Meet the Anomalies: Experimental Perspective on $b ightarrow c au u_{ au}$

Thomas Lück

March 24, 2021

Bundesministerium für Bildung und Forschung

▲□▶ ▲@▶ ▲ 差▶ ▲ 差▶ 差| = のQ@ 1/30

- Introduction
- B-meson tagging
- Measurements at the B-Factories
- Measurements at LHCb
- The Future
- Summary

- semitauonic B decays are sensitive to new physics (NP) contributions
 - branching ratios
 - kinematic distributions
 - $\bullet\,$ polarization of the $\tau\,$

Possible candidates for NP contributions:

▲□▶

•
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

- many systematic uncertainties cancel in ratio
- independent of $|V_{cb}|$
- theory very precise due to cancellation of hadronic matrix elements

◆□ > ◆□ > ◆臣 > ◆臣 > 臣目目 のへで

B-Factories (past): Belle

- KEKB in Tsukuba (Japan)
- 8GeV electrons on 3.5GeV positrons
- collected 772 million $B\overline{B}$ pairs

Thomas Lück

目目 のへの

B-Factories (past): BABAR

- PEPII at SLAC in Menlo Park (USA)
- 9GeV electrons on 3.1GeV positrons
- 471 million $B\bar{B}$ pairs collected

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

B meson tagging

- at e⁺e⁻ machines initial state is known
- tagging: (fully) reconstructing the accompanying B_{tag} meson
- using momentum conservation one can infer the missing 4-momentum:
 - $p_{miss} = p_{e^+e^-} p_{Bsig} p_{Btag}$
- semi-leptonic (non-tau) decays identified by peak at $m_{miss}^2 = p_{miss}^2 = 0$
- semi-tauonic decays will peak at higher m²_{miss} due to 2 (3) missing neutrinos on signal side

Different types of tagging

- Inclusive tagging:
 - not reconstruct specific decays
 - reconstruct signal side
 - combine all remaining particles in event into tag B candidate
 - low resolution, but high efficiency
- semi-leptonic tagging:
 - reconstruct $B \to D^{(*)} \ell \nu$
 - high branching ratio (BR)
 - missing neutrino \Rightarrow not full kinematic information
- hadronic tagging:
 - reconstruct B_{tag} in hadronic mode
 - full kinematic of B_{tag}
 - low BR and efficiency

< □ > < 同 > < 臣 > < 臣 > 王目 の < 0

8/30

F. Bernlochner

- Belle II (FEI) / Belle (FR)
 - reconstruct full decay chain step by step
 - $\mathcal{O}(5000)$ decay channels
 - apply at each step multivariate analysis
 - FR similar to FEI but with NN instead of BDT and different cuts
 - FEI: around 200 BDT to reconstruct full decay chain
- BABAR semi-exclusive reconstruction (SER):
 - reconstruct seed meson: J/Ψ , D, D^* , D_s
 - start adding up to 5 light hadron candidates (K, π[±], π⁰, K_S) to form a B candidate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ● ●

9/30

arXiv:1807.08680

$R(D^{(*)})$ with Hadronic tag and leptonic tau decay from B-Factories

- Belle (arXiv:1507.03233 (2015)) and BABAR (arXiv:1205.5442 (2012)) performed very similar analysis of hadronically tagged B-events and leptonic tau decays: $\tau \rightarrow \ell \nu_{\tau} \nu_{\ell}$ with full datasets
- signal $B
 ightarrow D^{(*)} au
 u$ and normalization mode $B
 ightarrow D^{(*)} \ell
 u$
- reconstruct four signal channels $D^{*+}\ell^-$, $D^{*0}\ell^-$, $D^+\ell^-$, $D^+\ell^-$
- signal and normalization mode have same reconstructed final state
- tag side B meson fully reconstructed in hadronic mode
- the momentum transfer is used to select signal events $q^2 = (p_{Bsig} - p_{D^{(*)}})^2 > 4 GeV^2 \ (m_{\tau}^2 = 3.16 GeV^2)$
- further Bkg suppression done by training multivariate methods and cut on *m*_{BC}:
 - Belle: use neural net output O_{NB} for signal fit
 - BABAR: cut on multiple BDTs
 - for both important variable: *E_{ECL}* (next slide)

• beam constrained mass of tag B:

- $m_{BC} = \sqrt{\frac{s}{4} |\vec{p}_{reco}|^2}$ (for BABAR it is called m_{ES})
- for correctly reconstructed tag B peaks at B meson mass
- extra energy in the calorimeter E_{ECL} :
 - sum over all calorimeter entries not used for reconstruction
 - for signal AND normalization mode peaks at 0

Signal enhanced region BABAR analysis $(m_{miss}^2 > 1 GeV^2)$

- BABAR extracts signal yields by a 2D fit to the m_{miss}^2 and the lepton energy in the B-rest frame E_l^*
- top: $D\ell$; bottom $D^*\ell$ (neutral + charged)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

- Belle estimates signal from simultaneous fit:
 - normalization mode region: m_{miss}^2 for $m_{miss}^2 < 0.85 GeV^2$
 - signal mode region: NN output o'_{NB} for $m^2_{miss} > 0.85 GeV^2$

Thomas Lück

12

Results: $R(D^{(*)})$ with hadronic tag, leptonic tau decay from B-Factories

Event yields

Sample	Contribution	BABAR	Belle	ϵ ratio
DI	$B\to D\tau\nu$	489	320	0.40
	$B\to D\ell\nu$	2981	3147	0.64
$D\iota$	$B \rightarrow D^{**} l \nu$	506	239	0.29
	Other bkg.	1033	2005	1.18
	$B \to D^* \tau \nu$	888	503	0.35
D*/	$B \to D^* \ell \nu$	11953	12045	0.61
Dι	$B \rightarrow D^{**} l \nu$	261	153	0.36
	Other bkg.	404	2477	3.74

Result

Result	BABAR	Belle
$\mathcal{R}(D)$	$0.440 \pm 0.058 \pm 0.042$	$0.375 \pm 0.064 \pm 0.026$
$\mathcal{R}(D^*)$	$0.332 \pm 0.024 \pm 0.018$	$0.293 \pm 0.038 \pm 0.015$

Uncertainties

ontribution $T \to D^{**} l \nu$ IC stats $T \to D l \nu$ ther bkg. article ID	BABAR Sys. Stat. 5.8 5.7 2.5 3.9 0.9 0.9	Belle Sys. Stat. 4.4 4.4 3.3 0.7 0.5 7.1	Ratio 0.76 0.78 1.30 0.18 0.54
$T \to D^{**} l \nu$ IC stats $T \to D l \nu$ ther bkg. article ID	Sys. Stat. 5.8 5.7 2.5 3.9 0.9	4.4 4.4 3.3 0.7 0.5 7.1	0.76 0.78 1.30 0.18 0.54
$T \to D^{**} l \nu$ IC stats $T \to D l \nu$ ther bkg. article ID	5.8 5.7 2.5 3.9 0.9	4.4 4.4 3.3 0.7 0.5 7.1	$0.76 \\ 0.78 \\ 1.30 \\ 0.18 \\ 0.54$
IC stats $T \rightarrow Dl\nu$ ther bkg. article ID	5.7 2.5 3.9 0.9	4.4 3.3 0.7 0.5 7.1	$\begin{array}{c} 0.78 \\ 1.30 \\ 0.18 \\ 0.54 \end{array}$
$t \rightarrow Dl\nu$ ther bkg. article ID	2.5 3.9 0.9	3.3 0.7 0.5 7.1	$1.30 \\ 0.18 \\ 0.54$
ther bkg. article ID	3.9 0.9	0.7 0.5 7.1	$\begin{array}{c} 0.18 \\ 0.54 \end{array}$
article ID	0.9	0.5 7.1	0.54
- 4 - 1 4 4 ^t -	06	7.1	
otai systematic	9.0		0.74
otal statistical	13.1	17.1	1.31
otal	16.2	18.5	1.14
$\rightarrow D^{**}l\nu$	3.7	3.4	0.90
IC stats	2.8	3.6	1.31
$\rightarrow D^* l \nu$	1.0	1.3	1.31
ther bkg.	2.3	0.7	0.29
article ID	0.9	0.5	0.54
	5.6	5.2	0.93
otal systematic		19.0	1.83
otal systematic otal statistical	7.1	13.0	1.00
u	tal systematic	tal systematic 5.6	tal systematic 5.6 5.2 tal statistical 7.1 13.0

(ロ) (母) (言) (言) (言) () () (14/30)

Measurement of the τ -polarization: Belle arXiv:1709.00129

- $R(D^*)$ with hadronically tagged $B \to D^* \tau \nu$ with $\tau^{\pm} \to \pi^{\pm} \nu_{\tau}$ and $\tau^{\pm} \to \rho^{\pm} \nu_{\tau}$
- reconstructed the τ polarization by exploiting that ONLY 1 neutrino in tau decay:
 - tau direction not directly accessible
 - in $\tau\nu$ rest frame \Rightarrow angle between τ and h, $\cos\theta_{\tau h}$, known ($h = e, \pi, \rho$)
 - related to τ helicity angle by: $\cos \theta_h = \frac{1}{\vec{p_t}} (\gamma | \vec{p_h} | \cos \theta_{\tau h} - \beta \gamma E_h)$
- fit to E_{ECL} in two bins of $\cos \theta_{\tau h}$

$R(D^{(*)})$ with Semileptonic tag and leptonic τ decay: Belle arXiv:1910.05864 (2019)

- the tag B-meson is reconstructed semi-leptonically: $B \rightarrow D^{(*)} \ell \nu$
- four signal channels $D^{(*)}\ell$ are reconstructed
- not full kinematic information for the tag side
- use the angle between the B-meson and the D^(*)ℓ system to estimate quality of B-tag:
 - assuming neutrino $m_
 u pprox 0$ one can derive:
 - $\cos \theta_{D^{(*)}\ell} = \frac{2E_{beam}E_{D^{(*)}\ell} m_B^2 m_{D^{(*)}\ell}^2}{2|\vec{p}_B||\vec{p}_{D^{(*)}\ell}|}$
 - for decays where only neutrino is missing [-1, 1] (with tails due to resolution and Bremstrahlung)

$R(D^{(*)})$ with Semileptonic tag and leptonic τ decay: Belle arXiv:1910.05864 (2019)

- a BDT is trained to distinguish signal and normalization mode using m_{miss}^2 , $\cos \theta_{D^{(*)}\ell}$ for the signal side, and total visible energy $E_{vis} = \sum_i E_i$
- the signal is estimated by a 2D extended ML fit to E_{ECL} and the BDT output

$R(D^{(*)})$ with Semileptonic tag with leptonic τ decay: Belle arXiv:1910.05864 (2019)

Results

- $R(D) = 0.307 \pm 0.037(stat) \pm 0.016(syst)$
- $R(D^*) = 0.283 \pm 0.018(stat) \pm 0.014(syst)$
- the most precise estimation yet
- in good agreement with the SM values

	Total	8	.1	
	Total statistical		6.4	
	Total systematic	4.9		
$\mathcal{R}(D^*)$	$\epsilon_{ m sig}/\epsilon_{ m norm}$	4.1		
	Other bkg.	1.4		
	PDF modeling	2.3		
	$B \rightarrow D^{**} \ell \bar{\nu}_{\ell}$	1.4		
	Total	13	3.1	
$\mathcal{R}(D)$	Total statistical		12.1	
	Total systematic	5.2		
	$\epsilon_{ m sig}/\epsilon_{ m norm}$	1.9		
	Other bkg.	2.0		
	PDF modeling	4.4		
	$B \rightarrow D^{**} \ell \bar{\nu}_{\ell}$	0.8		
nesun	Contribution	Sys.	Stat.	
Desult	Contribution	Uncertainty [%]		

18/30

$R(\pi)$ by Belle (arXiv:1509.06521)

- measurement of $R(\pi^-) = \frac{\mathcal{B}(B^0 \to \pi^- \tau^+ \nu)}{\mathcal{B}(B^0 \to \pi^- \ell^+ \nu)}$
- challenging due to CKM suppression (pprox40 times smaller than b
 ightarrow c au
 u)
- hadronically reconstruct the tag B
- combination three different channels: $\tau \rightarrow \rho \nu$; $\tau \rightarrow e \nu \nu$; $\tau \rightarrow \pi \nu$
- use extra energy in calorimeter, E_{ECL}, to fit signal yield
- Result:

• measured:
$$R(\pi) = 1.05 \pm 0.51$$

• SM prediction: $R(\pi)_{SM} = 0.641 \pm 0.016$

LHCb detector

- $b\bar{b}$ produced in gluon-gluon-fusion \Rightarrow forward boost
- ullet low lumi but $b\bar{b}$ cross section $\approx \times 10^5$ compared to B-factories
- $pprox 750 imes 10^9 \ Bar{B}$ events at 7TeV and 13TeV (750 imes Belle+BABAR)

$R(D^{*+})$ with $\tau \rightarrow \mu \nu$: LHCb arXiv:1506.08614 (2015)

- only Run1 data (3*fb*⁻¹)
- reconstruct exclusively $D^{*+}
 ightarrow D^0 \pi^+$ with $D^0
 ightarrow K^- \pi^+$
- leptonic mode for tau decay: $au
 ightarrow \mu
 u$
- no other charged particle from same common vertex
- vertex has to be significantly displaced from IP
- use "rest frame approximation" to approximate the B meson momentum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣臣 の久(?) 21/30

Rest frame approximation

- due to missing neutrinos
 B-momentum can not be completely reconstructed
- exploit large boost along beam axis at LHCb: $\beta \gamma \approx 50$
 - assume velocity along the beam direction of B-meson is the same as velocity of reconstructed $D^{*-}\mu$ system
 - direction of B meson estimated by position of the displaced vertex
 - $|p_B| = \frac{m_B}{m_{D^*\mu}} (p_{D^*\mu})_z \sqrt{1 + \tan^2 \alpha}$ with α angle between B and beam

$R(D^{*+})$ with $\tau \rightarrow \mu \nu \nu$: LHCb arXiv:1506.08614 (2015)

Uncertainty [%] Contribution Svs. Stat. Simulated sample size 6.2 the signal is extracted from a 3D Misidentified μ bkg. 4.8 $B \rightarrow D^{**} l \nu$ bkg. 2.1binned ML fit in m_{miss}^2 , q^2 , E_i^* $B \rightarrow D^* l \nu$ FFs 1.9Hardware trigger 1.8 Double-charm bkg. 1.5 Result MC/data correction 1.2Combinatorial bkg. 0.9 $R(D^{*+}) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$ Particle ID 0.9

8.9

8.0

12.0

Total systematic

Total statistical

Total

$R(D^{*+})$ with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$: LHCb arXiv:1708.08856 (2018)

- similar to previous LHCb analysis $D^{*+} \to D^0 \pi^+$ with $D^0 \to K^- \pi^+$
- use $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$ for τ decay
- allows to reconstruct the au vertex:
 - used to suppress background by requiring τ vertex at least 4 σ downstream of B-vertex

<ロト (日) (日) (王) (王) (王) (1) (24/30)

- $\bullet\,$ reconstruction of the $\tau\,$ decay time used in the fit
- disadvantage: normalization not reconstructed simultaneously:

• chose
$$B \to D^* \pi \pi \pi$$
 as normalization
• $R(D^*) = \left(\frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \pi \pi \pi)}\right)_{fit} \left(\frac{\mathcal{B}(B \to D^* \pi \pi \pi)}{\mathcal{B}(B \to D^* \mu \nu)}\right)_{ext}$

- depends on external input branching ratios
- BDTs are used to suppress hadronic background

$R(D^{*+})$ with $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$: LHCb arXiv:1708.08856

- signal yield from 3D binned likelyhood fit to q², τ decay time t_τ, and BDT output
- $R(D^{*+}) = 0.280 \pm 0.018(stat) \pm 0.025(syst) \pm 0.013(ext)$

Contribution		Uncertainty [%]				
Contribution	Sys.	Ext.	Stat.			
Double-charm bkg.	5.4					
Simulated sample size	4.9					
Corrections to simulation	3.0					
$B \rightarrow D^{**} l \nu$ bkg.	2.7					
Normalization yield	2.2					
Trigger	1.6					
PID	1.3					
Signal FFs	1.2					
Combinatorial bkg.	0.7					
Modeling of τ decay	0.4					
Total systematic	9.1					
$\mathcal{B}(B \rightarrow D^* \pi \pi \pi)$		3.9				
$\mathcal{B}(B \to D^* \ell \nu)$		2.3				
$\mathcal{B}(\tau^+ \to 3\pi\nu)/\mathcal{B}(\tau^+ \to 3\pi\pi^0\nu)$)	0.7				
Total external		4.6				
Total statistical			6.5			
Total		12.0				

$R(J/\Psi)$: LHCb arXiv:1711.05623 (2018)

 energies at LHCb also allow the production of higher mass bottom mesons and hadrons

• investigate $B_c \to J/\Psi \tau \nu$ to measure $R(J/\Psi) = \frac{\mathcal{B}(B_c \to J/\Psi \tau^+ \nu)}{\mathcal{B}(B_c \to J/\Psi \mu^+ \nu)}$

- binned 4D fit to q^2 , m^2_{miss} , lepton energy E^*_l , and tau life time $t_{ au}$
- Results:
 - measured: $R(J/\Psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst)$
 - SM prediction: $R(J/\Psi) = 0.2582(38)$
 - around 2 σ above SM

					Syste	ematic u	ncertainty [%]	Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)}l\nu$	$D^{**}l\nu$	Other bkg.	Other sources	Syst.	Stat.	Total
$\mathcal{R}(D)$	BABAR ^a	$\ell \nu \nu$	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
	$Belle^{b}$	$\ell \nu \nu$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$Belle^{c}$	$\ell \nu \nu$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
$\mathcal{R}(D^*)$	$BABAR^{a}$	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$Belle^{b}$	$\ell \nu \nu$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
	$Belle^{c}$	$\ell \nu \nu$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
	$Belle^d$	$\pi\nu, \rho\nu$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	LHCb ^e	$\pi\pi\pi(\pi^0)\nu$		4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\rm LHCb^{f}$	μνν	_	6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

< □ > < @ > < E > < E > E = の Q @ 27/30

How to improve the precision

- obviously more statistics (LHCb, Belle II)
- some of the biggest uncertainties:
 - "gap problem": difference between measured inclusive and sum of exclusive $b\to c\ell\nu$
 - background from not well measured $B
 ightarrow D^{**} \ell
 u$ decays
 - ullet not well measured cross feed from $B\to D^{**} \tau \nu$ decays
 - LHCb significant backgrounds from not well measured hadronic B decays
 - all above can be reduced by improved measurements (e.g. Belle II)
- MC statistics another big contribution to systematics:
 - producing more MC!?
 - costs time and money, as time=money \Rightarrow money^2
 - new approaches:
 - generator level filtering of events (reduces expensive detector simulation)
 - fast simulation: mimic detector response by fast methods (e.g. GAN)

What to expect from upcoming LHCb and Belle II analyses

- arXiv:2101.08326: possible projection of development of uncertainties as function of collected data sample
- put in assumption how statistical and systematic uncertainties behave with increasing size of datasets

arXiv:2101.08326

- around 3 σ deviation for $R(D^{(*)})$ between experimental world average and SM prediction
- measurements from different experiments and several channels
- new channels are investigated e.g. $R(\pi)$ or $R(J/\Psi)$
- further channels will be added in future R(X), $R(D^{**})$
- increasing LHCb dataset will provide further precision improvement
- Belle II will soon join the hunt for $R(D^{(*)})$ with new e^+e^- collision data

30/30

• work needed to decrease the systematics

R(D) HFLAV

◆□ > ◆□ > ◆臣 > ◆臣 > 臣目目 のQ@

$R(D^*)$ HFLAV

arXiv:2101.08326

q² spectrum BABAR and Belle: arXiv:2101.08326

Handling of D^{**} background (BABAR): reconstruct $D^{(*)}\pi^0\ell\nu$

5/5