenstate amplitudes,
r_k and δ_{k} (In model-independent analyses)
• *r_k*: Gaus(1.0, 0.5) (assumption)
• δ_{k} : Uniform(0°, 360°) (assumption)
Also, Phys. Rev. Lett. 125, 141802 (2020):
 $BF(D^{+} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{0}) = (1.13 \pm 0.08 \pm 0.03) \times 10^{-3}$
 $= (6.28 \pm 0.52) \times \tan^{4}\theta_{C} \times BF(D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{0})$
 $\Rightarrow D^{0} \rightarrow K_{L}^{0}\pi^{+}\pi^{-}$ needs to be modelled.
Phys. Let. B **349** (1995) $\frac{A_{K_{S}^{0}\pi\pi}^{-}}{A_{K_{S}^{0}\pi\pi}^{-}} = \frac{1 - \tan^{2}\theta_{c}\hat{\rho}_{k}}{1 + \tan^{2}\theta_{c}\hat{\rho}_{k}} \approx (1 - 2 \times \tan^{2}\theta_{c}r_{k}e^{i\delta_{k}})$

$D^0 ightarrow {\cal K}^0_{ m S} \pi^+ \pi^-$ amplitude formulation (PRD, **86**, 010001 (2012))

- 1. P, D-wave resonances: BW barrier factors, Zeemach formalism, Breit-Wigner lineshapes
- 2. S-wave resonances
 - 2(a) $\pi\pi$ S-wave ($K_{\rm S}^0 r$): \mathcal{K} -matrix formalism
 - 2(b) $K\pi$ S-wave $(\pi^{\pm}r)$: LASS parametrization

$$\mathcal{L} = \prod_{i=1}^{N} \left[f_{sig} \times p_{sig}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) + \underbrace{(1 - f_{sig})}_{K} \approx 0 \atop p_{bkg}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) \right] \\ p_{sig}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) = \frac{\epsilon(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) |\mathcal{A}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|^2}{\int_{D} \epsilon(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) |\mathcal{A}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|^2 dM_{K_{\rm S}^0\pi^+}^2 dM_{K_{\rm S}^0\pi^-}^2}$$

Event Selection: Similar to model-independent analysis ($K\pi$, $K\pi\pi\pi$, $K\pi\pi^0$ tag modes)

Normalization sample (phase-space signal MC)

Using **MC integration** technique, the normalization factor in the likelihood can be reduced to: $\mathcal{N} = \frac{1}{N} \sum_{i=1}^{N} |\mathcal{A}_i(M_{K_{\mathrm{S}}^0\pi^+}^2, M_{K_{\mathrm{S}}^0\pi^-}^2)|^2$

$D^0 ightarrow {\cal K}^0_{ m S} \pi^+ \pi^-$ amplitude formulation (PRD, **86**, 010001 (2012))

- 1. P, D-wave resonances: BW barrier factors, Zeemach formalism, Breit-Wigner lineshapes
- 2. S-wave resonances
 - 2(a) $\pi\pi$ S-wave ($K_{\rm S}^0 r$): \mathcal{K} -matrix formalism
 - 2(b) $K\pi$ S-wave $(\pi^{\pm}r)$: LASS parametrization

Corrections to the pure FT model

1. Efficiency correction $p_{sig}(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2}) = \frac{\epsilon(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|\mathcal{A}(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|^{2}}{\int_{D} \epsilon(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|\mathcal{A}(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|^{2}dM_{K_{S}^{0}\pi^{+}}^{2}dM_{K_{S}^{0}\pi^{-}}^{2}}}$ $\mathcal{N} = \frac{1}{N} \sum_{i=1}^{N} |\mathcal{A}_{i}(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|^{2}}{|\mathcal{A}_{i}(M_{K_{S}^{0}\pi^{+}}^{2}, M_{K_{S}^{0}\pi^{-}}^{2})|^{2}}$

where, N = Number of fully reconstructed and selected phase-space signal MC events

2. DCS correction

- Data contains DCS contamination i.e. $(D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-, \bar{D}^0 \rightarrow K^- \pi^+$ *etc.*)
- Model needs to be modified to accomodate such events

DCS to CF ratios and Coherence

factors [11]						
f	$r_{D}^{f}(\%)$	$\delta^f_D(^\circ)$	R _f			
Kπ	5.86 ± 0.02	$194.7^{+8.4}_{-17.6}$	1			
Κπππ	5.49 ± 0.06	128^{+28}_{-17}	$0.43\substack{+0.17\\-0.13}$			
$K\pi\pi^0$	4.47 ± 0.12	$198^{+\bar{1}\bar{4}}_{-15}$	$0.81^{+0.06}_{-0.06}$			

$$\begin{aligned} |\mathcal{A}(M_{K_{\mathrm{S}}^{0}\pi^{+}}^{2}, M_{K_{\mathrm{S}}^{0}\pi^{-}}^{2})|^{2} &\longrightarrow |\mathcal{A}_{\mathrm{PFT}}(M_{K_{\mathrm{S}}^{0}\pi^{+}}^{2}, M_{K_{\mathrm{S}}^{0}\pi^{-}}^{2}) + \mathcal{A}_{\mathrm{DCS}}(M_{K_{\mathrm{S}}^{0}\pi^{+}}^{2}, M_{K_{\mathrm{S}}^{0}\pi^{-}}^{2})|^{2} \\ &= |\mathcal{A}_{\mathrm{PFT}}|^{2} + (r_{D}^{f})^{2} |\mathcal{A}_{\mathrm{DCS}}|^{2} - 2r_{D}^{f} R_{f} \mathcal{R}e(e^{i\delta_{D}^{f}} \mathcal{A}_{\mathrm{PFT}} \mathcal{A}_{\mathrm{DCS}}^{*}) \\ \xrightarrow{\text{Anita}} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} = \frac{1}{2} \left(\frac{1}{2} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} \right) \\ \xrightarrow{\text{Anita}} \mathcal{A}_{\mathrm{Dis}}^{i_{2}} \mathcal{A}_{\mathrm{Dis}}^$$

Amplitude fit - On toy sample (I/O check)

..remaining isobar and \mathcal{K} -matrix parameter values in backup

Ongoing work

- Simultaneous fits to $D^0 \to K^0_S \pi^+ \pi^-$ and $D^0 \to K^0_L \pi^+ \pi^-$ to extract values of r_k and δ_k and hence Δc_i and Δs_i
- BESIII is going to collect nearly 20 fB $^{-1}$ data at $\psi(3770)$ by 2023
 - \Rightarrow Uncertainties coming from model-dependent parameters will be significant

Summary

- With the largest dataset available at BES-III, the most precise $c_i^{(')}, s_i^{(')}$ measurement till date using $D^0 \to K^0_{S/L} \pi^+ \pi^-$ signal modes have been carried out.
- More and more precise values of these strong-phase parameters would be required with the ever increasing statistical precision on ϕ_3 with LHCb and Belle-II datasets.
- $D^0 \rightarrow K_L^0 \pi^+ \pi^-$ amplitude model inputs are required to better constraint and propagate smaller uncertainties to the strong phase parameters, $c_i(')$ and $s_i(')$ and hence to ϕ_3 .
- With $D^0 \to K_{\rm S}^0 \pi^+ \pi^-$ as a baseline model, $D^0 \to K_{\rm L}^0 \pi^+ \pi^-$ model is constructed with required modifications in DCS and CP amplitudes.

Reference

- 1. A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev.D 68, 054018 (2003).
- 2. A. Bondar and A. Poluektov, Eur. Phys. J. C 55, 51-56 (2008).
- 3. Belle Collaboration, Phys. Rev. D 98, 112012 (2018).
- 4. I. Bigi and H. Yamamoto, Phys. Leq. B 349, (1995)
- 5. BABAR Collaboration, Phys. Rev. D 83, 052001 (2011)
- 6. M. Blatt and V. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952)
- 7. S. Kopp and M. Kostin, Phys. Rev. D, 63, 092001.
- 8. C. Zemach, Phys. Rev. 133, B1201 (1964); 140, B97 (1965).
- 9. B. S. Zou and D. V. Bugg, Covariant tensor formalism for partial wave analyses of ψ decay to mesons, Eur. Phys. J. **A16**, 537 (2003) Link
- 10. V. Filippini et. al., Phys. Rev. D 51, 2247 (1995) Link
- 11. BESIII Collaboration, Phys. Rev. D, 101, 112002 (2020).

Thank you!

$c_i^{(')},\,s_i^{(')}$ results for $D^0 o K^0_{ m S/L} K^+ K^-$ decay mode

(Phys. Rev D. **102**, 052008 (2020)) Number of DP bins: 2 and 3

$c_i^{(\prime)},\,s_i^{(\prime)}$ results for $D^0 o K^0_{ m S/L}K^+K^-$ decay mode

(Phys. Rev D. **102**, 052008 (2020)) Number of DP bins: 4

$D^0 ightarrow {\cal K}^0_{ m S} \pi^+ \pi^-$ amplitude formulation (PRD, 98, 112012 (2018))

1. P- and D-wave resonances (Isobar ansatz)

$$\mathbf{a}_{r} \mathbf{e}^{i\phi_{r}} \mathcal{A}_{r} \left(\mathcal{M}_{K_{\mathrm{S}}^{0}\pi^{+}}^{2}, \mathcal{M}_{K_{\mathrm{S}}^{0}\pi^{-}}^{2} \right) = \mathbf{a}_{r} \mathbf{e}^{i\phi_{r}} \left(\mathcal{F}_{D}^{(L)}(q, q_{0}) \times \mathcal{F}_{r}^{(L)}(p, p_{0}) \times \mathcal{Z}_{L}(\Omega) \times \mathcal{T}_{r}(m) \right)$$

- $\mathcal{F}_D^{(L)}(\mathcal{F}_r^{(L)})$: Blatt-Weisskopf form factors for $D \to rh_3(r \to h_1h_2)$
- $\mathcal{Z}_L(\Omega)$: Spin formalism that describes the angular distributions for the decay process
- \mathcal{T}_r : Dynamical function parametrized by relativistic **Breit-Wigner line-shapes**.

1(a) Form factors $(\mathcal{F}_D^{(L)}(q, q_0), \mathcal{F}_r^{(L)}(p, p_0))$ [5][6][7]

Table: Blatt-Weisskopf barrier penetration factors

	L=0	L=1	L=2
$B_L(q)$	1	$\sqrt{\frac{1+z_0}{1+z}}$	$\sqrt{\frac{(z_0-3)^2+9z_0}{(z-3)^2+9z}}$

where, $z = (|q|d)^2$ and $z_0 = (|q_0|d)^2$

• q(p): Momentum of the bachelor particle h_3 (one of the resonances's daughter particles h_1 or h_2) evaluated in the resonance, r rest frame.

- $q_0(p_0)$: Value of q(p) when the invariant mass equals the pole mass of the resonance.
- In present analysis, $d_D = 5\hbar c/{\rm GeV} \approx 1$ fm, $d_r = 1.5\hbar c/{\rm GeV} \approx 0.3$ fm.

1(b) Spin dependence (Zeemach formalism) • Link • Link [8]

$$\mathcal{Z}_{0}(\Omega) = \Gamma$$

$$\mathcal{Z}_{1}'(\Omega) = M_{h_{2}h_{3}}^{2} - M_{h_{1}h_{3}}^{2} - \frac{(M_{D}^{2} - M_{h_{3}}^{2})(M_{h_{2}}^{2} - M_{h_{1}}^{2})}{M_{h_{1}h_{2}}^{2}}$$
etc

where, Ω : angle between h_3 momentum (**p**) and break-up three momentum (**q**), in resonance rest frame.

 $\mathbf{q} = \mathbf{p}_{h1} - \mathbf{p}_{h_2}$

q'(0) = 1

1(c) Propagator (dynamical term) – **Breit Wigner line-shapes** [3][5]

$$T_r(m) = \frac{1}{m_0^2 - m^2 - im_0\Gamma(m)}$$

 m_0 : pole mass of the resonance

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{(2L+1)} \left(\frac{m_0}{m}\right) \mathcal{F}_r^{(L)2}$$

• 11 isobars, 20 free parameters

$D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ amplitude formulation (PRD, 98, 112012 (2018))

- 2 S-wave resonances

 - 2(a) $\pi\pi$ S-wave ($K_{S}^{0}r$): \mathcal{K} -matrix formalism 2(b) $K\pi$ S-wave ($\pi^{\pm}r$): LASS parametrization

2(a). $\pi\pi$ S-wave ($K_{S}^{0}r$): \mathcal{K} -matrix formalism

 $\mathcal{F}_1(s) = [I - iK(s)\rho(s)]_{1i}^{-1} \mathcal{P}_i(s)$

- The index j denotes the particular channels $(\pi\pi, K\bar{K}, \pi\pi\pi\pi, \eta\eta, \eta\eta')$ contributing to the scattering process.

- However, in this analysis, only the $\pi^+\pi^-$ final states are considered and $r \to K\bar{K}$ etc. contribute to final parametrization of $\mathcal{F}_1(s)$ due to interference processes in the scattering theory.

- The production vector \mathcal{P} parametrizes the initial production of states into open channels.

- The 5x5 K-matrix describes the scattering process and $\rho(s)$ is a diagonal matrix with phase space factors.

 $- [I - iK(s)\rho(s)]^{-1} \begin{cases} - \text{ Can be viewed as a propagator, carrying on resonances produced by} \\ \mathcal{P} \text{ to a final state.} \\ - \text{ All parameters in this term are fixed at each point on DP.} \end{cases}$

– The production vector \mathcal{P} is defined as:

$$\mathcal{P}_j(s) = f(\beta_\alpha, f_{1j}^{prod})$$

where, β_{α} and f_{1i}^{prod} are the complex production couplings and production parameters respectively, to be determined from the fits.

16 free parameters

$D^0 ightarrow {\cal K}^0_{ m S} \pi^+ \pi^-$ amplitude formulation (PRD, 98, 112012 (2018))

3. $K\pi$ S-wave $(\pi^{\pm}r)$: LASS parametrization

$$\mathcal{A}_{K\pi(L=0)}(s) = \mathbf{A}_{prod} e^{i\phi_{prod}} \left[R \sin \delta_R e^{i\delta_r} e^{i2\delta_F} + F \sin \delta_F e^{i\delta_F} \right]$$

– Parametrizes the CF $K_0^*(1430)^-$ and the DCS $K_0^*(1430)^+$ contributions. – 4 free parameters

Likelihood function to minimize:

$$\mathcal{L} = \prod_{i=1}^{N} \left[f_{sig} \times p_{sig}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) + \underbrace{(1 - f_{sig})}^{\approx} \sum_{i=1}^{N} \binom{N_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2}{p_{bkg}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)} \right] \\ p_{sig}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2) = \frac{\epsilon(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|\mathcal{A}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|^2}{\int_{D} \epsilon(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|\mathcal{A}(M_{K_{\rm S}^0\pi^+}^2, M_{K_{\rm S}^0\pi^-}^2)|^2 dM_{K_{\rm S}^0\pi^+}^2 dM_{K_{\rm S}^0\pi^-}^2}$$

The problem of K_S^0 **regeneration** – an aside

• A pure beam of K_L^0 :

$$\mathcal{K}^{0}_{L}=rac{1}{\sqrt{2}}\left(\mathcal{K}^{0}+ar{\mathcal{K}}^{0}
ight)$$

- While passing through matter (of detector) made of *uud*, K^0 interaction will be more than \bar{K}^0 interaction.
- After passing through matter: Amplitude of $K^0 = f$ Amplitude of $\bar{K}^0 = \bar{f}$ With, $f < \bar{f}$
- Total amplitude after passage through detector:

$$\frac{1}{\sqrt{2}}\left(fK^0+\bar{f}\bar{K}^0\right)=\frac{1}{2}(f+\bar{f})K^0_L+\frac{1}{2}(f-\bar{f})K^0_S$$

• \therefore Initial K_L^0 are mis-identified as signal K_S^0 events!

LHCb detector

- A significant number of K_S^0 decay outside VELO and before the magnet.
- Average charged track traverses 60% of a radiation length.
- .:. Regeneration is a systematic problem to understand.
- A measurement of the $K_L^0 \pi \pi$ Dalitz plot will allow a data driven constraint of the systematics involved with $B \to D(K_L^0 \pi \pi) K$ being reconstructed as $B \to D(K_S^0 \pi \pi) K$ because of regeneration.

Summary of tags and yields (PRD, 101, 112002 (2020))

	ST DT						
Mode	ΔE (GeV)	N_{ST}	$\epsilon_{\rm ST}~(\%)$	$N_{\rm DT}^{K_S^0\pi^+\pi^-}$	$\epsilon_{\rm DT}^{K_S^0 \pi^+ \pi^-}$ (%)	$N_{\rm DT}^{K_L^0\pi^+\pi^-}$	$\epsilon_{\rm DT}^{K^0_L\pi^+\pi^-}~(\%)$
$K^+\pi^-$	[-0.025, 0.028]	549373 ± 756	67.28 ± 0.03	4740 ± 71	27.28 ± 0.07	9511 ± 115	35.48 ± 0.05
$K^+\pi^-\pi^0$	[-0.044, 0.066]	1076436 ± 1406	35.12 ± 0.02	5695 ± 78	14.45 ± 0.05	11906 ± 132	18.21 ± 0.04
$K^+\pi^-\pi^-\pi^+$	[-0.020, 0.023]	712034 ± 1705	39.20 ± 0.02	8899 ± 95	13.75 ± 0.05	19225 ± 176	18.40 ± 0.04
$K^+ e^- \nu_e$		458989 ± 5724	61.35 ± 0.02	4123 ± 75	26.11 ± 0.07		
CP-even tags							
K^+K^-	[-0.020, 0.021]	57050 ± 231	63.90 ± 0.05	443 ± 22	25.97 ± 0.07	1289 ± 41	33.60 ± 0.07
$\pi^+\pi^-$	[-0.027, 0.030]	20498 ± 263	68.44 ± 0.08	184 ± 14	27.27 ± 0.07	531 ± 28	35.60 ± 0.08
$K^0_S \pi^0 \pi^0$	[-0.044, 0.066]	22865 ± 438	15.81 ± 0.04	198 ± 16	6.47 ± 0.03	612 ± 35	8.57 ± 0.03
$\pi^{+}\pi^{-}\pi^{0}$	[-0.051, 0.063]	107293 ± 716	37.26 ± 0.04	790 ± 31	14.28 ± 0.06	2571 ± 74	20.29 ± 0.06
$K_L^0 \pi^0$		103787 ± 7337	48.97 ± 0.11	913 ± 41	20.84 ± 0.04		
CP-odd tags							
$K_{S}^{0}\pi^{0}$	[-0.040, 0.070]	66116 ± 324	35.98 ± 0.04	643 ± 26	14.84 ± 0.05	861 ± 46	18.76 ± 0.06
$K^0_S \eta_{\gamma\gamma}$	[-0.035, 0.038]	9260 ± 119	30.70 ± 0.11	89 ± 10	12.86 ± 0.05	105 ± 15	16.78 ± 0.06
$K^{0}_{S}\eta_{\pi^{+}\pi^{-}\pi^{0}}$	[-0.027, 0.032]	2878 ± 81	16.61 ± 0.13	23 ± 5	6.98 ± 0.03	40 ± 9	8.88 ± 0.03
$K_S^0 \omega$	[-0.030, 0.039]	24978 ± 448	16.79 ± 0.05	245 ± 17	6.30 ± 0.03	321 ± 25	8.14 ± 0.03
$K^0_S \eta'_{\pi^+\pi^-\eta}$	[-0.028, 0.031]	3208 ± 88	13.17 ± 0.09	24 ± 6	5.06 ± 0.02	38 ± 8	6.86 ± 0.03
$K^0_S \eta'_{\gamma \pi^+ \pi^-}$	[-0.026, 0.034]	9301 ± 139	23.80 ± 0.10	81 ± 10	9.87 ± 0.03	120 ± 14	12.43 ± 0.04
$K^0_L \pi^0 \pi^0$		50531 ± 6128	26.20 ± 0.07	620 ± 32	11.15 ± 0.03		
Mixed-CP tags							
$K^0_S \pi^+ \pi^-$	[-0.022, 0.024]	188912 ± 756	42.56 ± 0.03	899 ± 31	18.53 ± 0.06	3438 ± 72	21.61 ± 0.05
$K_S^0 \pi^+ \pi_{ m miss}^-$				224 ± 17	5.03 ± 0.02		
$K^0_S(\pi^0\pi^0_{\rm miss})\pi^+\pi^-$				710 ± 34	18.30 ± 0.04		

Anita

 $K_{\rm L}^0 \pi \pi$ amplitude model and reconstruction

Results (Phys. Rev. D, 101, 112002 (2020))

		Equal $\Delta \delta$	D binning	
	ci	s _i	c'_i	s'_i
1	$0.708 \pm 0.020 \pm 0.009$	$0.128 \pm 0.076 \pm 0.017$	$0.801 \pm 0.020 \pm 0.013$	$0.137 \pm 0.078 \pm 0.017$
2	$0.671 \pm 0.035 \pm 0.016$	$0.341 \pm 0.134 \pm 0.015$	$0.848 \pm 0.036 \pm 0.016$	$0.279 \pm 0.137 \pm 0.016$
3	$0.001 \pm 0.047 \pm 0.019$	$0.893 \pm 0.112 \pm 0.020$	$0.174 \pm 0.047 \pm 0.016$	$0.840 \pm 0.118 \pm 0.021$
4	$-0.602 \pm 0.053 \pm 0.017$	$0.723 \pm 0.143 \pm 0.022$	$-0.504 \pm 0.055 \pm 0.019$	$0.784 \pm 0.147 \pm 0.022$
5	$-0.965 \pm 0.019 \pm 0.013$	$0.020 \pm 0.081 \pm 0.009$	$-0.972 \pm 0.021 \pm 0.017$	$-0.008 \pm 0.089 \pm 0.009$
6	$-0.554 \pm 0.062 \pm 0.024$	$-0.589 \pm 0.147 \pm 0.031$	$-0.387 \pm 0.069 \pm 0.025$	$-0.642 \pm 0.152 \pm 0.034$
7	$0.046 \pm 0.057 \pm 0.023$	$-0.686 \pm 0.143 \pm 0.028$	$0.462 \pm 0.056 \pm 0.019$	$-0.550 \pm 0.159 \pm 0.030$
8	$0.403 \pm 0.036 \pm 0.017$	$-0.474 \pm 0.091 \pm 0.027$	$0.640 \pm 0.036 \pm 0.015$	$-0.399 \pm 0.099 \pm 0.026$
		Optimal	binning	
	ci	Si	c'_i	s'_i
1	$-0.034 \pm 0.052 \pm 0.017$	$-0.899 \pm 0.094 \pm 0.030$	$0.240 \pm 0.054 \pm 0.014$	$-0.854 \pm 0.106 \pm 0.032$
2	$0.839 \pm 0.062 \pm 0.037$	$-0.272 \pm 0.166 \pm 0.031$	$0.927 \pm 0.054 \pm 0.036$	$-0.298 \pm 0.162 \pm 0.029$
3	$0.140 \pm 0.064 \pm 0.028$	$-0.674 \pm 0.172 \pm 0.038$	$0.742 \pm 0.060 \pm 0.030$	$-0.350 \pm 0.180 \pm 0.039$
4	$-0.904 \pm 0.021 \pm 0.009$	$-0.065\pm0.062\pm0.006$	$-0.930 \pm 0.023 \pm 0.019$	$-0.075 \pm 0.075 \pm 0.007$
5	$-0.300 \pm 0.042 \pm 0.013$	$1.047 \pm 0.055 \pm 0.019$	$-0.173 \pm 0.043 \pm 0.010$	$1.053 \pm 0.062 \pm 0.018$
6	$0.303 \pm 0.088 \pm 0.027$	$0.884 \pm 0.191 \pm 0.043$	$0.554 \pm 0.073 \pm 0.032$	$0.605 \pm 0.184 \pm 0.043$
7	$0.927 \pm 0.016 \pm 0.008$	$0.228 \pm 0.066 \pm 0.015$	$0.975 \pm 0.017 \pm 0.008$	$0.198 \pm 0.071 \pm 0.014$
8	$0.771 \pm 0.032 \pm 0.015$	$-0.316\pm0.123\pm0.021$	$0.798 \pm 0.035 \pm 0.017$	$-0.253 \pm 0.141 \pm 0.019$
		Modified op	timal binning	
	ci	Si	c'_i	s'_i
1	$-0.270\pm 0.061\pm 0.019$	$-0.140 \pm 0.168 \pm 0.028$	$-0.198 \pm 0.067 \pm 0.025$	$-0.209 \pm 0.181 \pm 0.028$
2	$0.829 \pm 0.027 \pm 0.018$	$-0.014 \pm 0.100 \pm 0.018$	$0.945 \pm 0.026 \pm 0.018$	$-0.019 \pm 0.100 \pm 0.017$
3	$0.038 \pm 0.044 \pm 0.021$	$-0.796 \pm 0.095 \pm 0.020$	$0.477 \pm 0.040 \pm 0.019$	$-0.709 \pm 0.119 \pm 0.028$
4	$-0.963 \pm 0.020 \pm 0.009$	$-0.202 \pm 0.080 \pm 0.014$	$-0.948 \pm 0.021 \pm 0.013$	$-0.235 \pm 0.086 \pm 0.014$
5	$-0.460 \pm 0.044 \pm 0.012$	$0.899 \pm 0.078 \pm 0.021$	$-0.359 \pm 0.046 \pm 0.011$	$0.943 \pm 0.084 \pm 0.022$
6	$0.130 \pm 0.055 \pm 0.017$	$0.832 \pm 0.131 \pm 0.031$	$0.333 \pm 0.051 \pm 0.019$	$0.701 \pm 0.137 \pm 0.029$
7	$0.762 \pm 0.025 \pm 0.012$	$0.178 \pm 0.094 \pm 0.016$	$0.878 \pm 0.026 \pm 0.015$	$0.188 \pm 0.098 \pm 0.016$
8	$0.699 \pm 0.035 \pm 0.012$	$-0.085\pm0.141\pm0.018$	$0.740 \pm 0.037 \pm 0.014$	$-0.025 \pm 0.149 \pm 0.019$

Results (Phys. Rev. D, 101, 112002 (2020))

_				
	ci	si	c'_i	s'_i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccc} 09 & 0.128 \pm 0.076 \pm 0.017 & 0.801 \pm \\ 016 & 0.341 \pm 0.134 \pm 0.015 & 0.848 \pm \\ 019 & 0.893 \pm 0.112 \pm 0.020 & 0.174 \pm \\ 017 & 0.723 \pm 0.143 \pm 0.022 & -0.504 \pm \\ 0.020 \pm 0.081 \pm 0.009 & -0.972 \pm \\ 024 & -0.589 \pm 0.147 \pm 0.031 & -0.387 \pm \\ \end{array}$		$\begin{array}{c} 0.137\pm 0.078\pm 0.017\\ 0.279\pm 0.137\pm 0.016\\ 0.840\pm 0.118\pm 0.021\\ 0.784\pm 0.147\pm 0.022\\ -0.008\pm 0.089\pm 0.009\\ -0.642\pm 0.152\pm 0.034 \end{array}$
Events/0.2°	800 600 400 200 70 200 70 200 75 80	600 - ⁸ 0 400 - ⁹ 0 200 - ⁰ 70 200 -	Mean: 73.5 RMS : 1.2 600 5 5 80 75 80 0	Mean: 73.5 RMS : 0.8
	γ(*) "Equal ∆δ _p binning" ℃i	γ(" "Optima s _i) Il binning" _{Ci}	ץ(") "Modified optimal binning" י _i
1	$-0.270 \pm 0.061 \pm 0.019$	$-0.140 \pm 0.168 \pm 0.028$	$-0.198 \pm 0.067 \pm 0.025$	$-0.209 \pm 0.181 \pm 0.028$
2	$0.829 \pm 0.027 \pm 0.018$ $0.028 \pm 0.044 \pm 0.021$	$-0.014 \pm 0.100 \pm 0.018$ 0.706 ± 0.005 ± 0.020	$0.945 \pm 0.026 \pm 0.018$ 0.477 ± 0.040 ± 0.010	$-0.019 \pm 0.100 \pm 0.017$ 0.700 ± 0.110 ± 0.028
3 4	$-0.963 \pm 0.020 \pm 0.009$	$-0.790 \pm 0.095 \pm 0.020$ $-0.202 \pm 0.080 \pm 0.014$	$-0.948 \pm 0.021 \pm 0.019$	$-0.709 \pm 0.119 \pm 0.028$ $-0.235 \pm 0.086 \pm 0.014$
5	$-0.460 \pm 0.044 \pm 0.012$	$0.202 \pm 0.000 \pm 0.014$ $0.899 \pm 0.078 \pm 0.021$	$-0.359 \pm 0.046 \pm 0.011$	$0.943 \pm 0.084 \pm 0.022$
6	$0.130 \pm 0.055 \pm 0.017$	$0.832 \pm 0.131 \pm 0.031$	$0.333 \pm 0.051 \pm 0.019$	$0.701 \pm 0.137 \pm 0.029$
7	$0.762 \pm 0.025 \pm 0.012$	$0.178 \pm 0.094 \pm 0.016$	$0.878 \pm 0.026 \pm 0.015$	$0.188 \pm 0.098 \pm 0.016$
8	$0.699 \pm 0.035 \pm 0.012$	$-0.085\pm0.141\pm0.018$	$0.740 \pm 0.037 \pm 0.014$	$-0.025 \pm 0.149 \pm 0.019$

 $K_{\rm L}^0 \pi \pi$ amplitude model and reconstruction

Event selection (BOSS 6.6.4.p02)

- $\bullet \ N_{\rm charged \ tracks} \geq 4$
- PID: $\mathcal{L}_{\pi} > \mathcal{L}_{K}$ for $\pi^{+}\pi^{-}$ from D^{0}
- For $K^0_{
 m S} o \pi^+\pi^-$:
 - Primary and secondary vertex fits
 - 0.485 $\leq M_{\pi^+\pi^-} \leq$ 0.510 GeV
 - $L/\sigma_L > 2.0$ (L: $K_{\rm S}^0$ decay length)
 - Exactly one pair of $\pi^+\pi^-$ satisfying these conditions \Rightarrow No multiple combinations allowed
- 6C kinematic fit

Normalization sample (phase-space signal MC)

- 15M events generated
- Using **MC integration** technique, the normalization factor in the likelihood can be reduced to:

$$\mathcal{N} = rac{1}{N}\sum_{i=1}^{N} |\mathcal{A}_i(\mathcal{M}^2_{\mathcal{K}^0_{\mathrm{S}}\pi^+},\mathcal{M}^2_{\mathcal{K}^0_{\mathrm{S}}\pi^-})|^2$$

Event selection (BOSS 6.6.4.p02)

- $\bullet \ N_{\rm charged \ tracks} \geq 4$
- PID: $\mathcal{L}_{\pi} > \mathcal{L}_{K}$ for $\pi^{+}\pi^{-}$ from D^{0}
- For $K^0_{
 m S} o \pi^+\pi^-$:
 - Primary and secondary vertex fits
 - $0.485 \le M_{\pi^+\pi^-} \le 0.510 \; {
 m GeV}$
 - $L/\sigma_L > 2.0$ (L: $K_{\rm S}^0$ decay length)
 - Exactly one pair of $\pi^+\pi^-$ satisfying these conditions \Rightarrow No multiple combinations allowed
- 6C kinematic fit

Normalization sample (phase-space signal MC)

- 15M events generated
- Using **MC integration** technique, the normalization factor in the likelihood can be reduced to:

$$\mathcal{N} = rac{1}{N} \sum_{i=1}^{N} |\mathcal{A}_i(\mathcal{M}^2_{\mathcal{K}^0_{\mathrm{S}}\pi^+}, \mathcal{M}^2_{\mathcal{K}^0_{\mathrm{S}}\pi^-})|^2$$

Resonance	Starting values (a_r, ϕ_r)	Fit values (a_r, ϕ_r) (< 3 σ components fixed)
$K^{*}(892)^{+}$	(0.164, -42.2)	(0.164, -42.2)
$K_2^*(1430)^+$	(0.10, -89.6)	(0.10, -89.6)
$K^{*}(1410)^{+}$	(0.21, 150.2)	(0.21, 150.2)
$K\pi$ S-wave LASS		
$K_0^*(1430)^-$	(2.36, 99.4)	(2.56±0.08, 105.2±1.9)
$K_0^*(1430)^+$	(0.11, 162.3)	(0.11, 162.3)
$\pi\pi$ S-wave		
parameters		
β_1	(8.5, 68.5)	(10.7±0.4, 98.1±2.2)
β_2	(12.2, 24.0)	$(10.4\pm0.4,\ 27.9\pm2.7)$
β_3	(29.2, -0.1)	(58.2±3.8, -15.1±3.3)
β_4	(10.8, -51.9)	(0.8±0.6, -59.8±45.2)
f_1^{prod}	(8.0, -126.0)	(7.9±0.3, -104.2±2.9)
f_2^{prod}	(26.3, -152.3)	(24.9±1.9, -132.0±4.3)
f_3^{prod}	(33.0, -93.2)	(44.4±3.3, -92.5±3.8)
f_4^{prod}	(26.2, -121.4)	(27.5±1.0, -97.2±2.6)

Fit fractions (Toy fit)

Resonance	FF (%) Belle	FF (%) Fitted
$K_{S}^{0} ho(770)^{0}$	20.4	19.9
$K_{S}^{0}\omega(782)$	0.5	0.3
$K_{S}^{0}f_{2}(1270)$	0.8	0.6
$K_{S}^{0} ho(1450)^{0}$	0.6	1.2
$K^{*}(892)^{-}\pi^{+}$	59.9	60.4
$K_2^*(1430)^-\pi^+$	1.3	1.7
$K^*(1680)^-\pi^+$	0.5	0.5
$K^*(1410)^-\pi^+$	0.1	0.6
$K^*(892)^+\pi^-$	0.6	0.5
$K_2^*(1430)^+\pi^-$	< 0.1	0.01
$K^*(1410)^+\pi^-$	< 0.1	0.04
$\pi^+\pi^-$ <i>S</i> -wave	10.0	8.6
<u>K</u> π S-wave		
$K_0^*(1430)^-\pi^+$	7.0	7.7
$K_0^*(1430)^+\pi^-$	< 0.1	0.01
Total	101.6	102.2

Anita

 $K^0_{\rm L}\pi\pi$ amplitude model and reconstruction

Amplitude fit - On toy sample (I/O check) - c_i, s_i

Ongoing work

• Simultaneous fits to $D^0 \to K^0_S \pi^+ \pi^-$ and $D^0 \to K^0_L \pi^+ \pi^-$ to extract values of r_k and δ_k and hence Δc_i and Δs_i

Summary of tags and yields (PRD, 101, 112002 (2020))

	ST DT						
Mode	ΔE (GeV)	N_{ST}	$\epsilon_{\rm ST}~(\%)$	$N_{\rm DT}^{K_S^0\pi^+\pi^-}$	$\epsilon_{\rm DT}^{K_S^0 \pi^+ \pi^-}$ (%)	$N_{\rm DT}^{K_L^0\pi^+\pi^-}$	$\epsilon_{\rm DT}^{K^0_L\pi^+\pi^-}~(\%)$
$K^+\pi^-$	[-0.025, 0.028]	549373 ± 756	67.28 ± 0.03	4740 ± 71	27.28 ± 0.07	9511 ± 115	35.48 ± 0.05
$K^+\pi^-\pi^0$	[-0.044, 0.066]	1076436 ± 1406	35.12 ± 0.02	5695 ± 78	14.45 ± 0.05	11906 ± 132	18.21 ± 0.04
$K^+\pi^-\pi^-\pi^+$	[-0.020, 0.023]	712034 ± 1705	39.20 ± 0.02	8899 ± 95	13.75 ± 0.05	19225 ± 176	18.40 ± 0.04
$K^+e^-\nu_e$		458989 ± 5724	61.35 ± 0.02	4123 ± 75	26.11 ± 0.07		
CP-even tags							
K^+K^-	[-0.020, 0.021]	57050 ± 231	63.90 ± 0.05	443 ± 22	25.97 ± 0.07	1289 ± 41	33.60 ± 0.07
$\pi^+\pi^-$	[-0.027, 0.030]	20498 ± 263	68.44 ± 0.08	184 ± 14	27.27 ± 0.07	531 ± 28	35.60 ± 0.08
$K^0_S \pi^0 \pi^0$	[-0.044, 0.066]	22865 ± 438	15.81 ± 0.04	198 ± 16	6.47 ± 0.03	612 ± 35	8.57 ± 0.03
$\pi^{+}\pi^{-}\pi^{0}$	[-0.051, 0.063]	107293 ± 716	37.26 ± 0.04	790 ± 31	14.28 ± 0.06	2571 ± 74	20.29 ± 0.06
$K_{L}^{0}\pi^{0}$		103787 ± 7337	48.97 ± 0.11	913 ± 41	20.84 ± 0.04		
CP-odd tags							
$K_S^0 \pi^0$	[-0.040, 0.070]	66116 ± 324	35.98 ± 0.04	643 ± 26	14.84 ± 0.05	861 ± 46	18.76 ± 0.06
$K_{S}^{0}\eta_{\gamma\gamma}$	[-0.035, 0.038]	9260 ± 119	30.70 ± 0.11	89 ± 10	12.86 ± 0.05	105 ± 15	16.78 ± 0.06
$K^{0}_{S}\eta_{\pi^{+}\pi^{-}\pi^{0}}$	[-0.027, 0.032]	2878 ± 81	16.61 ± 0.13	23 ± 5	6.98 ± 0.03	40 ± 9	8.88 ± 0.03
$K_S^0 \omega$	[-0.030, 0.039]	24978 ± 448	16.79 ± 0.05	245 ± 17	6.30 ± 0.03	321 ± 25	8.14 ± 0.03
$K_{S}^{0}\eta'_{\pi^{+}\pi^{-}n}$	[-0.028, 0.031]	3208 ± 88	13.17 ± 0.09	24 ± 6	5.06 ± 0.02	38 ± 8	6.86 ± 0.03
$K^0_S \eta'_{\gamma \pi^+ \pi^-}$	[-0.026, 0.034]	9301 ± 139	23.80 ± 0.10	81 ± 10	9.87 ± 0.03	120 ± 14	12.43 ± 0.04
$K_L^0 \pi^0 \pi^0$		50531 ± 6128	26.20 ± 0.07	620 ± 32	11.15 ± 0.03		
Mixed-CP tags							
$K_{S}^{0}\pi^{+}\pi^{-}$	[-0.022, 0.024]	188912 ± 756	42.56 ± 0.03	899 ± 31	18.53 ± 0.06	3438 ± 72	21.61 ± 0.05
$K_S^0 \pi^+ \pi_{\rm miss}^-$				224 ± 17	5.03 ± 0.02		
$K^0_S(\pi^0\pi^0_{\rm miss})\pi^+\pi^-$				710 ± 34	18.30 ± 0.04		

Anita

 $K_{\rm L}^0 \pi \pi$ amplitude model and reconstruction