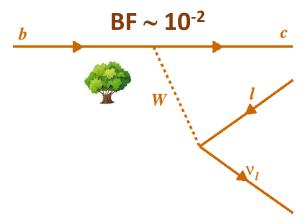

Meet the Anomalies: Experimental Perspective on $b \rightarrow s \ell \ell$

Saurabh Sandilya

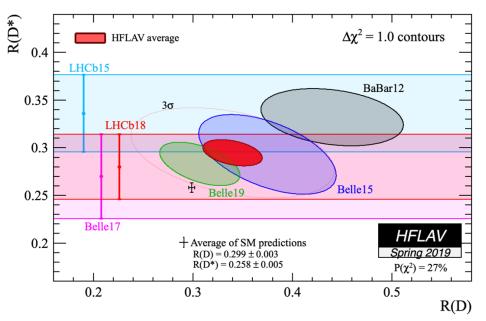
Belle II Academy March 22, 2021


Outline

Prologue: Anomalies in B-decays

 In the recent years, several discrepancies from the SM have been reported in the Bdecays.

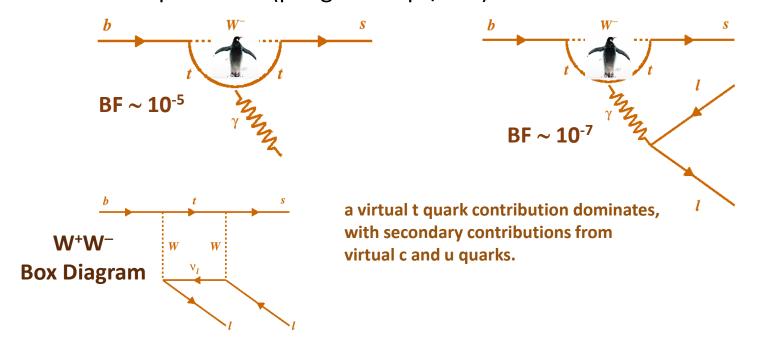
B-decays with $b \rightarrow c \ell \nu_{\ell}$ transitions: Dominant decays of b-quarks are tree level transitions $b \rightarrow c W^{-*}$.



• $\mathcal{R}(D)$ - $\mathcal{R}(D^*)$ experimental world average tension with SM prediction decreases from 3.8 σ to 3.1 σ

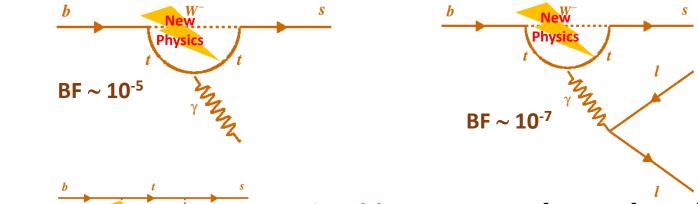
Will be discussed on March 24th

Decays : $B \rightarrow D\ell \nu_{\ell} B \rightarrow D^{(*)}\ell \nu_{\ell} B_{c} \rightarrow J/\psi \ell \nu_{\ell}$ Variables : R(D), $R(D^{*})$, $R(J/\psi)$... $BF[\overline{B} \rightarrow D^{(*)}\tau^{-}\nu_{\tau}]$


$$\mathcal{R}(\mathsf{D}^{(*)}) = \frac{\mathsf{BF}[\overline{\mathsf{B}} \to \mathsf{D}^{(*)} \tau^- \nu_{\tau}]}{\mathsf{BF}[\overline{\mathsf{B}} \to \mathsf{D}^{(*)} \ell^- \nu_{\ell}]}$$

Prologue: Anomalies in B-decays

In the recent years, several discrepancies from the SM have been reported in the Bdecays.

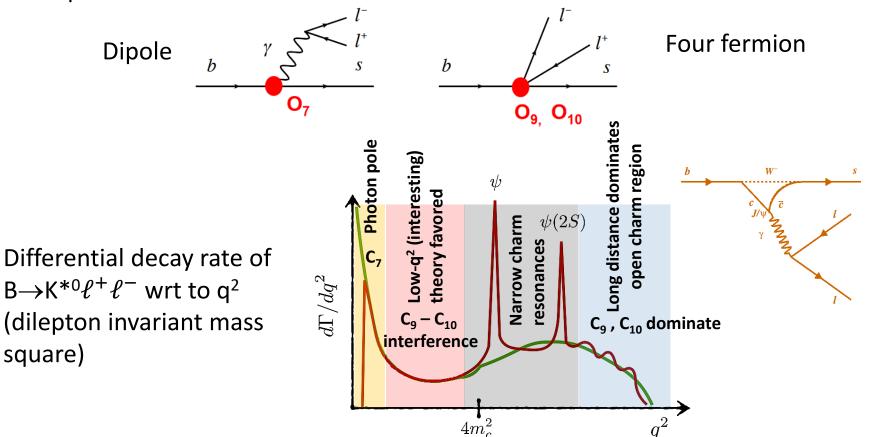

B-decays with $b \rightarrow s\ell\ell$ transitions: FCNCs and are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higherorder processes (penguin loops/box).

Prologue: Anomalies in B-decays

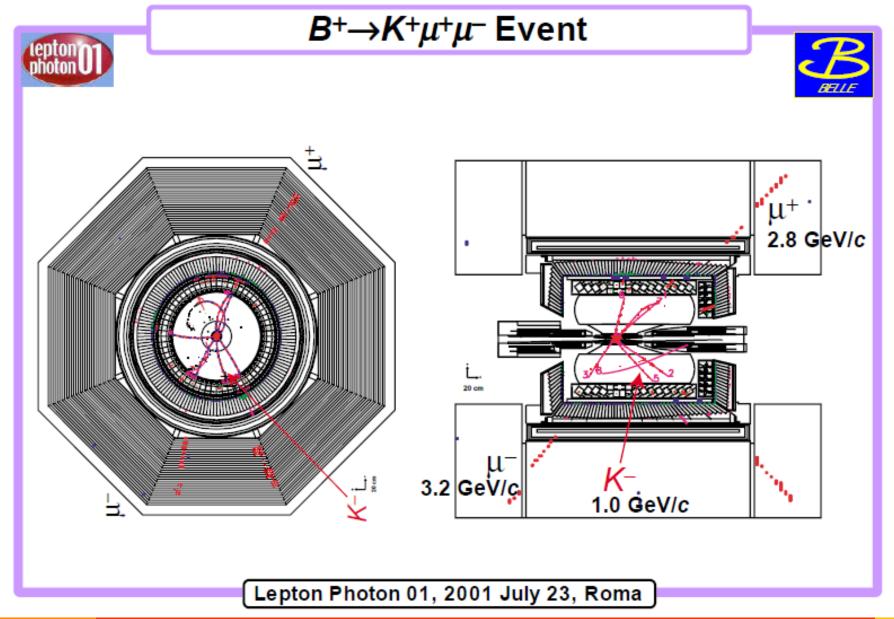
 In the recent years, several discrepancies from the SM have been reported in the Bdecays.

B-decays with $b \rightarrow s\ell\ell$ transitions: FCNCs and are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higher-order processes (penguin loops/box).

- Sensitive to NP: Interference from the 'possible' contribution from the BSM.
- Decays of Interest: $B \rightarrow K^{(*)} \ell \ell$, $B \rightarrow K^{(*)} \nu \nu$, $B_{(s)} \rightarrow \ell \ell$
- Variables: Differential decay rates, LFU ratios (R(K), R(K*)), Angular observables P_i, Q_i...
- Rich laboratory of NP studies on its own.


Box Diagram

Introduction to

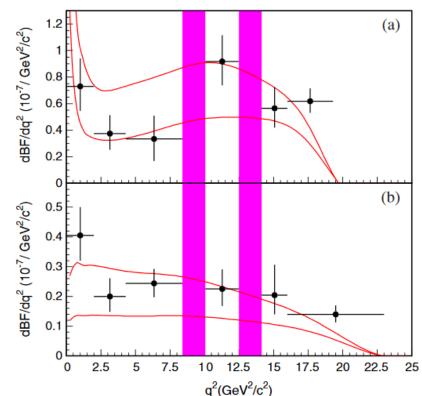

The relevant effective Hamiltonian:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_iO_i + C'_iO'_i) + h.c.$$

• The Operators which are most sensitive to the NP:

First observation of a b \rightarrow s $\ell^+\ell^-$ decay (LP-2001)

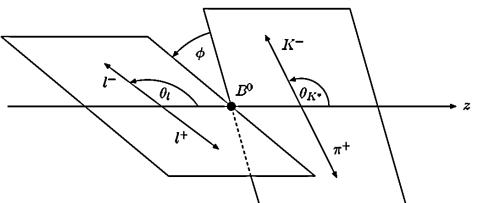
Differential BF for B \rightarrow K^(*) $\ell^+\ell^-$


$$B \to K^{(*)} \ell^+ \ell^-$$
 based on 657 M BB pairs

$$\mu^+\mu^-$$
 and e^+e^-
 $K^+\pi^-$, $K^0_S\pi^+$, $K^+\pi^0$, K^+ and K^0_S

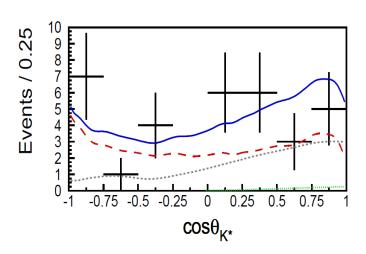
The differential branching fraction, isospin asymmetries (A_l) , K^* longitudinal polarization (F_L) and lepton forward-backward asymmetry (A_{FB}) as a function of $q^2 \cong M_{e,e}{}^2 c^2$.

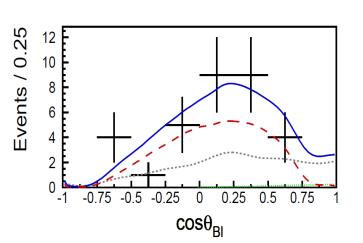
- Differential branching fractions for the (a) $B \to K^* \ell^+ \ell^-$ (b) $B \to K \ell^+ \ell^-$
- The solid curves show the SM theoretical predictions with the minimum and maximum allowed form factors



Forward Backward asymmetry in B \rightarrow K* $\ell^+\ell^-$

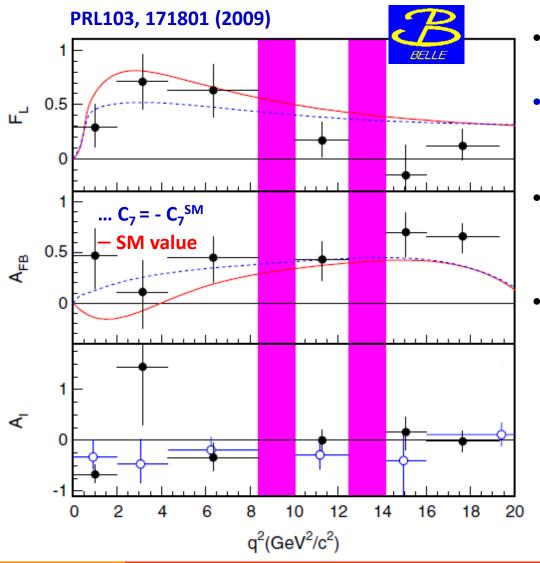
PRL103, 171801 (2009)




• F_L and A_{FB} are obtained from fit to $cos\theta_{K^*}$ and $cos\theta_{B\ell}$

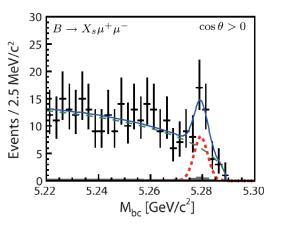
- $\theta_{B\ell}$ = angle between ℓ^- and opposite to the B-direction in the $\ell^+\ell^-$ CM frame.
- θ_{K^*} = angle between K⁻ and opposite to the B-direction in the K* CM frame.

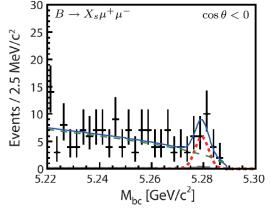
For illustration in q² ∈ (0, 2.0) GeV²/c²



Forward Backward asymmetry in B \rightarrow K* $\ell^+\ell^-$

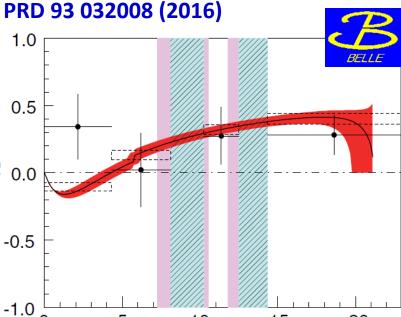
The Fit result for F_L , A_{FB} and isospin asymmetry as a function of q^2 .




- The results as well as the SM curves are shown.
- Curves with case C_7 with reversed sign $(-C_7^{SM})$ are also superimposed
- The measured values do not reject this possibility.
- The same analysis also measured the LFU ratios:

$$R(K^*) = 0.83 \pm 0.17 \pm 0.08$$

 $R(K) = 1.03 \pm 0.19 \pm 0.06$


Measurement of $A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$

- Inclusive measurement is theoretically cleaner than the exclusive, but experimentally more challenging.
- Sum-of-exclusive technique (10 modes with M[X_s] < 2.0 GeV/ c^2) used to measured A_{FB} (corresponds to ~50% of the inclusive rate).

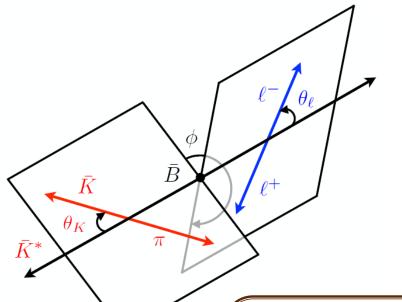
← For illustration in $q^2 \in (1, 6)$ GeV²/c²

10

 $q^2 [GeV^2/c^2]$

15

- The result is consistent with a SM prediction $\stackrel{\mathbb{H}}{\lessdot}$ within error (1.8 σ tension in low-q²).
- Results are statistically dominated → Belle II


5

20

Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right]$$

$$+\frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L$$

$$-F_L\cos^2\theta_K\cos 2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos 2\phi$$

$$+ S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$$

$$+ S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$$

$$+ S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi$$

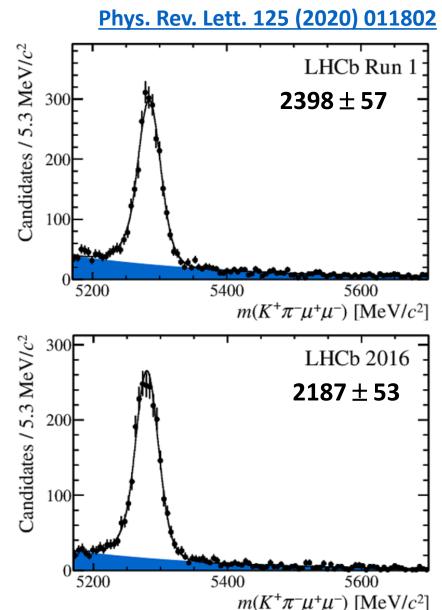
JHEP 01 (2009) 019

$$P_4', S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_L > \pi/2 \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \pi/2, \end{cases}$$

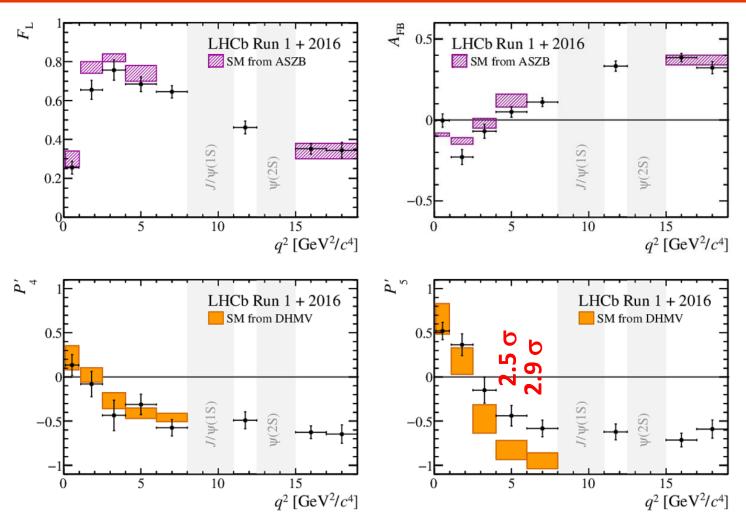
$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

$$The observables are consident be largely free from form-factoric related uncertainties.$$

$$P_5', S_5: egin{cases} \phi o -\phi & ext{for } \phi < 0 \ heta_L o \pi - heta_L & ext{for } heta_L > \pi/2. \end{cases}$$

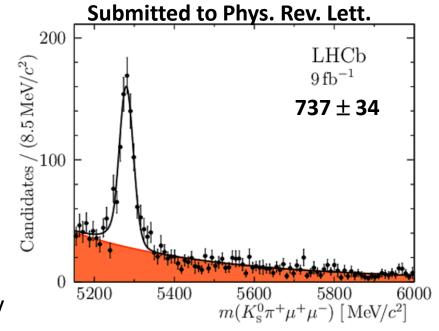

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

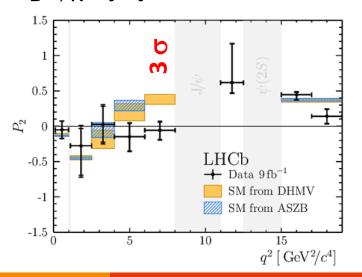
The observables are considered to be largely free from form-factor related uncertainties

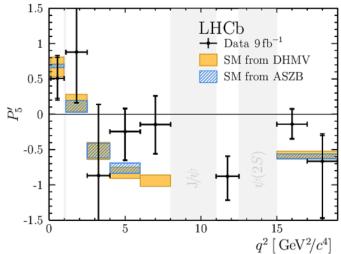

Introduced by LHCb in Phys. Rev. Lett. 111, 191801.

Angular Analysis of B \rightarrow K* $^0\ell^+\ell^-$ at LHCb

- The data set corresponds to an integrated luminosity of 4.7 fb⁻¹.
- K*⁰ candidates with m(K⁺π[−]) ∈ (795.9, 995.9) MeV/c²
- Two opposite charged tracks (muons), combined with a K*0 candidate.
- The distribution of the invariant mass $m(K^+\pi^-\mu^+\mu^-)$ is used as a discriminating variable
- 4D+1D fit : $m(K^+\pi^-\mu^+\mu^-)$, $cos\theta_l$, $cos\theta_K$, $cos\phi$ and additionally $m(K^+\pi^-)$
- For every q² bin, a fit is performed in both the standard and the optimized basis.

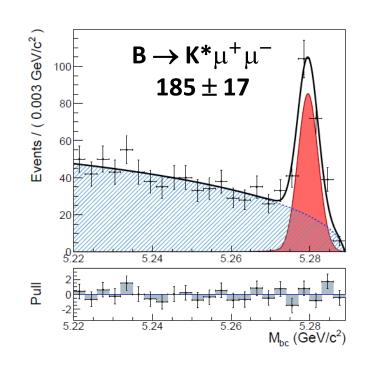

Angular Analysis of $B \rightarrow K^{*0} \ell^+ \ell^-$ at LHCb




- The overall tension with the SM is observed to increase mildly.
- Discrepancy with the SM value of Re(C_9): 3σ with data set in previous analysis [JHEP 02 (2016) 104] which changes to 3.3 σ with Run1+2016

Angular Analysis of $B^+ \rightarrow K^{*+} \ell^+ \ell^-$ at LHCb

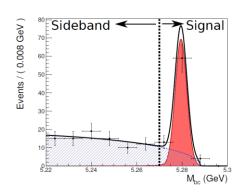
- The data set corresponds to an integrated luminosity of 9 fb⁻¹.
- K^{*+} meson is reconstructed with $K_s^0\pi^+$ within 100 MeV window of nominal K^{*+} nominal mass.
- The results from $B^+ \to K^{*+}\ell^+\ell^-$ confirm the global tension with respect to the SM predictions previously reported in the decay $B \to K^{*0}\ell^+\ell^-$


pattern of deviations from the SM predictions in the observables P₅'

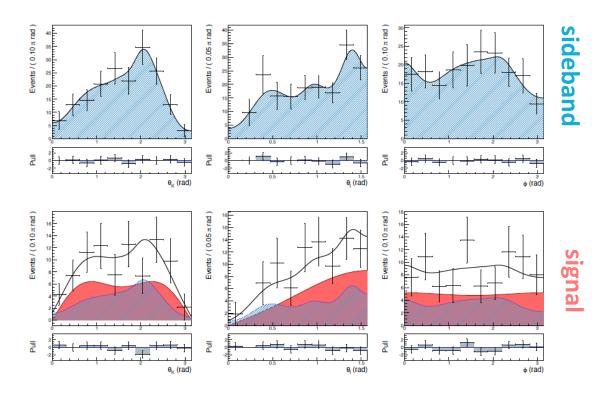
Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

Reconstructed B⁰ and B⁺ : B \rightarrow K*(892) $\ell^+\ell^ \mu^+\mu^-$ and $e^+e^ K^+\pi^-$, $K^0_S\pi^+$, and $K^+\pi^0$

- Signal is extracted in Beam Constrained Mass: $M_{bc} = \sqrt{E_{beam}^2 |\vec{p}_B|^2}$
- Signal pdf: Crystal Ball, Background pdf: Argus shape

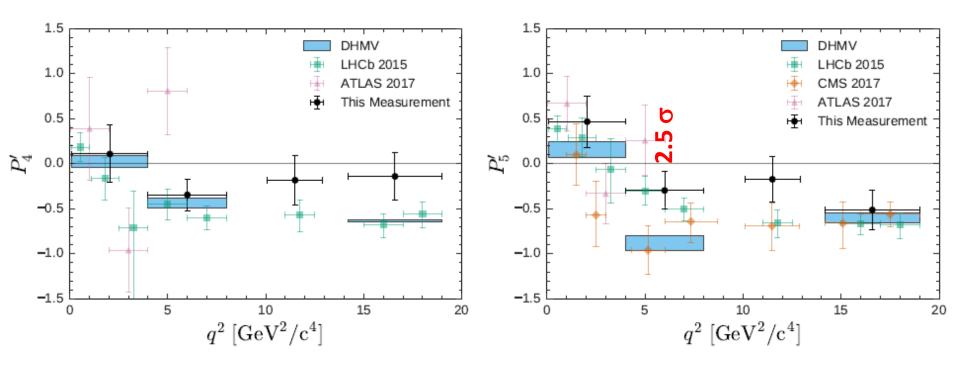


Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

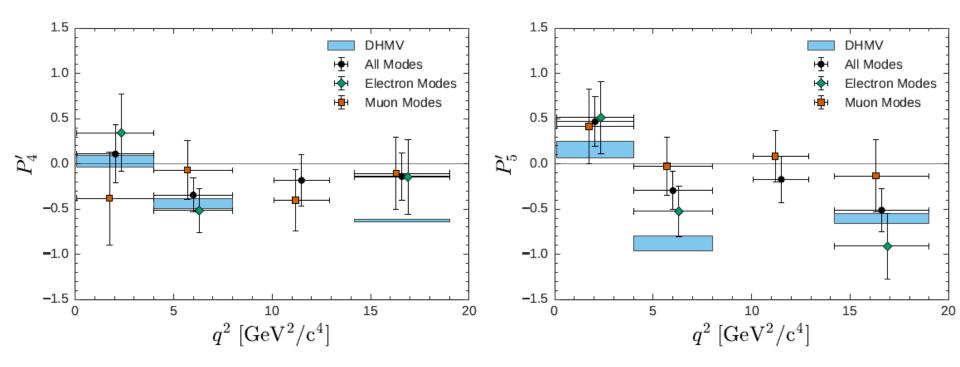

Data is divided in the q² bins.

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

- Signal and background fraction is obtained by fitting M_{bc} distribution
- The data is split into a sideband and signal region



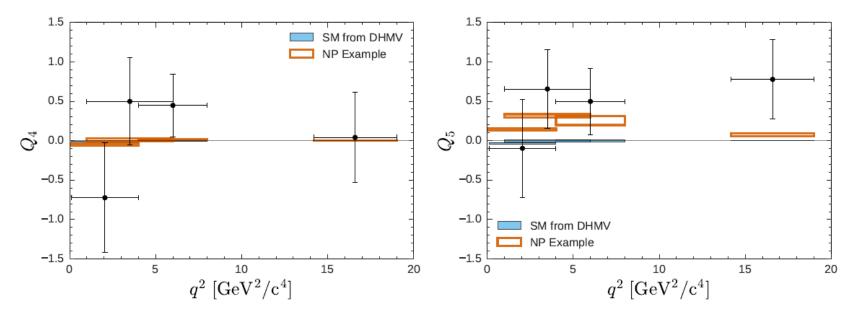
 Shape of the background can be determined in the sideband region


• Final fit in signal region for each transformation

Result P₅': for Combined Data

- Measurements are compatible with the SM.
- Similar central values for the P_5 anomaly with 2.5 σ tension.

Result - Separate Lepton Flavor!



- The Largest deviation in the muon mode with 2.6σ .
- Electron mode is deviating with 1.1σ .
- With 2.8 ab⁻¹ the uncertainty on P'₅ (e & μ) will be comparable to LHCb 3fb⁻¹ (μ only).

Belle [Phys. Rev. Lett. 118, 111801 (2017)]

Result - Separate Lepton Flavor!

- Test lepton flavor universality.
- Observables $Q_i = P'_i^{\mu} P'_i^{e}$. [JHEP 10, 075 (2016)]
- Deviation from zero very sensitive to NP.

- No significant deviation from zero is discerned.
- Q_4 and Q_5 observables in agreement with SM and favoring NP scenario.

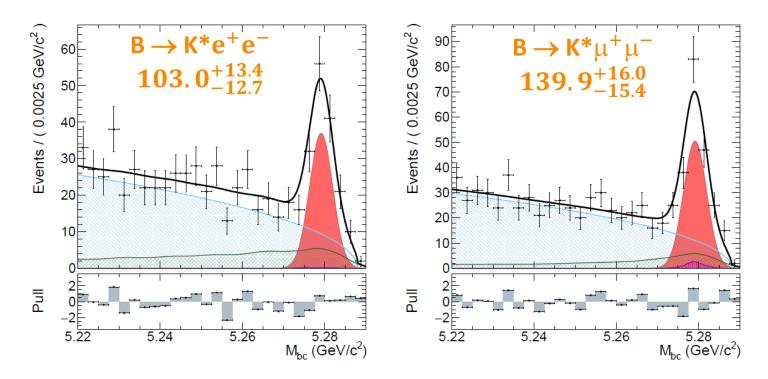
Lepton Flavor Universality ratios: R(K/K*)

- In the SM, the coupling of gauge bosons to leptons is independent of lepton-flavor, a concept known as LFU.
- Experimental tests of LFU are excellent probes for New Physics.
- The Lepton Flavor universality can be tested very precisely with the ratios:

$$R_{H}\!\left[q_{0}^{2},q_{1}^{2}\right] = \frac{\int_{q_{0}^{2}}^{q_{1}^{2}}dq^{2}\frac{d\Gamma(B\to H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}}dq^{2}\frac{d\Gamma(B\to He^{+}e^{-})}{dq^{2}}}; \, \text{H = K, K*, X}_{s}$$

- In these ratios, hadronic uncertainties in theoretical predictions cancel and SM prediction is (very) close to unity. The uncertainity order of 1%
- Experimentally, many sources of systematic uncertainties are substantially reduced.

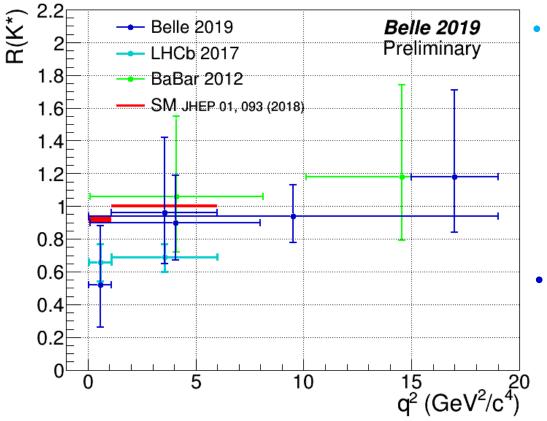
Recent R(K*) measurement at Belle


Belle [arXiv: 1904.02440]

- Reconstructed B⁰ and B⁺: $\mathbf{B} \to \mathbf{K}^*(892)\ell^+\ell^-$
- Bremsstrahlung losses are recovered in electron candidates.
- Hierarchical NN Reconstruction: A dedicated NN classier is trained with MC samples to identify each particle type used in the decay chain.
- To further suppress $(e^+e^- \to q\bar{q})$ background events, variables related to event shape variables, vertex information are used in the NN.
- Large irreducible background events arise from the decay $B \to K^*J/\psi[\psi(2S)]$, which are vetoed by applying criteria on di-lepton invariant mass.
- However, the decays B \rightarrow K*J/ ψ [ψ (2S)] serve as a very good Control Sample.

$$\frac{BF[B\to K^*J/\psi(\to \mu^+\mu^-)]}{BF[B\to K^*J/\psi(\to e^+e^-)]} = 1.015 \pm 0.025 \pm 0.038$$

Recent R(K*) measurement at Belle


- Signal is extracted in Beam Constrained Mass: $M_{bc} = \sqrt{E_{beam}^2 |\vec{p}_B|^2}$
- Signal pdf: Crystal Ball, Combinatorial background pdf: Argus shape.
- For example, the fit presented below are for the q² > 0.045 GeV²/c⁴

Analysis is performed in several q² bins [0.045, 1.1], [1.1, 6.0], [0.1, 8.0], [15, 19], and > 0.045 GeV²/c⁴

22-Mar-2021

- Belle also provided first measurement of $R(K^{*+})$.
- Latest R(K*) measurement from Belle are consistent with the SM as well as with the previous measurements from LHCb (and BaBar).

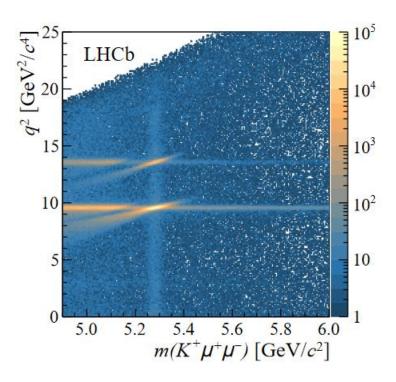
SM example: JHEP 1801 (2018) 093 for $q^2 \in (0.045, 1.1) \text{ GeV}^2/c^4 : 0.92 \pm 0.02$ for $q^2 \in (1.1,6.0) \text{ GeV}^2/c^4 : 1.00 \pm 0.01$

LHCb measurements for R(K*):

$$\begin{array}{c} 0.\,66^{+0.11}_{-0.07}(stat)\pm0.\,03\;(sys.\,)\\ \\ \text{for q}^2\in(0.045,1.1)\;\text{GeV}^2/\text{c}^4\\ \\ 2.1-2.3\;\sigma\;\text{from SM}\\ \\ 0.\,69^{+0.11}_{-0.07}(stat)\pm0.\,05\;(sys.\,)\\ \\ \text{for q}^2\in(1.1,6.0)\;\text{GeV}^2/\text{c}^4\\ \\ 2.4-2.5\;\sigma\;\text{from SM} \end{array}$$

Belle measurements for R(K*):

$$0.52^{+0.36}_{-0.26}(stat) \pm 0.05 (sys.)$$
 for q² \in (0.045,1.1) GeV²/c⁴

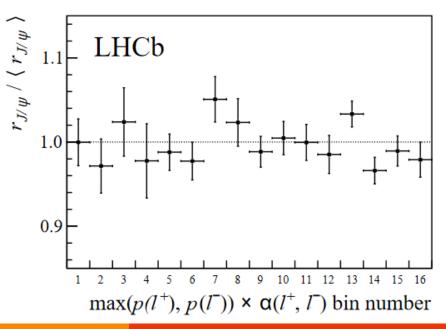

$$0.96^{+0.29}_{-0.27}(stat) \pm 0.11 (sys.)$$
 for $q^2 \in (1.1,6.0) \text{ GeV}^2/c^4$

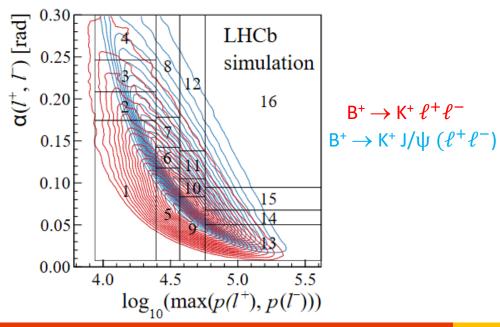
LHCb, JHEP08(2017)055

Belle [arXiv: 1904.02440]

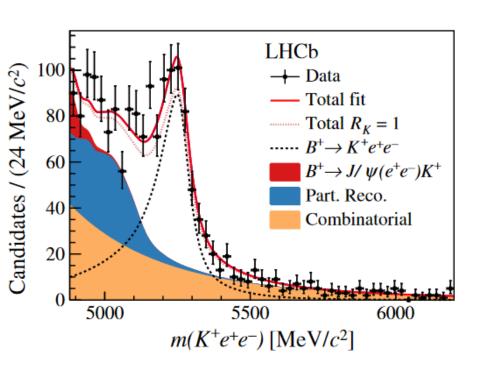
Recent R(K) measurement at LHCb

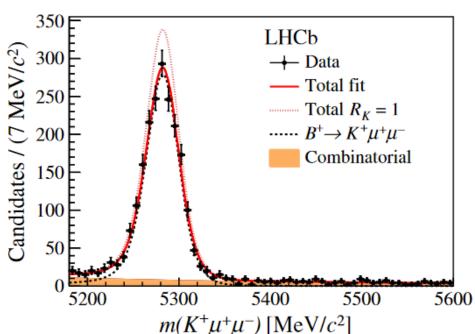
- 5 fb⁻¹ of pp collision at CM energy 7, 8 and 12 TeV.
- Reconstructed B⁺ : $B^+ \rightarrow K^+ \ell^+ \ell^ \downarrow \mu^+ \mu^-$ and $e^+ e^-$
- Significantly different reconstruction of decays with muons in the final state as compared to decays with electrons (brem losses and different trigger selection).



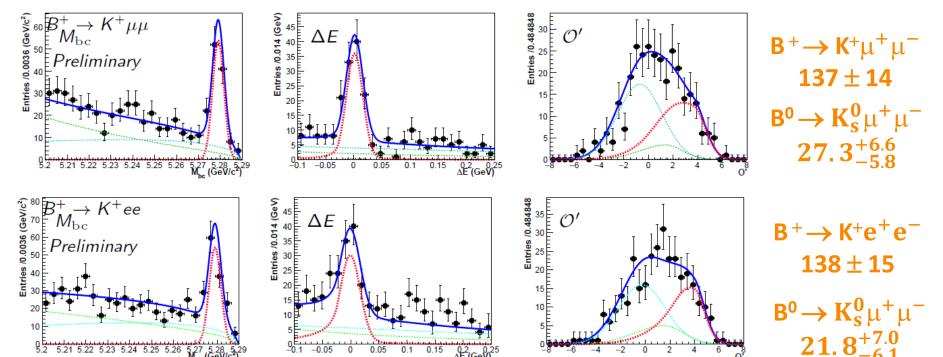

Recent R(K) measurement at LHCb

Measure R_K as a double ratio:


$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to J/\psi (\to \mu^{+}\mu^{-})K^{+})} \bigg/ \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to J/\psi (\to e^{+}e^{-})K^{+})}$$


- Several cross-checks are used to verify the analysis procedure.
 - Single ratio $r(J/\psi)$ [=1.014 \pm 0.035] is found to be consistent with unity (also as a function momentum of leptons and dilepton opening angle.)
 - Double ratio $R_K^{\psi(2S)}$ [=0.986 \pm 0.013] is determined close to 1.

Recent R(K) measurement at LHCb



- A total of 1943 \pm 49 B⁺ \rightarrow K⁺ μ ⁺ μ ⁻ decays are observed.
- The value of $R_K [q^2 \in (1.1, 6.0) \text{ GeV}^2/c^4] = 0.846^{+0.060}_{-0.054} (\text{stat.})^{+0.016}_{-0.014} (\text{sys.})$
- Consistent with the Standard Model at the level of 2.5 σ .

- Reconstructed B⁰ and B⁺: $\mathbf{B} \to \mathbf{K} \ell^+ \ell^-$
- Charged tracks are required to originate near the interaction region (except K_S^0) and further selected based on particle identification.
- Bremsstrahlung losses are recovered in electron candidates.
- A NN is trained with input variables related event shape, vertex quality and decay kinematics to suppress the background from continuum and generic B decays.
- Large irreducible background events arise from the decay $B \to KJ/\psi[\psi(2S)]$, which are vetoed by applying criteria on di-lepton invariant mass.
- Also a veto $[M_{K\pi} \notin (1.85, 1.88) \text{ GeV/c}^2]$ is applied to suppress events arising from the decay $B^- \to D^0[K^-\pi^+] \pi^-$ due to particle mis-identification.
- The decays $B \to KJ/\psi[\psi(2S)]$ served as a good control sample.

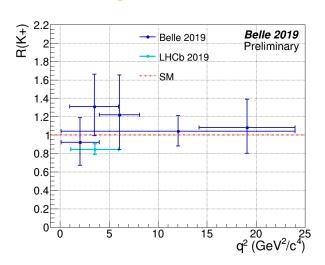
$$\frac{BF[\textit{B}^{+}\to \textit{K}^{+}\textit{J}/\psi(\to \mu^{+}\mu^{-})]}{BF[\textit{B}^{+}\to \textit{K}^{+}\textit{J}/\psi(\to e^{+}e^{-})]} = 0.\,992 \pm 0.\,011 \quad \frac{BF[\textit{B}^{0}\to \textit{K}^{0}_{\textit{S}}\textit{J}/\psi(\to \mu^{+}\mu^{-})]}{BF[\textit{B}^{0}\to \textit{K}^{0}_{\textit{S}}\textit{J}/\psi(\to e^{+}e^{-})]} = 1.\,048 \pm 0.\,020$$

- The NN output (O) is translated to (O') using the formula:
- Requirement $O_{min} > -0.6$ reduces 75% bkg with 4-5% signal loss.
- Extended maximum likelihood fit is performed in 3-dimensions: M_{bc} , ΔE (E_B - E_{beam}), and O'. (parameterized with MC, control samples and off-resonance data).
- For example, the fit presented below are for the $q^2 > 0.1 \text{ GeV}^2/c^4$

The value of $R_K [q^2 \in (1.0, 6.0) \text{ GeV}^2/c^4] = 0.98^{+0.27}_{-0.23} (\text{stat.}) \pm 0.06 (\text{sys.})$

0

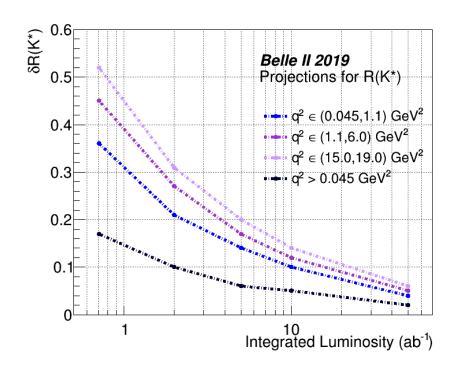
0.05

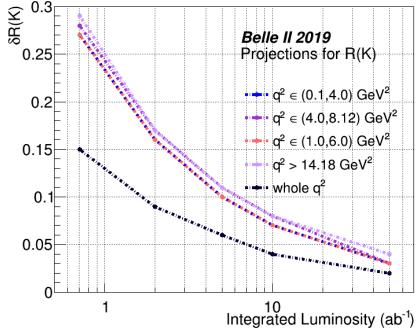

0.1

Current R(K) Status

- Belle measured R(K) in several q^2 bins and also reported first measurement of R(K_s^0).
- In all the bins Belle's R(K) is consistent with SM value.

- Belle measurement R(K) $0.98^{+0.27}_{-0.23} \pm 0.06$ [in q² \in (1.0, 6.0) GeV²/c⁴] is consistent with LHCb measurement of R(K) = $0.846^{+0.060}_{-0.054} ^{+0.016}_{-0.014}$ [in q² \in (1.1, 6.0) GeV²/c⁴].
- LHCb measurement is compatible with SM at 2.5σ .

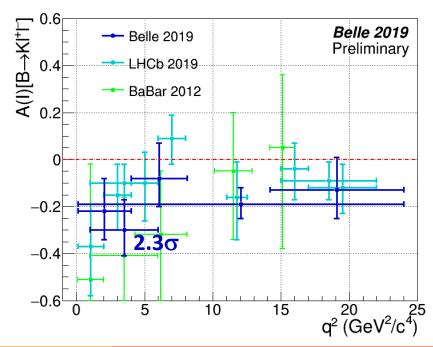

In fact, Belle $R(K^+) = 1.31^{+0.34}_{-0.31} \pm 0.07$ [in $q^2 \in (1.0, 6.0)$ GeV²/c⁴]


30

Belle II Projections for R(K) and R(K*)

- Upcoming Belle II measurements will be helpful in reducing statistical uncertainties.
- Total uncertainties on R(K) and R(K*) measurements can reach down to below 5% with full data-set at Belle II.
- Uncertainties are still statistical dominant (total systematic is below 1% with dominating uncertainty from lepton identification $\sim 0.4\%$)

B2TIP report | arXiv:1808.10567


Another theoretically clean observable is CP averaged isospin asymmetry:

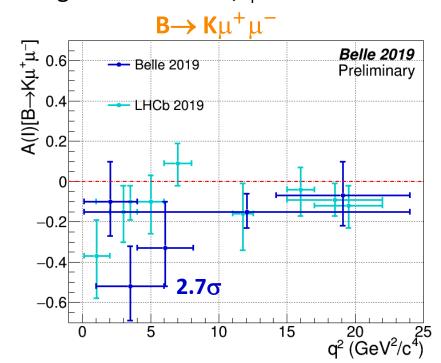
$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) - \mathcal{B}(B^{+} \to K^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) + \mathcal{B}(B^{+} \to K^{+}\ell\ell)}$$

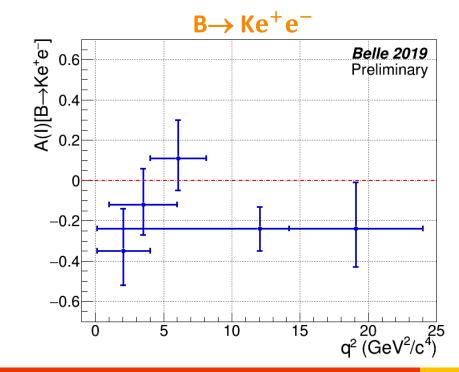
The value of A(I) is expected to be close to zero in the SM.

J. Lyon and R. Zwicky, Phys. Rev. D 88, 094004 (2013)

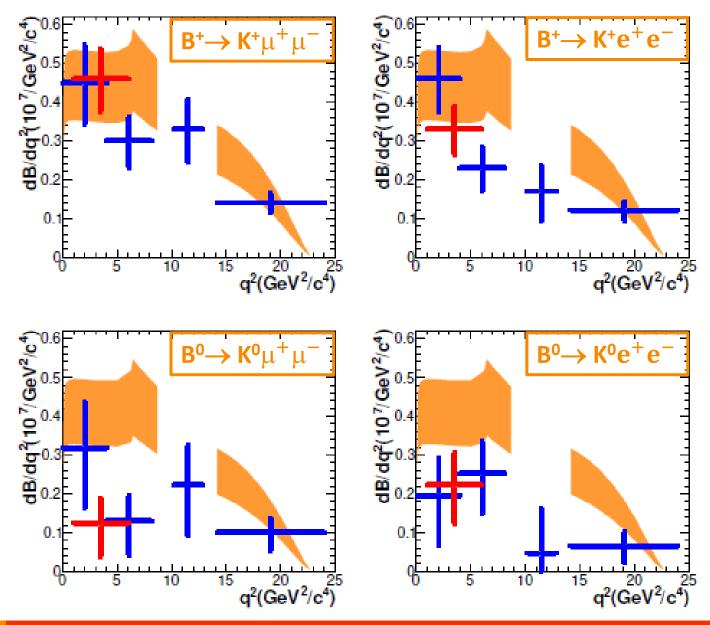
Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the q^2 region below the J/ ψ resonance.

- Belle's A(I) measurement is consistent with the previous measurements.
- In all bins A(I) is below zero.

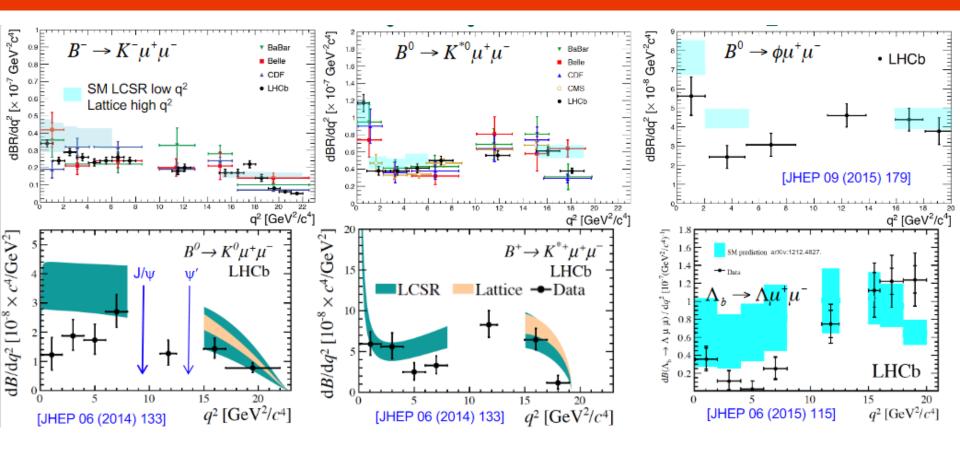

Another theoretically clean observable is CP averaged isospin asymmetry:


$$A_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) - \mathcal{B}(B^{+} \to K^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(B^{0} \to K^{0}\ell\ell) + \mathcal{B}(B^{+} \to K^{+}\ell\ell)}$$

The value of A(I) is expected to be close to zero in the SM.

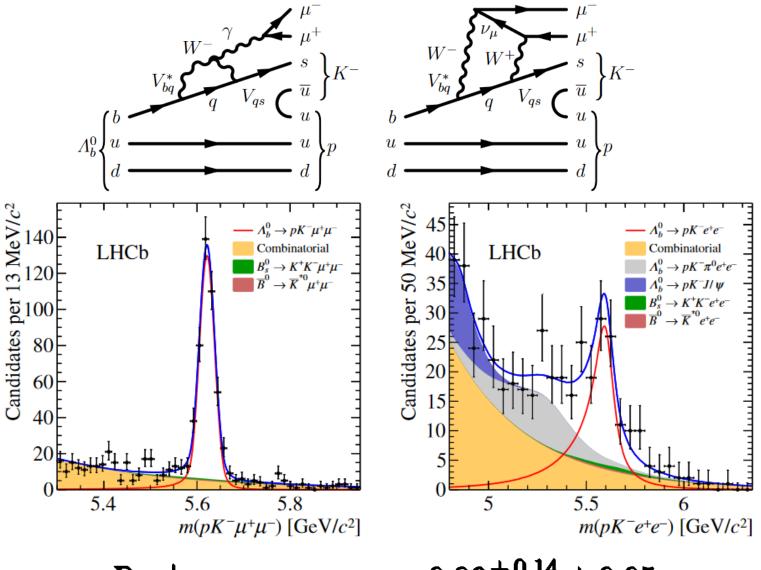

J. Lyon and R. Zwicky, Phys. Rev. D 88, 094004 (2013)

• Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the q^2 region below the J/ ψ resonance.



Differential Branching Fraction measurement at Belle JHEP03(2021)105

Differential Branching Fraction measurement at LHCb



Data generally below model predictions at low q²

22-Mar-2021

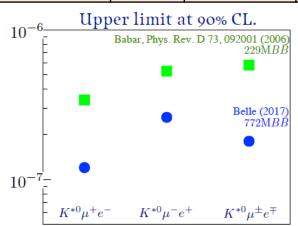
35

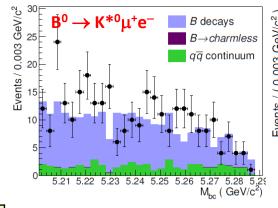
LFU ratio for the decay $\Lambda_h^0 \to p \ K^- \ell \ell$ at LHCb

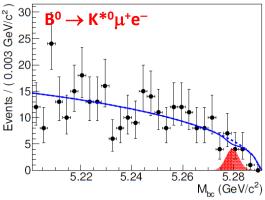
 $R_{pK}|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$

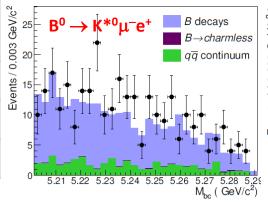
Search for LFV decay $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$

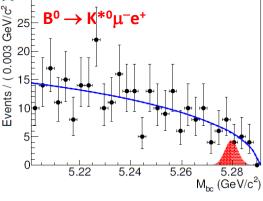
- Measurements have exhibited **possible deviations in R(K) and R(K*)** from LFU.
- **Violation of LFU** is accompanied by **LFV**. S. L. Glashow et.al PRL 114, 091801 (2015)
- LFV decay $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$ is searched at **Belle**.

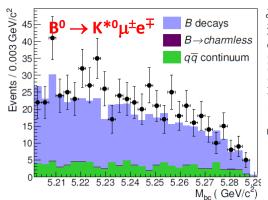

Phys. Rev. D 98, 071101(R) 2018

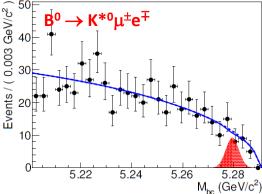

- K^{\pm} , π^{\pm} , μ^{\pm} and e^{\pm} candidates are selected from tracks near IP and satisfying PID requirements. Inv. mass from K- π should be within 100 MeV window around K*⁰ nominal mass.
- **continuum** background events are suppressed using input variables based on event topology in a NN. Another NN is used to suppress background originating from B-decays. $B^0 \rightarrow K^{*0}J/\psi$ was a good control sample and it is also used to calibrate the NNs.
- set of vetoes applied to suppress events from $B^0 \to K^{*0} [K^+\pi^-]J/\psi[\ell^+\ell^-]$ decays in which one of the **leptons is misidentified and swapped with the K**⁺ or π^- .

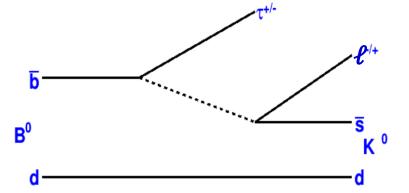

Search for LFV decay $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$


- good agreement between data and MC for both the number of events observed and the shapes of the distributions.
- No signal is observed → UL is derived.


Mode	ε (%)	N _{sig}	B ^{UL} (10 ⁻⁷)
$B^0 \rightarrow K^{*0} \mu^+ e^-$	8.8	$-1.5^{+4.7}_{-4.1}$	1.2
$B^0 \rightarrow K^{*0} \mu^- e^+$	9.3	$0.40^{+4.8}_{-4.5}$	1.6
$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$	9.0	$-1.2^{+6.8}_{-6.2}$	1.8

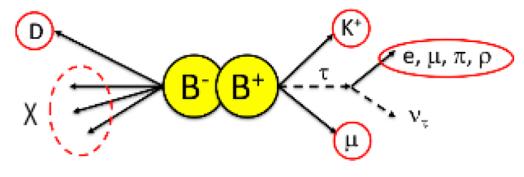






Searches for LFV B decay with τ in the final state

From the Lepto-quark model perspective LFV modes with τ in the final state is of particular interest as preserves the (lepton-quark) generation.

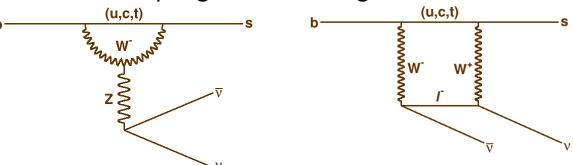

Results from BaBar Collaboration
 [Phys.Rev.D 86 (2012) 012004] are labeled are la

	$\mathcal{B}(B \to h\tau\ell)(\times 10^{-5})$		
Mode	Central value	90% C.L. UL	
$\overline{B^+ \to K^+ \tau \mu}$	$0.0^{+2.7}_{-1.4}$	<4.8	
$B^+ \to K^+ \tau e$	$-0.6^{+1.7}_{-1.4}$	< 3.0	
$B^+ o \pi^+ au \mu$	$0.5^{+3.8}_{-3.2}$	<7.2	
$B^+ \to \pi^+ \tau e$	$2.3^{+2.8}_{-1.7}$	<7.5	

- Recently LHCb [**JHEP 06 (2020) 129**] also searched for the decay $B^+ \rightarrow K^+ \tau^+ \mu^-$ with 9 fb⁻¹ data.
- The four-momentum of the τ lepton is determined by using B⁺ mesons from $B_{s2}^{*0} \to B^+K^-$ decays.
- No significant excess is observed, and an UL is set on the BF @ 90% CL : $BF[B^+ \rightarrow K^+ \tau^+ \mu^-] < 3.9 \times 10^{-5}$

Searches for LFV B decay with τ in the final state @ Belle (II)

- Studies are ongoing in Belle (II) with hadronic tag (UL@95% CL estimated to be around 1×10^{-5}).
- Can we do better? Combining hadronic tag with an more inclusive tag?...
- Exploit the high BF of $B^+ \rightarrow \overline{D^0}X$
- Reconstruct D⁰ + inclusive X



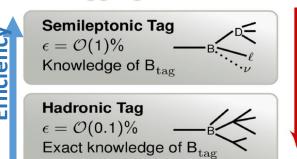
	B⁺→	$\mathbf{B}^{0} \rightarrow$
$D^0 X$	$(8.6\pm0.7)\%$	$(8.1\pm1.5)\%$
$\overline{\mathbf{D}}^{0} \mathbf{X}$	$(79 \pm 4)\%$	$(47.4 \pm 2.8)\%$
$\mathbf{D}^{+}\mathbf{X}$	$(2.5\pm0.5)\%$	(< 3.9%)
$\mathbf{D}^{-}\mathbf{X}$	$(9.9 \pm 1.2)\%$	$(36.9\pm3.3)\%$
$\mathbf{D}_{\mathbf{s}}^{+} \mathbf{X}$	$(7.9 \pm 1.4)\%$	$(10\pm 2)\%$
$\mathbf{D}_{\mathbf{s}}^{-}\mathbf{X}$	$(1.10\pm0.40)\%$	(< 2.6%)
$\Lambda_{\mathbf{c}}^{+}\mathbf{X}$	$(2 \pm 1) \%$	(< 3.1%)
$\Lambda_{\mathbf{c}}^{-}\mathbf{X}$	$(3 \pm 1)\%$	$(5.0\pm2.0)\%$

- Application in $B \rightarrow K \tau l$, where the topology with K+l allows looser reconstruction in B_{tag} side
 - 1) D is reconstructed
 - 2) Primary K and l, and τ decay prong are chosen
 - 3) ''D + X'' provides the tag side B

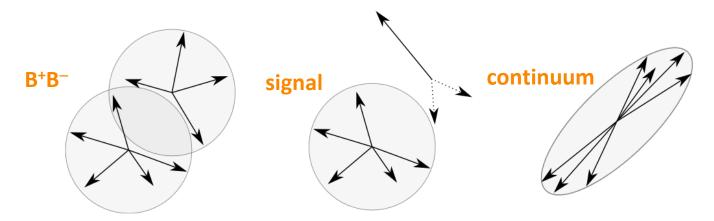
Snowmass meeting slides: https://indico.fnal.gov/event/44442/

- Recent search for $B \to K^+ vv$ at Belle II, with early e^+e^- collision data of just 63 fb⁻¹.
- Proceeds via penguin or box diagrams:

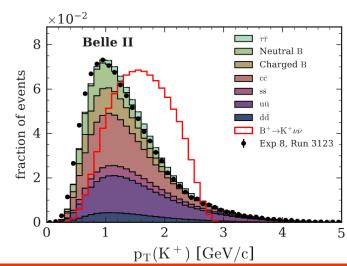
Belongs to the theoretically cleanest modes in the field of FCNC processes.

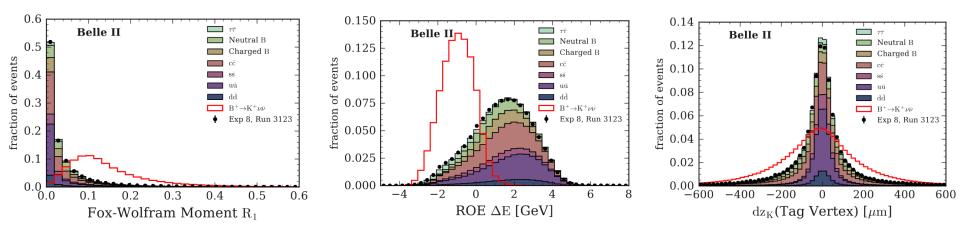

As the transition mediates by a Z-boson alone

- SM prediction for the BF[B \rightarrow K⁺ $\nu\nu$]_{SM} is $(4.6 \pm 0.5) \times 10^{-6}$ [The Belle II Physics Book, Prog. Theor. Exp. Phys. 2019, 123C01].
- Important test for NP models proposed to explain anomalies in b→sll.
- Experimentally challenging, tagging of companion B meson needed.
- Belle Hadronic tagging [PRD87 111103 (2013)] :


$$< 5.5 \times 10^{-5} (2.2 \times 10^{-5})$$

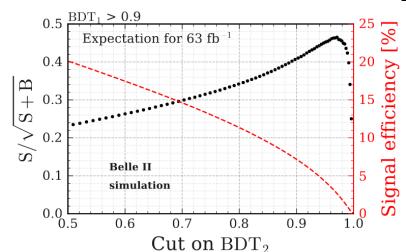
- Belle Semileptonic tagging [PRD96 091101 (R) (2017)] : $< 1.9 \times 10^{-5} (0.8 \times 10^{-5})$
- BaBar Hadronic tagging [PRD 87, 112005 (2013)] : $< 3.7 \times 10^{-5}$
- BaBar Semileptonic tagging [PRD 82, 112002 (2010)] : $< 1.3 \times 10^{-5}$


Tagging Methods:

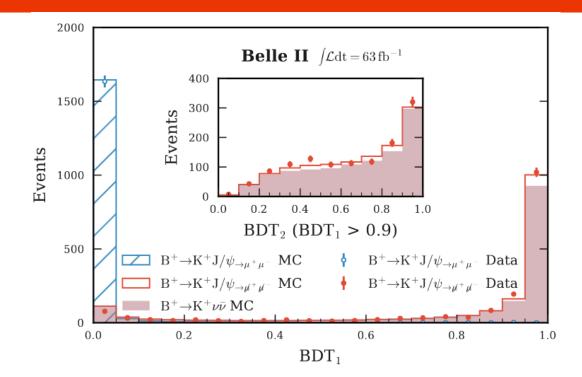

In this search, an inclusive tagging approach is used, which benefits from larger signal efficiency (\sim 4%) at the cost of higher background levels.

- The analysis method exploits the distinctive topological features of the decay to suppress backgrounds: generic B and continuum
- Signal K⁺ track as highest p_T track in an event.
- The remaining track and cluster assigned to the other "B" and called "ROE" and a common vertex is fitted.

 Minimizing the background contamination with constraints on event topology, missing energy and vertex separation



• BDT₁ is trained on 51 most discriminating variable w/o loss of performance and then BDT₂ is trained with the same set of variables but only on events with BDT₁ >

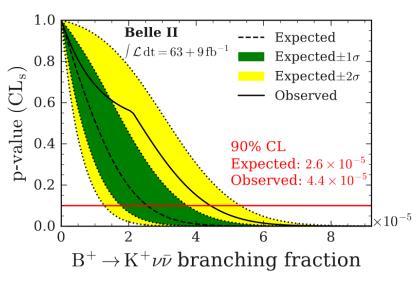

0.9

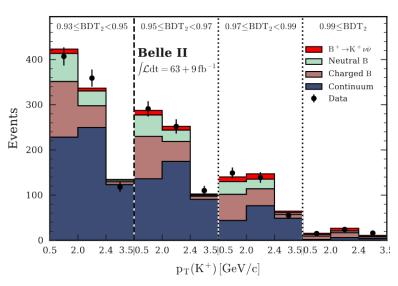
The efficiency for the SM signal is 4.3% for the criteria on BDT₂ > 0.95.

• The efficiency is highest towards low q^2 ($q^2 \sim 0$, 10%) and drops to zero for $q^2 > 15 \text{GeV}^2/\text{c}^2$.

- The decay $B^+ \to K^+ J/\psi$ $[\to \mu^+ \mu^-]$ is used to validate the analysis strategy.
- Events reconstructed ignoring the muons from J/ψ to mimic missing momenta and K+ kinematics updated.

- The statistical analysis to determine the signal strength is performed with the pyhf package, which implements the Histfactory statistical model.
- The BF [B \rightarrow K⁺ $\nu\nu$] is computed using a ML fit to binned [in p_T(K⁺) and BDT₂] distribution of event counts.


• Measured signal strength μ:

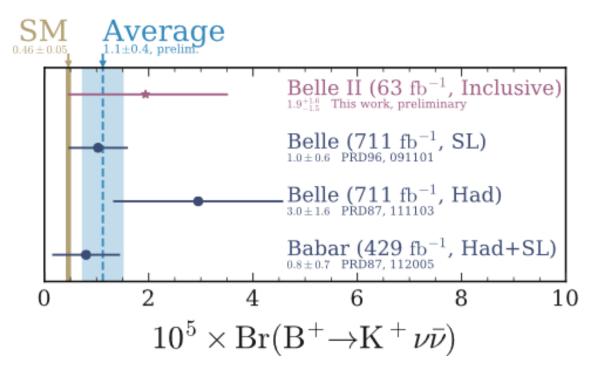

$$\mu = 4.2^{+2.9}_{-2.8}(\text{stat.})^{+1.8}_{-1.6}(\text{syst.}) = 4.2^{+3.4}_{-3.2}$$

Consistent with the bkg-only hypothesis (μ = 0) at CL 1.3 σ

Consistent with the SM hypothesis (μ = 1) at CL 1 σ

BF[B
$$\rightarrow$$
 K⁺ $\nu\nu$] = 1.9^{+1.3}_{-1.3}(stat.)^{+0.8}_{-0.7}(syst.) \times 10⁻⁵ = 1.9^{+1.6}_{-1.5} \times 10⁻⁵

• As no significant signal is observed, the observed UL 4.4×10^{-5} (and expected 2.6 \times 10⁻⁵) is computed using CL_s method at 90% confidence level

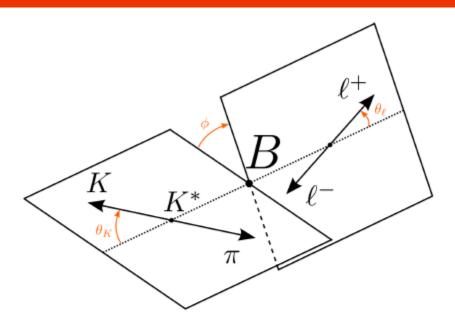

Measured signal strength μ:

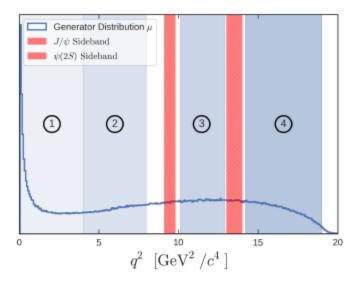
$$\mu = 4.2^{+2.9}_{-2.8}(\text{stat.})^{+1.8}_{-1.6}(\text{syst.}) = 4.2^{+3.4}_{-3.2}$$

Consistent with the bkg-only hypothesis (μ = 0) at CL 1.3 σ

Consistent with the SM hypothesis ($\mu = 1$) at CL 1 σ

BF[B
$$\rightarrow$$
 K⁺ $\nu\nu$] = 1.9^{+1.3}_{-1.3}(stat.)^{+0.8}_{-0.7}(syst.) \times 10⁻⁵ = 1.9^{+1.6}_{-1.5} \times 10⁻⁵


Summary


- The decays B \rightarrow K^(*) $\ell^+\ell^-$ were first observed by Belle (2001).
- Anomalies at level of 3.3σ in angular analyses and suggests in the modes with muons.
- Lepton Flavor dependent angular analysis of B \rightarrow K* $\ell^+\ell^-$ performed at Belle: Consistent with both SM and NP with $C_{9u}^{NP} \approx -1.1$.
- LFU ratios also confirm this hint of deviations with SM prediction in R(K) and $R(K^*)$
- This also calls for searches for the LFV decay $B^0 \to K^{(*)} \ell \ell'$ (specially decays with τ -lepton in the final states)
- Search for $B^+ \rightarrow K^+ \nu \nu$ is performed based on inclusive tagging and the sensitivity with just 63 fb⁻¹ data is already close to previous searches with significantly large data-set
- Belle II has brighter prospects for EWP rare decays with its upcoming large data.

48

Full Angular Analysis

The observables are depended on $q^2 = M_{\ell^+\ell^-}^2$

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \; \mathrm{d}\cos\theta_K \; \mathrm{d}\phi \; \mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right. \\ & + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_L \\ & - F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_L \cos\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi \\ & + S_6 \sin^2\theta_K \cos\theta_L + S_7 \sin 2\theta_K \sin\theta_L \sin\phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \, \right], \end{split}$$

P₅' asymmetries

1606.00999

Inset 3: The $A_{\rm FB}$, $F_{\rm L}$ and P_5' asymmetries

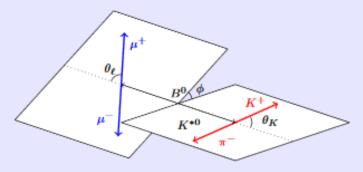
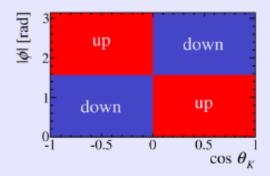



Figure 11: The angles θ_{ℓ} , θ_{K} and ϕ in the decay $B \to K^* \mu^+ \mu^-$. Figure by Thomas Blake.

Figure 12: Definition of the P_5' asymmetry.

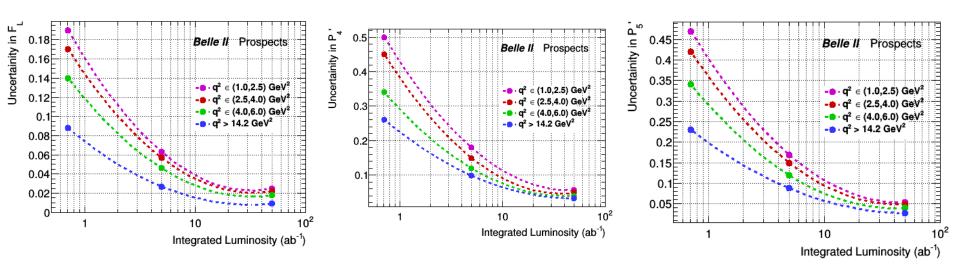
In the decay $B^0 \to K^{*0} \mu^+ \mu^-$, followed by $K^{*0} \to K^{*0}$ $K^+\pi^-$, the direction of the four outgoing particles can be described by three angles, shown in Fig. 11. The forward-backward asymmetry $A_{\rm FB}$ is defined as the relative difference between the number of positive and negative leptons going along the direction of the B^0 meson in the rest frame of the two-lepton system. This corresponds to an asymmetry in the distribution of the θ_{ℓ} angle. Similarly, the K^{*0} polarisation fraction F_{L} depends on the angle θ_K , defined analogously to θ_ℓ . Other asymmetries can be constructed from the other angles or combinations of them. The P_5' asymmetry suggested by Ref. [101] is based on the angles θ_K and ϕ . It is defined as the relative difference between the number of decays in the regions in red and blue in Fig. 12, divided by $\sqrt{F_L(1-F_L)}$. Quantities based on several angles are more difficult to measure than single-angle ones as they require a better understanding of the reconstruction efficiencies depending on the kinematics of the outgoing particles.

Folding Procedure

$$P_4', S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_L > \pi/2 \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \pi/2, \end{cases}$$

$$P_5', S_5: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \pi/2, \end{cases}$$

- With a transformation of the angles, the dimension is reduced to three free parameters
- Each transformation remains three observables S_i, F_L and S₃
- The observables


$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}},$$

are considered to be largely free from form-factor uncertainties (J. High Energy Phys. 05 (2013) 137).

Transverse polarization asymmetry

$$A_T^{(2)} = \frac{2S_3}{(1 - F_L)}$$

Belle II prospects for angular analysis

