3rd South American Dark Matter Workshop **SADM 2020** 2-4 December 2020

Dark Sector at Belle II

Martina Laurenza

"RomaTre" University and INFN

🔼 martina.laurenza@roma3.infn.it

Istituto Nazionale di Fisica Nucleare

Outline

- SuperKEKB and the Belle II experiment;
- Dark sector;
- Ongoing dark sector searches at Belle II:
 - Z' to invisible;
 - Z' to visible;
 - Axion-Like Particles;
 - Dark Higgsstrahlung;
 - Invisible dark photon.
- Conclusions.

1.SuperKEKB and the Belle II experiment

Reduction factors $L = \frac{\gamma_{\pm}}{2 e r_{e}} \left(\frac{I_{\pm} \xi_{y\pm}}{\beta_{y\pm}^{*}}\right) \left(\frac{R_{L}}{R_{\xi y}}\right)$

Luminosity target: 6 x 10³⁵ cm⁻²s⁻¹

Pilot run:

500 pb ⁻¹ collected;

Belle II incomplete
 (1/8 vertex detector)

Phase III:

- Started on March 2019, with complete detector
- up to last summer 74 fb⁻¹ has been collected but fall run 2020c is in progress

<u>Goal: 50 ab -1</u>

Belle II detector

An overview

PXD incomplete, to be replaced in 2022

Belle II detector Compared to Belle

2.Dark sector

Dark sector search

Introduction

In recent years the possibility that both DM and the particles mediating its interactions to the Standard Model (SM) have a mass at or below the GeV–scale has gained much attraction.

- Light DM weakly interacting to SM through a new light mediator;
- There is a small number of possible portals between dark sector and standard model:
 - 1 VECTOR PORTAL (dark photon A', Dark Z');
 - 2 PSEUDO-SCALAR PORTAL (Axion-Like particle);
 - 3 SCALAR PORTAL (dark scalars, extended higgs model);
 - 4 NEUTRINO PORTAL (sterile neutrino).

Dark sector search

@Belle II

- Altough Belle II/SuperKEKB has been designed as a **B-factory** it is the **perfect environment** where to search for dark matter or mediators:
- Hermetic detector and wellknown initial conditions;
- Minimal background from collision pile-up;
- Excellent PID;
- **Dedicated triggers** for low multiplicity events.

DM mass mDM

2.Dark sector search at Belle II

Theory: L_µ - L_τ model*

 $e^+e^- \rightarrow \mu^+\mu^- Z'; Z' \rightarrow invisible$

*Shuve et al. (2014), arXiv:1403.2727 Altmannshofer et al. (2016), arXiv: 1609.04026

- New light gauge boson Z' only interacting with the second and the third generation of leptons;
- This model would explain:
 - DM puzzle;
 - $(g-2)_{\mu}$ anomaly;
 - $B \rightarrow K^{(*)} \mu \mu$, R K , R K* anomalies.

Looking for: invisibly decaying Z' coming from a muon (it can decay into DM or neutrinos if lighter than 2 muons)

Experimental signature

Measurement performed with data collected during Phase 2:

 \rightarrow Only 276 pb⁻¹ usable due to trigger conditions.

First Belle II physics paper: Adachi et al. (Belle II Collaboration) Phys. Rev. Lett. 124, 141801

- Looking for a peak in the distribution of the invariant mass of the system recoiling against the lepton pair;
- **Nothing else** in the rest of the event;
- The analysis uses events with exactly two tracks identified as µµ.
- Backgrounds:
 - 1 $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - 2 $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ 3 $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

g' upper limits

First Belle II physics paper: Adachi et al. (Belle II Collaboration) Phys. Rev. Lett. 124, 141801

90% CL upper limits on coupling constant g ': **first results ever**.

List of systematic uncertainties

Tracking 4% Trigger 6% LeptonID 4% Luminosity 0.7% Background suppression 22% Muon yields (signal) 12.5% Background level 2%

Results for a LFV Z' I. Galon et al. (2016), arXiv:1610.08060 **First Belle II physics paper:** Adachi et al. (Belle II Collaboration) Phys. Rev. Lett. 124, 141801

Model independent search with same analysis selection criteria of the Z' to invisible search, with an electron replacing a muon.

SADM 2020 – Dark Sector at Belle II

Martina Laurenza

Z' to visible Muonic dark force

• Already performed by BaBar* with 514 fb⁻¹ \rightarrow limits on the coupling parameter g'.

μ, τ

 μ^+, τ^+

• Same analysis is in progress in Belle;

 $e^+e^- \rightarrow \mu^+\mu^- Z'; Z' \rightarrow \mu^+\mu^-$

• We want to reproduce the BaBar analysis and obtain the same (or better) performances with less luminosity (100 fb⁻¹) through an aggressive background suppression.

Martina Laurenza

μ, τ.

ν_{μ,τ}, χ

*Phys. Rev. D 94, 011102 (2016)

Background suppression

Background suppression

- Same diagram (the second is just 90° rotated). Nevertheless, they define two different regimes;
- The **double photon conversion** is dominant, ISR regime is suppressed by CDC acceptance tracks.

Background suppression

 $P_{\mu\mu}$ and other discriminant variables have been used to perform a Multivariate Analysis through a Multi Layer Perceptron.

 \rightarrow Sensitivity computation in progress.

Theory

Second Belle II physics paper: Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806

ALPs are pseudo-scalars particles coupling with photons.

Two possible scenarios are possible at e⁺e⁻ colliders:

- Photo-fusion;
- ALP-strahlung.

Experimental signature

Looking for:

- three photon summing up to beam energy and no other particles;
- No tracks;
- Search for a bump into diphoton and recoil mass.

Backgrounds:

1 $e^+e^- \rightarrow \gamma \gamma(\gamma);$ 2 $e^+e^- \rightarrow e^+e^-(\gamma);$ 3 $e^+e^- \rightarrow P\gamma\gamma, P = \Pi^0, \eta, \eta'.$ Second Belle II physics paper: Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806

Experimental signature

Looking for:

- three photon summing up to beam energy and no other particles;
- No tracks;
- Search for a bump into diphoton and recoil mass.

Backgrounds:

1 $e^+e^- \rightarrow \gamma \gamma(\gamma);$ 2 $e^+e^- \rightarrow e^+e^-(\gamma);$ 3 $e^+e^- \rightarrow P\gamma\gamma, P = \Pi^0, \eta, \eta'.$ Second Belle II physics paper: Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806

Second Belle II physics paper: Abudinén et al. (Belle II Collaboration) Phys. Rev. Lett. 125, 161806

 g_{ayy} and cross-section upper limit

Dark Higgsstrahlung

Theory*

$$e^+e^- \rightarrow A'^* \rightarrow h'A', A' \rightarrow \mu^+\mu^-$$

*Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009)

The dark photon mass could be generated via a spontaneous symmetry breaking mechanism, adding a dark Higgs boson h' to the theory.

In a minimal scenario: a single dark photon A' and a single dark Higgs boson h'.

The h' could be produced in the Higgsstrahlung process, which is also sensitive to the dark sector coupling constant a_p .

Different scenarios depending on the mass hypothesis.

We focus on the case: $m_{h'} < m_{A'}$ up to now only investigated by KLOE.

Dark Higgsstrahlung

Experimental signature

Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009)

Looking for:

- two oppositely charged muons plus missing energy;
- a peak in two dimensional distribution of recoiling mass vs dimuon mass.

Backgrounds:

- 1 $e^+e^- \rightarrow \mu^+\mu^-\gamma$;
- 2 $e^+e^- \rightarrow \tau^+\tau^-\gamma$;
- $e^+e^- \rightarrow e^+e^-\mu^+\mu^-;$
- $4 \quad e^+e^- \rightarrow \Pi^+\Pi^-\gamma.$

...but additional background sources are studied.

Dark Higgsstrahlung

Expected sensitivity

Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009)

- Very promising results even with the 2019 only dataset (9 fb⁻¹)
 - Accessing unconstrained regions, well beyond KLOE coverage;
 - Probing non-trivial ε²α_D couplings.

 α_D

 ε^2

Dark photon to invisible

*P. Fayet, Phys. Lett. B 95, 285 (1980) P. Fayet, Nucl. Phys. B 187, 184 (1981) B. Batell, et al. Phys. Rev. D 79, 115008

A possible standard model extention with a new massive gauge boson A' of spin = 1 called **dark photon**, that couples to SM.

Two basic scenarios depending on A' vs DM mass relationship:

 $m_x > 1/2m_{A'} \rightarrow A'$ visible decays to SM; $m_x < 1/2m_{A'} \rightarrow A'$ invisible decays to light DM.

Dark photon to invisible

Experimental signature

Looking for:

- One photon inside calorimeter acceptance and nothing else in the event;
- Bump hunt in single photon recoil mass (or energy) vs. θ_{LAB};
- Needs single-photon trigger.

Backgrounds:

- 1 $e^+e^- \rightarrow \gamma \gamma \gamma;$
- 2 e⁺e⁻→eeγ;
- ³ cosmics.

e⁺e⁻→γγγ, 1γ endcap gaps, 1γ out of acceptance

P. Fayet, Phys. Lett. B 95, 285 (1980),
P. Fayet, Nucl. Phys. B 187, 184 (1981)
B. Batell, et al. Phys. Rev. D 79, 115008

Dark photon to invisible

P. Fayet, Phys. Lett. B 95, 285 (1980),
P. Fayet, Nucl. Phys. B 187, 184 (1981)
B. Batell, et al. Phys. Rev. D 79, 115008

Expected sensitivity

Conclusions

- Belle II/Super KEKB is not only a B-factory, but a perfect environment where to search for dark matter or mediators;
- It has successfully collected 500 pb⁻¹ during commissioning phase and currently phase 3 is ongoing;
- A lot of dark sector searches are in progress, and very good results have been obtained also with phase 2 data only.