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Purpose 1/36

My intention is to enable those members of the audience that are so
far unfamiliar with the theoretical aspects of b→ sℓℓ to develop an
understanding of how these types of measurements …
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…lead to claims of tensions with SM at and above the 5σ level.
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▶ w/o change of el. charge
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γ/Z

W W

only arises at loop level

lepton-flavour-universal gauge couplings!



Weak Effective Theory: Basics 3/36

▶ widely used tool of theoretical physics

▶ replaces dynamical degrees of freedom (here: t,W, Z) by
coefficients Ci and static structures in local operators (here: Γi)

Mp

MB

MW
Mt

ELHC
b s

ℓ+

ℓ−

u/c/t

γ/Z

W W

Energy



Weak Effective Theory: Basics 3/36

▶ widely used tool of theoretical physics
▶ replaces dynamical degrees of freedom (here: t,W, Z) by

coefficients Ci and static structures in local operators (here: Γi)
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Weak Effective Theory: b→ sℓℓ SM Operators 4/36

in the SM the we find the following D = 6 effective operators

Leff
SM = LQCD + LQED +

4GF√
2

[
λt

∑
i

CiOi + λc
∑
i

CicOi
c + λu

∑
i

CiuOi
u

]

O7 =
e

16π2mb(sσµνPRb)Fµν O8 =
gs
16π2mb(sσµνPRTAb)GAµν

O9 =
α

4π (sγµPLb)(ℓγ
µℓ) O10 =

α

4π (sγµPLb)(ℓγ
µγ5ℓ)

O1
q = (qγµPLb)(sγµPLq) O2

q = (qγµPLTab)(sγµPLTaq)

Oi = (sγµPXb)
∑
q
(qγµq)

with λq ≡ VqbV∗qs
▶ very complicated structure compared to the tree-level decays

SM contributions to Ci(µb) known to NNLL [Bobeth, Misiak, Urban ’99; Misiak, Steinhauser ’04, Gorbahn,

Haisch ’04; Gorbahn, Haisch, Misiak ’05; Czakon, Haisch, Misiak ’06]



Weak Effective Theory: b→ sℓℓ SM Spectrum 5/36

How do these operator contribute? Schematically
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Weak Effective Theory: b→ sℓℓ BSM Operators 6/36

in the presence of BSM effects, complete basis of semileptonic
operators by adding

Leff
BSM = Leff

SM +
4GF√
2

[
λt

∑
i

CiOi

]
with i running over 9′, 10′, S, S′, P, P′, T, T5:

O9′ =
α

4π (sγµPRb)(ℓγ
µℓ) O10′ =

α

4π (sγµPRb)(ℓγ
µγ5ℓ)

OS =
α

4π (sPRb)(ℓℓ) OS′ =
α

4π (sPLb)(ℓℓ)

OP =
α

4π (sPRb)(ℓγ5ℓ) OP′ =
α

4π (sPLb)(ℓγ5ℓ)

OT =
α

4π (sσ
µνb)(ℓσµνℓ) OT5 =

α

4π (sσ
µνPLb)(ℓσµνγ5ℓ) (1)

▶ Ci = 0 in the SM for all of these operator!



Weak Effective Theory: Summary 7/36

▶ WET makes calculation in the SM possible in the first place
▶ separates long-distance from short-distance physics

▶ resums potentially large logarithms

▶ “divide and conquer”

▶ transparently allows to account model-independently for the
effects of physics beyond the SM

▶ interface to model builders …

▶ …although transitioning to SM Effective Field Theory, which can
help to related constraints amongst the various Weak Effective
Theories (i.e., relate constraints in b→ cτν with constraints in
b→ sℓ+ℓ−)



Hadronic Matrix Elements &
SM Predictions



Decay Amplitudes 8/36

▶ the Lagrangian with its effective operators describes the decay
of a free b quark

▶ however, the quarks are confined in hadrons
▶ to describe the decay we require further information about the
b quark inside the initial state hadron Hb (and similarly about
the s inside the final state hadron Hs)

▶ additionally, we need to account for one weak interaction +
possibly multiple electromagnetic interactions, all of which are
described by Leff

SM



Decay Amplitudes 8/36

▶ the Lagrangian with its effective operators describes the decay
of a free b quark

▶ however, the quarks are confined in hadrons
▶ to describe the decay we require further information about the
b quark inside the initial state hadron Hb (and similarly about
the s inside the final state hadron Hs)

▶ additionally, we need to account for one weak interaction +
possibly multiple electromagnetic interactions, all of which are
described by Leff

SM

formally, we require matrix elements of all possible contributions of
the Lagrangian T : time ordering

A ∝ ⟨Hs| T exp

[
i
∫
dτLeff

SM(τ)

]
|Hb⟩ = 0+ ⟨Hs| Leff

SM(0) |Hb⟩

+ ⟨Hs| T
∫
dτLeff

SM(τ)Leff
SM(0) |B⟩+ . . .



Particle Taxnomoy 9/36

▶ here, we are discussing b→ sℓℓ transitions only!

▶ examples for exclusive decays mediated by b→ sℓℓ include
▶ B→ K(∗)ℓ+ℓ− pseudoscalar and vector final states

▶ Bs → ϕℓ+ℓ− vector final state w/ s spectator

▶ Λb → Λℓ+ℓ− baryonic cousin to B→ Kℓ+ℓ−

▶ Λb → pK−ℓ+ℓ− baryonic cousin to B→ K∗ℓ+ℓ−

Virtually identical amplitude anatomy for all these decays!



Anatomy of Exclusive b→ sℓ+ℓ− Decay Amplitudes 10/36

Aχ
λ = Nλ

{
(C9 ∓ C10)Fλ(q2) +

2mbMB
q2

[
C7FT

λ(q2)− 16π2MB
mb

Hλ(q2)
]}

nomenclature λ: dilepton ang. mom., χ: lep. chirality

Fλ local form factors of dimension-three currents: sγµb & sγµγ5b
FT

λ local dipole form factors of dimension-three current: sσµνb
Hλ nonlocal form factors of dimension-five nonlocal operators∫

d4x eiq·x T { Jµem(x),
∑

CiOi(0) }

all three needed for consistent description to leading-order in αe



Observables: Branching Fraction 11/36

▶ simplest observable: how frequently does a B→ K∗ℓ+ℓ− decay
happen?

▶ needs to acount for each amplitude, with their various angular
momentum states λ and lepton chiralities χ

dB
dq2 ∝ τB

 ∑
χ=L,R

∑
λ

|Aχ
λ|

2


▶ very sensitive to the local form factors!
⇒ largest theory uncertainty of all observables



Observables: Branching Fraction 11/36

however … measurements are systematically below predictions

30− 25− 20− 15− 10− 5− 0 5
8 10×) SMB  LHCbB(

)µ+µ*0K →0B(B

)µ+µφ →s
0B(B

)µ+µ+K →+B(B

)µ+µ0K →0B(B

)µ+µ*+K →+B(B

SM Vorhersage4c/2 < 6 GeV2q1 < 

[Albrecht, Langenbruch 2018]



Observables: RK, RK∗ and colleagues 12/36

Idea: test lepton-flavour universality through ratios of B

dB(Hb → Hsℓ+ℓ−)
dq2

∣∣∣∣
SM

∝ #1+ m2
ℓ

q2 #2

▶ for q2 ≥ 1 GeV2, the lepton-mass specific factor m2
ℓ/q2 is

negligible and hence term #2 is irrelevant
▶ term #1 then cancels in every q2 point
⇒ RHs ≡ B(µ)/B(e) ≃ 1 for every Hs and in that q2 interval
▶ deviation from 1 is a brilliant SM null test, th. uncertainties ∼ 1%

▶ reasonable SM uncertainty estimates must include
electromagnetic effects!

▶ works even for decays such as B→ Kππℓ+ℓ− or Λb → pK−ℓ+ℓ−,
for which we have no reliable theory predictions at all!



Observables: RK, RK∗ and colleagues 12/36

again, measurements are systematically below predictions

1− 0.8− 0.6− 0.4− 0.2− 0 0.2
SMRLHCbR

)4c/2 < 1.1 GeV2q(0.045 < *
K

R

)4c/2 < 6.0 GeV2q(1.1 < *
K

R

)4c/2 < 6.0 GeV2q(1.0 < KR

SM Vorhersage

[Albrecht, Langenbruch 2018]



Observables: Angular Observables (1) 13/36

Three independent decay angles in B→ K∗ℓ+ℓ− (similar for other decays!)

θℓ helicity/polar angle of the lepton pair
θK helicity/polar angle of the Kπ pair
ϕ azimuthal angle between the two decay planes

[LHCb-PAPER-2013-019]
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Three independent decay angles in B→ K∗ℓ+ℓ− (similar for other decays!)

θℓ helicity/polar angle of the lepton pair
θK helicity/polar angle of the Kπ pair
ϕ azimuthal angle between the two decay planes

angular distribution

1
B

d4B
dq2 d cos θℓ d cos θK dϕ

=
∑
i

Si(q2) fi(cos θℓ, cos θK, ϕ)

gives rise to 12 angular observables Si(q2)!
▶ numerator of each Si comprised of the same amplitudes as B
▶ but: non-diagonal terms like S6 ∝ ReA⊥A∗

∥ provide
complementary access to Wilson coefficients compared to B

▶ normalization to B ensures (partial) cancellation of theory
uncertainties



Observables: Angular Observables (2) 14/36

Some of the angular observables (or linear combinations thereof)
are better known under other names

▶ forward-backward asymmetry: how often does the negative
charged lepton fly into the opposite direction of the kaon vs in
direction of the kaon?

AFB ∝ S6s + ... S6c

Parity violating observable, sensitive to interference of vector
and axialvector currents!

▶ longitudinal polarisation: how often is the kaon longitudinally
polarized out of all decays
more complicated expression, dominantly sensitive to local
form factors



Observables: Angular Observables (3) 15/36

But what about P′5?
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Observables: Angular Observables (3) 15/36

But what about P′5?

idea: construct basis of angular observables in which the impact of
local form factors (Fλ) is reduced. [Descotes-Genon,Matias,Ramon,Virto ’12]

▶ clever use of symmetries among the decay amplitudes
▶ affected fits when theory and experimental correlations were

unknown or only poorly known
▶ still useful to illustrate tensions between SM predctions and

measurements

If experimental and theoretical correlations are accounted for, the
choice of basis makes no difference!



Theory Inputs: Local Form Factors 16/36

B → K B → K∗ Bs → ϕ Λb → Λ

# of FFs 3 7 7 10

q2 ≲ 10 GeV2 LCSR (×1) LCSR (×2, *) LCSR (×2) LQCD (†)
q2 ≳ 15 GeV2 LQCD (×2) LQCD (×1, *) LQCD (×1) LQCD (×1)

LQCD Lattice QCD simulations, systematically improvable

LCSR Light-Cone Sum Rules calculations, with hard-to-quantify systematic
uncertainties, with either

▶ rule of thumb: ∼ 10% uncertainty, but correlations are usually known

⇒ largest impact in branching fraction, but reduced uncertainties in ratios

(*) assuming that the K∗(892), which is a Kπ resonance, can be replaced
with a stable bound state

(†) large uncertainties due to extrapolation



Theory Inputs: Local Form Factors 16/36

B → K B → K∗ Bs → ϕ Λb → Λ

# of FFs 3 7 7 10

q2 ≲ 10 GeV2 LCSR (×1) LCSR (×2, *) LCSR (×2) LQCD (†)
q2 ≳ 15 GeV2 LQCD (×2) LQCD (×1, *) LQCD (×1) LQCD (×1)

▶ different excl. decay modes provide complementary systematic effects
▶ experimental data also provides information on the local form factors

⇒ global analyses: nontrivial crosschecks of the computation methods

! small q2, which drives anomalies, dominated by LCSRs, which are least
reliable method

✓ no conceptual problem for LQCD to reach small q2

⇒ good prospects for improvement



Theory Inputs: Nonlocal Form Factors 17/36

H ∼ ⟨Hs|
∫
d4x eiq·x T { Jµem(x),

∑
CiOi(0) } |Hb⟩

▶ numerically dominant effect from sbcc operators Oc1 and Oc2, the
so-called “charm loop effect”

B → K B → K∗ Bs → ϕ Λb → Λ

# of FFs 1 3 3 4

q2 ≲ 1 GeV2 LCOPE LCOPE LCOPE LCOPE (*)
q2 ≳ 15 GeV2 OPE OPE OPE OPE

OPE reduction to local operators xµ = 0
LCOPE reduction to operators on the light-cone x2 ≃ 0

(*) next-to-leading power matrix elements cannot presently be computed

both cases: matrix elements of the leading operators are the local form
factors



Phenomenology



Global Fits 18/36

▶ use universality of Ci to overconstrain their values from data
▶ use data on B→ K(∗)ℓ+ℓ−, B→ K∗γ, Bs → ϕℓ+ℓ−, …

▶ available from CLEO
▶ available from B-factory experiments: BaBar, Belle
▶ available from Tevatron experiments: CDF, D0
▶ available from LHC experiments: ATLAS, CMS, LHCb
▶ LHCb has largest impact in fits due to number of observations and

their precision
▶ make assumptions on relevant Ci

▶ 10 per lepton flavour up to mass dimension 6
▶ 6 of these can be removed due to smallness observed in data

[Beaujean, Bobeth, Jahn 2015] [Altmannshofer, Niehoff, Straub 2017]

▶ fit 8 Ci and O (50) nuisance parameters (form factors) to theory
constraints and more than 100 experimental measurements

▶ hoping to see Belle 2 and CMS highlighted in the near future!



Global Fits: Summary 19/36

▶ measurements do not agree so well with SM predictions;
p values at the percent level (∼ 8%)

▶ BSM contributions to C9 alone increase p value to > 60%

▶ Shift CBSM
9 ≃ −1.0 and CBSM

10 ≃ +0.2 preferred, but large
contributions to C9′ and C10′ are possible!

▶ Pulls in C9 have reached values > 5σ



Global Fits: Results 20/36

−2.4 −1.6 −0.8 0.0 0.8 1.6 2.4

CNP
9µ

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

CN
P

10
µ

ATLAS

Belle

CMS

LHCb

All Data

ACCDMMNV20

[Alguero et al. 1903.09578]
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Global Fits: Cross Checks 21/36

▶ Are all angular momentum states under control? Does C9
extracted from λ =⊥ coincide with C9 extracted from λ =∥?
yes!

▶ The Wilson coefficients are q2 agnostic. Do we see a q2
dependence in the shift to C9?
no!

▶ The Wilson coefficient are process agnostic. Do we see
deviations in the best-fit point across different processes?
yes! 2016 – 2019: Λb → Λµ+µ− showed CBSM

9 > 0
no! since 2019 LHCb erratum and new data

Excellent agreement in all cross checks!



Developments



New Strategy 22/36
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▶ if |q2| = O
(
m2
b
)
, expand T-product in local operators

▶ leading operators have mass dimension three, with universal matching
coefficient c3(q2)

⇒ Hλ = c3(q2)Fλ(q2) + . . .

! usually applied in integrated form to q2 ≤ 4M2
D

⇒ a-prior, agreement between prediction and hadronic spectrum hard to
quantify (duality violation)
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▶ if q2 − 4m2
c ≪ Λhadmb, expand T-product in light-cone operators

▶ leading operators have mass dimenion three, with universal matching
coefficient c3(q2)

⇒ Hλ = c3(q2)Fλ(q2) + . . .
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▶ for q2 = M2
J/ψ and q2 = M2

ψ(2S), spectrum dominated by hadronic decays
▶ residues of nonlocal form factors model-independently relate to

hadronic decay amplitudes
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strategy

▶ compute H at spacelike q2

▶ extrapolate to timelike q2 ≤ 4M2
D

▶ include information from hadronic decays B→ K(∗)ψn
▶ data-driven approach, ideally carried out with the experimental

colleagues



Extrapolate Parametrisations 23/36

▶ Taylor expand Hλ in q2/M2
B around 0 [Ciuichini et al. ’15]

+ simple to use in a fit
- incomaptible with analyticity properties, does not reproduce
resonances

- expansion coefficients unbounded!
▶ use information from hadronic intermediate states in a dispersion

relation [Khodjamirian et al. ’10]

Hλ(q2)−Hλ(q2) =
∫
ds ImHλ(s)

(s−s0)(s−q2) + . . .

+ reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s0

▶ expand the matrix elements in variable z(q2) that develops branch cut
at q2 = 4M2

D [Bobeth/Chrzaszcz/DvD/Virto ’17]

+ resonances can be included through explicit poles (Blaschke
factors)

+ easy to use in a fit
+ compatible with analyticitiy properties
- expansion coefficients unbounded!



Extrapolate Tangent: z expansion 24/36

z(4M2
D) = −1 1 = z(|q2| → ∞)

light-cone OPE

SL phase space

J/ψ,ψ(2S)

local OPE



Extrapolate New parametrisation w/ dispersive bound 25/36

matrix elements H arise from non-local operator

Oµ(Q; x) ∼
∫
eiQ·y T{Jµem(x+ y), [C1O1 + C2O2](x)}

construct four-point operator to derive a dispersive bound

▶ define matrix element of “square“ operator[
QµQν

Q2 − gµν
]
Π(Q2) ≡

∫
eiQ·x ⟨0| T{Oµ(Q; x)O†,ν(Q; 0)} |0⟩

▶ as hermiatian operator, vacuum eigenvalues are positive
definite!

▶ for Q2 < 0 we find that Π(Q2) has two types of discontinuities
▶ from intermediate unflavoured states (cc, cccc, …)
▶ from intermediate bs-flavoured states (bs, bsg, bscc, …)



Extrapolate Cuts of Π 26/36
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Extrapolate Dispersion relation for Π 27/36

dispersive representation of the bs contribution to derivative of Π

χ(Q2) ≡ 1
2!

[
d
dQ2

]2 1
2iπ

∞∫
(mb+ms)2

ds Discbs Π(s)
s− Q2

positive definite for Q2 < 0

▶ Discbs Π can be computed in the local OPE
→ yields χOPE(Q2)

▶ OPE result indicates that two derivatives are needed for
convergence of dispersive integral

▶ Discbs Π can be expressed in terms of the matrix elements Hλ

→ yields χhad(Q2)

▶ global quark hadron duality suggests that both quantities are
equal
→ yields a dispersive bound



Extrapolate Dispersion relation for Π 28/36

the hadronic represenation reads schematically:

χOPE(Q2) ≥ 1
2!

[
d
dQ2

]2 ∞∫
(mb+ms)2

ds
∑
λ

ωλ(s) |Hλ(s)|2

s− Q2

▶ aim: diagonalize this expression

Ansatz:
Ĥλ(q2) ≡ P(q2)× ϕλ(q2)×Hλ(q2) ≡

∑
n
aλ,nfn(q2)

▶ Blaschke factor P(q2) remove narrow charmonia poles
▶ outer functions ϕλ account for weight function ωλ and Cauchy

integration kernel
▶ orthonormal functions fn(q2) diagonalizes remainder of the

expression

normalisation to χOPE leads to a diagonal bound

1 ≥
∑
λ

∑
n

|aλ,n|2



Extrapolate Integration domain 29/36

z(4M2
D) = −1 1 = z(|q2| → ∞)

light-cone OPE

SL phase space

J/ψ,ψ(2S)

local OPE

int. domain



Extrapolate Truncation error 30/36

simple exercise: bound on the shift to C9 from nonlocal form factors,
assuming only two data points at negative q2

-5 0 5 10
0

2

4

6

8

10

12

14

1
2 >

∑
n

|an|2

1
11 >

∑
n

|an|2



Extrapolate Truncation error 31/36

▶ drawback: basis of orthonormal polynomials fn(z) behaves
pathologically for Re z < 0

▶ |fn(−1)| ∼ Cn with C ≥ 1

▶ can be partially alleviated by chosing free parameter t0 in
definition of z

▶ we do not currently claim control of the truncation error, rather,
only a handle

▶ actively looking into alternative formulations of the dispersive
bound that evade the pathological behaviour



Summary



Summary and Outlook 32/36

▶ anomalies make exclusive b→ sℓℓ decays an exciting research
topic

▶ tensions mandate hightened scrutiny of theory assumptions
and inputs

▶ nonlocal form factors contribute the single-largest systematic
uncertainty in exclusive b→ sℓℓ decays

▶ I think there is a clear road toward a reliable description of these
objects, but much work still needs to be done

▶ key is a combined theory + data driven approach
▶ new developments show path in this direction

▶ looking forward to both upcoming phenomenological
applications and upcoming experimental results
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Compute Light-Cone OPE

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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Compute Light-Cone OPE

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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⇒ Hλ = coeff #1×Fλ +Hspect.
λ

+ coeff #2× Ṽ

▶ leading part identical to QCD Fact. results
[Beneke, Feldmann, Seidel 2001&2004]

▶ subleading matrix element Ṽ can be inferred
from B-LCSRs [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ recalculating this step we obtain full
agreement! Also cast result in more convenient
form



Compute Soft gluon matrix elements

at subleading power in the OPE, need matrix elements of a non-local
operator

Ṽ ∼ ⟨M| s(0)γρPLGαβ(−unµ)b(0) |B⟩
for B→ K(∗) and Bs → ϕ transitions

▶ matrix element has been calculated in light-cone sum rules
[Khodjamirian et al, 1006.4945]

▶ physical picture provides that the soft gluon field originates
from the B meson

▶ analytical results independent of two-particle bq Fock state inside
the B

▶ expressions start with three-particle bqG Fock state, and their
light-cone distribution amplitudes (LCDAs)

⟨0| q(x)Gµν(ux)Γhbv (0) |B(vMB)⟩

▶ original results missing out on four out of eight three-particle
LCDAs



Compute Soft gluon matrix elements

▶ we recalculate the soft-gluon contributions to the full set of
B→ V and B→ P non-local form factors using light-cone sum
rules

▶ analytic results for restricted set of LCDAs in full agreement with
KMPW2010 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ result of restricted set fails to reproduce duality thresholds
obtained from local form actor sum rules [Gubernari, Kokulu, DvD ’18]

▶ using the full set of LCDAs, our results reproduce the duality
thresholds!

▶ our numerical results differ significantly from KMPW2010, but are
well understood!



Compute Soft gluon matrix elements

Transition Ṽ (q2 = 1 GeV2) GvDV2020 KMPW2010

B→ K Ã (+4.9± 2.8) · 10−7 (−1.3+1.0
−0.7) · 10−4

Ṽ1 (−4.4± 3.6) · 10−7 GeV (−1.5+1.5
−2.5) · 10−4 GeV

B→ K∗ Ṽ2 (+3.3± 2.0) · 10−7 GeV (+7.3+14
−7.9) · 10−5 GeV

Ṽ3 (+1.1± 1.0) · 10−6 GeV (+2.4+5.6
−2.7) · 10−4 GeV

Ṽ1 (−4.4± 5.6) · 10−7 GeV —

Bs → ϕ Ṽ2 (+4.3± 3.1) · 10−7 GeV —

Ṽ3 (+1.7± 2.0) · 10−6 GeV —

reduction by a factor of ∼ 200
▶ new structures in three-particle LCDAs account for factor 10
▶ updated inputs that enter the sum rules (mostly) linearly account for

further factor 10
▶ similar relative uncertainties, but absolute uncertainties reduced by

O (100)
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