-itting: A guided overview

Angelo Di Canto BROOKHIVEN

NATIONAL LABORATORY

3asics about fitting
(for more see D. Tonelli's talk)

https://indico.belle2.org/event/1332/contributions/6424/attachments/3194/4876/Fitting.pdf

What is fitting”

- Combining observed data x into a statistical model p(x|m) to infer the value of
parameter m and its uncertainty

- Typically made by means of an estimator e(x) which is a function of the data x.
Because the data are a random variable, so is the estimator e(x), which has its
own probability distribution p[e(x)]

For all practical purposes, the estimators that you will encounter in the great
majority of analysis applications are the following:

- Maximume-likelihood estimate is asymptotically (N—) consistent (unbiased),
efficient (smallest possible variance), and normal (Gaussian distributed)

- Least-squares estimate is asymptotically efficient for binned data, can be
numerically more stable (particularly when the model depends linearly on m),
and convenient when an assessment of goodness-of-fit is important

Maximum likelinood

- The model p(x|m) is the probability density function to observe a generic data point x,
given the unobservable value of the parameters m

- The likelihood is computed by taking the actual observed data points x; and evaluate

events

Lim) = [T p(aifm

- The likelihood expresses the probability of observing data x for different values of the
parameter m (not the probability that m has some value given the data)

- Given the data, the parameter values miow that decrease L(m) are disfavored as it would
be unlikely for nature to generate that set of observed data, had the true value of m
been miow. Conversely, values mnigh that increase L(m) are favored

- The value of m that maximizes the likelihood is not the “most likely value of m”, it is
the value of m that makes your data most likely

Least-squares from the maximume-likelihood

y
Assume to have N independent observations y7,....yn 2}

that fluctuate following Gaussian distributions of
known variance V[y;] = o7 .

15

1 }

around their known expected values

05 r
Ely;] = Az, 0) -
that are functions of a known variable x; and unknown ° ;> &2 + & &
parameter 6. x
N N Lo\ 2
0 S 1 (yi — A(=;;0))
The likelihood function is L(8) = f(y;;0) = exp |—
,L-l;ll ’ Z-l;ll V2To; 202.2

N (.. _ - 0Y))2
The logarithm is InL(0) = —% (s >\<§7" 9)) I terms not depending on 0

i=1 9,

Hence, maximizing the likelihood is equivalent to minimizing the least-squares

X?(0) = —2InL(0) = iv:l (vi —)‘U(;Ui; 0))° |

Maximume-likelihood/least-squares on a plot

47

-52.5 | | |

log L(7)
X(8,)

t-At bt t+AR
465 |

535 ,;..........-.__:.................§.....................i...... |Og Lmax —1/2 -

455 F

54 : | | G q :
0.8 1 1.2 1.4 1.6 25 26 27 28 29

Maximume-likelihood/least-squares on a plot

-52.5

log L (1)

-53 . 5 mssmssmesme .--...--.--.- sssssnes -é- ssmssmssmssmsmesme :

-54

Maximume-likelihood/least-squares on a plot

! Uncertainty }§

x°(0,) |
o

-52.5 |

log L (1)

465 :

53 L,..............:............... : vmssme emeemsemneme e

535 I

 : ! :
: 217 28 29

log L(m £ 6) ~ log Lipax — 5

Fitting roadmap by D. Tonelll

g
Assume model p(xjm) -,

| absolutely need GOF or
have so many data that
unbinned_~ binned

| need most precise estimate and/
or have a small data sample

\/ v

Least-squares fit Maximum likelihood fit to unbinned data
Lotsof e e Lots of
simulation e 4 simulation

Check estimator properties

Which fitting framework shall | use”

- Any that you understand and that best suits your needs
- The most used/recommended in HEP is RooFit
https://root.cern/manual/roofit/

However, as most other fitting frameworks, Rookit relies
on Minuit to perform the minimization and estimate the

uncertainties

- To understand your fitting framework you most likely want
to understand Minuit first

http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/

What is Minuit??

- A standalone package to find/calculate numerically

- The (local) minimum of any arbitrary function F(p), where p is a set
of parameters (typically least-squares or negative log-likelihood)

- The covariance matrix of these parameters (at the minimum)

- Minuit was originally written in fortran by F. James, and then adapted
to C++ within ROOT by R. Brun

- k. James and M. Winkler have also re-designed and re-implemented
the algorithm in C++ (Minuit2)

- There’s also a python wrapper called iminuit

What exactly minimization means

- The function to minimize, F, does not need to be known analytically. It is
sufficient to know its value F(p), at any point p

- Minuit looks for a local minimum: /.e., the D2
point p where F(p) < F(p) for any p in some A

neighborhood around p (different starting points @ MIN
may result in different minima) J
- The general strategy for finding a local STARY
minimum is simply to vary p by small
steps, In a direction which causes F to

decrease, until one finds the point p from
which F increases in all allowed directions > O+

- Although not needed, if the numerical values of the derivative oF(p)/op at any
point p is known, they can be used to help in the minimization

10

What Minuit does not

- All the rest that has to do with fitting:

- Data handling
- Graphics (data visualization, fit projections, etc...)
- Validation with pseudoexperiments

- elc...

+ (These instead are typically available in fitting frameworks
such as RooFit)

11

Minuit main algorithms

- MIGRAD — Performs a local minimization of the FCN using a variable-step
method based on the estimated direction of the gradient. The minimization
produces as a by-product also the error matrix of the parameters

- HESSE — Calculates the full second-derivative matrix of the FCN using a
finite difference method. Used to improve the estimation of the parabolic
errors obtained by MIGRAD

- MINOS — Performs a scan of the FCN, profiled in each given dimension

(l.e., by minimizing all other parameters at each scan point), around the local
Minimum to estimate asymmetric errors

-+ CONTOUR — Pertorms a scan of the FCN, profiled in the given two

dimensions, around the local minimum to estimate border (contour) of 2D
confidence-level intervals

12

HESSE vs MINOS

[PRL 122 (2019) 191801]

LHCb : Parabolic

assumption?
. (HESSE) :

V)
-

\9)
)

Likelihood
profile
(MINOS)

ek —
-)
T T[T T T T[T I T T[T LFT [T T T T[]

Profileof —In(L/ L _.)
&

)

®
.
. - ®
.
o®
R
- .
.
.

.

.
- o,
-

[]
-
¢

_ “

S

N

.
.
- S
S
S
TS
‘e
= Q~
TS
TS
IS
TS
IS
- IS
IS
S
%
S

-
-

https://arxiv.org/abs/1903.09252

Some practical examples

14

INnstructions

Get the fitting examples from b2-fitting-training

git clone ssh://git@stash.desy.de:7999/bRt/b-fitting-training.git
cd b2-fitting-training/

Sphinx documentation

oday we concentrate on the examples based on Minuit
(which are written in C++ and require to be compiled)

cd minuit

15

https://stash.desy.de/projects/B2T/repos/b2-fitting-training/browse
https://software.belle2.org/development/sphinx/zzz-fitting/doc/index.html

Instructions (if you are not using KEKCC)

+ To compile you just need CMake, ROOT and TCLAP. If they
are installed in your system, compile all examples with

mkdir build; cd build
cmake ../
make

- |f TCLAP is not installed in your system, download it and run
cmake with

cmake -D TCLAP_PATH=path_to_tclap_dir../

- |[f CMake or ROOT are not installed... then work from KEKCC

16

http://tclap.sourceforge.net

Instructions (fo

r KEKC

C)

- On KEKCC you can get CMake and ROQOT by setting up any
recent basf? release

source /cvimifs/belle.cern.ch/tools/basetup release-04-01-04

-+ Then follow the instructions from the previous slide but specify
gcc/g++ as compilers when running the crnake command with

mkdir build; cd build

cmake -D CMAK]

_C_COM:

PILER="which gcc™ \

-D CMAKE_CXX_COMPILER~"which g++~ \
-D TCLAP_PATH=path_to_tclap_dir../

make

17

How to run the examples

- The compiled executables are in the bin directory

Is ../bin

O understand how to use any of them, run with the —h
argument, e.g. do

cd ..
/bin/simple-1d-fit -h

- Torun do

mkdir output
./bin/simple-1d-fit -p —o output

18

—xample 1: simple 1

D unbinned likelihood fit

19

Simple 1D fit

- Unbinned likelihood fit to the beam-constrained mass
distribution of BY =+ K*y decay candidates reconstructed
IN simulation, to determine the fraction of signal decays

- The input data is provided by the ROOT ntuple BtoKstG
contained In the file example-data/fitme.root. The
branch of the tree corresponding to the beam-
constrained mass is BO_mbc

- The example code using the ROOT’s TFitter interface to
Minuit (but the basic concepts are independent of the
interface)

20

https://root.cern.ch/doc/master/classTFitter.html

Design a fitter based on Minuit

- Conceptual steps:

-+ Prepare the data to fit to

-+ Write the function to minimize (i.e., choose model and estimator)
- Setup Minuit
- Define the parameters of the fit, their starting values and their allowed ranges

- Specify the sequence of algorithms to use for minimization and estimation of
the covariance matrix

- Configure each algorithm
- Access fit results

- Plot the results for graphical visualization

- Prepare tools for validation of the fitter (e.g., generation of pseudoexperiments)

21

The function to minimize: FCN

' // Computation of -2xlog(likelihood)
50 wvoid logLfun(int &/*npar*/, double x /*ginx/, double &result, double *xpars, int /* flag */)
1 Ao
| result = 0.;
for (auto m : data) {
double prob = fit_pdf(&m,pars);
if (prob<=0.) prob = 1e-300;
result —= 2.xlog(prob);
¥
g }

22

Fit model

- Assuming two components: signal described by a Crystal
Ball with n fixed to 15, and background described by Argus

—3(mse)’ if Ll S

pdfsgn(m‘:ua g, Od) X {

m m?2 —3¢ (1_2_§> :
_\/1_W6 0 if m < mg

0 if m > my

- The total PDF is the sum weighted by the signal fraction

pdf(m’:u7 g, &, Mg, C) — ngn pdfsgn(m’:u7 g, Oé) T (1 o fsgn) pdfbkg(m‘m07 C)

23

Setup Minuit (using ROOT’s TFitter interface)

93 // Configure MINUIT

94 TFitter *xfitter = new TFitter(npars);

95 fitter->SetFCN(logLfun);

96

97 double printlevel(args.prlevel);

98 fitter->ExecuteCommand("SET PRI",&printlevel,1);

99 if (printlevel<@) fitter->ExecuteCommand("SET NOW",&printlevel,Q);
100

101 double strategy(2.);

102 fitter->ExecuteCommand("SET STRAT",&strategy,1);

103

104 double errdef(1.);

105 fitter->ExecuteCommand("SET ERR",&errdef,1);

106

107 double eps_machine(std: :numeric_limits<double>::epsilon());
108 fitter->ExecuteCommand("SET EPS",&eps_machine,1);

109

110 // Define and initialize parameters

111 fitter->SetParameter(0, "f {sig}", 0.7, 1e-3, 0.9, 1.0);
112 fitter->SetParameter(1, "#mu_{CB}", 5.28, 1e-3, 5.2, 5.3);
113 fitter->SetParameter(2, ‘"#sigma_{CB}", 3e-3, le-4, 0.0, 1.5e-2);
114 fitter->SetParameter(3, "#alpha_{CB}", 1.3, l1le-3, 0.1, 5.0);
115 fitter->SetParameter (4, "n_{CB}", 15., 1e-3, 0.0, 0.0);
116 fitter->FixParameter(4);

117 fitter->SetParameter(5, "m_{cutoff}", 5.29, 1e-3, 5.2, 5.3);
118 fitter->SetParameter(6,"c_{curvature}", -20., 1.0,-80.,-1.0);
119

120 // Run minimization and compute uncertainties

121 double arglist[] = {5000., 1.};

122 fitter->ExecuteCommand("MIGRAD",arglist,2);

123 fitter->ExecuteCommand("HESSE",arglist,2);

- The arguments of ExecuteCommand are the same as those used in fortran 24

https://root.cern.ch/doc/master/classTFitter.html#a82a940e58fed8f5156948922ea8826df
https://root.cern.ch/download/minuit.pdf

Setup Minuit

-+ Set minimization strategy to 2 for reliable results

SET STRategy <level>

Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of <level> mean fewer function calls and high values mean more
reliable minimization. Currently allowed values are 0, 1 (default), and 2.

+ Set errors’ definition according to your use-case (1D 68%
CL intervals corresponds to A y=1 or AlogL = 0.5)

SET ERRordef <up>

Sets the value of UP (default value= 1.), defining parameter errors. Minuit defines parameter errors as
the change in parameter value required to change the function value by UP. Normally, for chisquared fits
UP=1, and for negative log likelihood, UP=0.5.

25

Setup Minuit

+ Define the fit parameters

+ SetParameter()

Int_t TFitter::SetParameter (Int_t ipar,

const char * parname,
Double_t value,
Double_t verr,
Double_t viow,
Double_t vhigh

set initial values for a parameter

ipar : parameter number
parname : parameter name
value : initial parameter value

verr : initial error for this parameter +— [N[tial step Size (lf set to O, parameter remain flxed)
vlow : lower value for the parameter } bOundarieS (none |f bOth Set _to O)

vhigh : upper value for the parameter

26

Parameter boundaries

- \When boundaries on a parameter are specified, Minuit internally converts the parameter
such that the boundaries cannot be exceeded o

NS

—a
Pint = arcsin| 2 b 1
b—a

N S g

>
Pint

- Boundaries should be avoided: they complicate the problem (since the above
transformation is non-linear) and, more importantly, they may affect the estimation of the
error matrix by HESSE (when a parameter gets close to the limit, the error matrix becomes

singular)

- Workaround when that is not possible: (1) find the minimum with boundaries, (2) release
the boundaries, (3) rerun MIGRAD and HESSE to confirm to be in a minimum and

compute the uncertainties
27

Run the minimization

Call MIGRAD

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also MINImize). The minimization produces as
a by-product the error matrix of the parameters, which is usually reliable unless warning messages are
produced. The optional argument [maxcalls] specifies the (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument
[tolerance] specifies required tolerance on the function value at the minimum. The default tolerance

1s 0.1, and the minimization will stop when the estimated vertical distance to the minimum (EDM) is less
than 0.001*[tolerance] *UP (see SET ERR).

One should use at least HESSE (same arguments as MIGRAD)
after MIGRAD to obtain reliable errors for a given fit result. MINOS
will give the best estimate of the errors, but may be computationally
expensive (particularly for large numbers of free parameters)

28

skokokokokokokokokk

Sk 1 *%SET PRI

skokokokokokokokokok

skokokokokokokokokk

%K 2 **kSET STRAT 2

skokokokokokokkokk

NOW USING STRATEGY 2: MAKE SURE MINIMUM TRUE, ERRORS CORRECT

skokokokokokokokokk

%k 3 *xkSET ERR 1

skokokokokokokokokk

skokokokokokokokokok

%k 4 xxSET EPS 2.22e-16

skokokokokokokokokk

FLOATING-POINT NUMBERS ASSUMED ACCURATE TO 2.22045e-16

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

1 f_{sig} 7.00000e-01 1.00000e-03 0.00000e+00 1.00000e+00
2 #mu_{CB} 5.28000e+00 1.00000e-03 5.20000e+00 5.30000e+00
3 #sigma_{CB} 3.00000e-03 1.00000e-04 0.00000e+00 1.50000e-02
4 #alpha_{CB} 1.30000e+00 1.00000e-03 1.00000e-01 5.00000e+00
5 n_{CB} 1.50000e+01 1.00000e-03 no limits

skokokokokokokkkk

sk 5 xxFIX 5

skokokokokokokokokk

PARAMETER DEFINITIONS:

NO. NAME VALUE STEP SIZE LIMITS

6 m_{cutoff} 5.29000e+00 1.00000e-03 5.20000e+00 5.30000e+00
7 c_{curvature} -2.00000e+01 1.00000e+00 -8.00000e+01 -1.00000e+00

skokokokokokokokokk

sk 6 *xMIGRAD 5000 1

skokokokokokokokokk

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.

START MIGRAD MINIMIZATION. STRATEGY 2. CONVERGENCE WHEN EDM .LT. 1.00e-03

M 1\ NARN I\ N H

MIGRAD MINIMIZATION HAS CONVERGED.

MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCEESSFon:=Y

FCN=-42065.7 FROM MIGRAD
EDM=3.25071e=¢5
EXT PARAMETER
NO. NAME
1 f_{sig}
#mu_{CB}
#sigma_{CB}
#alpha_{CB}
n_{CB}

VALUE
5.43992e-01
5.27958e+00

3.32971e-03

1.08400e+00

1.50000e+01
m_{cutoff} 5.28980e+00
c_{curvature} -4.41732e+01

EXTERNAL ERROR MATRIX. NDIM=

. 000e-07

-3.093e-09

525e-09

665e-06
821e-09

1.193e-04 1.673e-07
1.673e-07 7.744e-09
1.000e-07 -3.093e-09 5.
-4.520e-04 -3.991e-06 2.

-3.948e-08 6.639%9e-11 -1.
2.416e-02 4.353e-05 3.
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2

. 75053 .000 0.174

.62698 .174 1.000

.67554 .123 -0.473

. 79403 .521 -0.571

. 24386 .025 0.005

. 70424 .671 0.150

362e-05 -1.

STATUS=CONVERGED

521 CALLS

STRATEGY= 2

ERROR
1.09225e-02
8.80003e-05

7.43293e-05
7.93500e-02
fixed
1.44704e-04
3.29219e+00
NPAR=
.520e-04 -3.
.991e-06
.665e-06
.300e-03
.087e-06

160e-01

3

4

6.
.821e-09
1.
2.
3.

1

STEP
SIZE

7.25749e-04
8.51942e-05
4.40399%e-04
1.23038e-03

2.31412e-04
2.97963e-03

=
948e-08
639%e-11

087e-06
094e-08
655e-05

6

522 TOTAL
ERROR MATRIX ACCURATE
FIRST
DERIVATIVE
-4.63661e-02
-1.06408e+00
1.81416e-02
-1.53757e-01

1.31000e+00
-1.14514e-02
DEF=1
2.416e-02
4.353e-05
3.362e-05
-1.160e-01
3.655e-05
1.086e+01

7

skok kK Kok ok kKK
ok 7 **HESSE 5000 1
skokok ok Kk Kok ok ok

FCN=-42065.7 FROM HESSE STATUS=0K 40 CALLS 562-=10TAl
EDM=3. z5%45¢c-25 STRATEGY= 2 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL LN T CIuAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 f_{sig} 5.43992e-01 1.09214e-02 1.45150e-04 8.80987e-02
2 #mu_{CB} 5.27958e+00 8.80710e-05 1.70388e-05 6.33034e-01
3 #sigma_{CB} 3.32971e-03 7.44537e-05 1.76159e-05 -5.89613e-01
4 #alpha_{CB} 1.08400e+00 7.93465e-02 2.46075e-04 -1.32078e+01
5 n_{CB} 1.50000e+01 fixed
6 m_{cutoff} 5.28980e+00 1.44897e-04 9.25649e-06 9.20754e-01
7 c_{curvature} -4.41732e+01 3.29116e+00 5.95925e-04 -9.31271e-02
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 6 ERR DEF=1
1.193e-04 1.674e-07 1.002e-07 -4.512e-04 -4.214e-08 2.415e-02
1.674e-07 7.757e-09 -3.107e-09 -4.000e-06 7.183e-11 4.352e-05
1.002e-07 -3.107e-09 5.544e-09 2.678e-06 -1.857e-09 3.368e-05
-4.512e-04 -4.000e-06 2.678e-06 6.299e-03 -1.095e-06 -1.157e-01
-4.214e-08 7.183e-11 -1.857e-09 -1.095e-06 2.100e-08 3.583e-05
2.415e-02 4.352e-05 3.368e-05 -1.157e-01 3.583e-05 1.086e+01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 6 7
. 75047 .000 0.174 0.
.62779 .174 1.000 -0.
.67689 .123 -0.474 1.
. 79433 .520 -0.572 0.
. 24599 .027 0.006 -0.
.70402 .671 0.150 0.

Status of covariance matrix from the code

125
126
127
128
129
130
131
132
133
134
135
136
137

// Access status of the covariance matrix
TMinuit *minuit = fitter->GetMinuit();
double fmin, fedm; int npari, nparx, istat;
minuit->mnstat(fmin, fedm,errdef,npari,nparx,istat);
if (istat!=3) {
// 1stat 1s a status integer indicating how good is the covariance matrix:
// 0= not calculated at all
// 1= approximation only, not accurate
// 2= full matrix, but forced positive-definite
// 3= full accurate covariance matrix
std::cout << "Covariance matrix status = " << istat << std::endl;
return -2;

32

Fit projections

Generated 7205000 toy candidates. 200
Generated 3285534 toy candidates.

chi2/ndf (prob) = 88.9847/89 (0.480519)

100

C\]§ 500 :_ 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 1 1
é) - Belle II preliminary
= 400
E - ¢ Data
'oé 300 :— —
S - — Background
Plotting fit projection... S 2

This is the 2 resulting from the |

ol o
comparison of the binned data with 52 522
the fit projection = it does not

quantify the goodness of fit!

11 11 |
5.24

1 1 1 I
5.26

5.28 53
m, [GeV/c?]

Ao

Goodness-of-fit for unbinned likelihood fits

- Goodness-of-fit is built-in in least-squares estimates. Can we devise a solid
goodness-of-fit determination for unbinned MLE too?

- Some (e.qg., G. Cowan book) suggest to use the distribution of the value of the
likelihood at its maximum as a distribution from which to extract a p-value. It is easy
to demonstrate that such approach is flawed, for example see arXiv:physics/0310167

- Others (e.g., arXiv:006.3019) have cooked up various ad-hoc methods and claim
they achieve the desired goal, but no general demonstration of their success and
properties is given, so no guarantee exists that they’ll work in general problems

- To date, no widely accepted method for evaluating goodness-of-fit in unbinned fits
exists

- Approximated goodness-of-fit measures based on binning the unbinned data offer
a semiqualitative indication of the compatibility with the model and are usually
reported when goodness-of-fit is important in unbinned fits

34

https://arxiv.org/abs/physics/0310167
https://arxiv.org/abs/1006.3019

Goodness-of-fit for least-squares fits

N\

- |f the model is correct, the value of the least-squares at the minimum LS(6)

IS distributed like a 2 with ndf equal to the number of points minus the
number of free parameters

. Since E(y?) = ndf, some usually quote y2/ndf as measurement of the

goodness-of-fit. That’s flawed, you should instead use the probabillity
(computed by TMath::Prob(chi2,ndf) in ROOT)

O

LS(0). ndf) = 2(Hndf)dt e.g., p(3,2) = 22%
p(L5(6), nd) /LS(é)X (¢Indi) 0(300,200) =~ 6x10-6

- Does the y2 capture the full goodness-of-fit? Not really, being insensitive to
the sign of the deviation between the data and the model. The y2 test can
be complemented with the runs test of the deviations

35

https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test

S

mall uncertainties do not Imply a good fit

(nor viceversa)

Small statistical uncertainties do not mean the fit is good, nor viceversa:

C

C

Uncertainty size is driven by the curvature of LS/-logL near its minimum

| For LS goodness of fit is driven by the actual value at minimum LSmin~x?

Variance of estimator (i.e., statistical uncertainty on the estimate) tells us
about the spread in values of the estimator if one repeats the estimate many
times on independent samples

Goodness of fit (x?2 p-value) tells us what fraction of repeated experiments

W

ill give equal of worse agreement with model according to LSmin and

assuming that the hypothesis is correct. Low p-value suggest incorrect
model (==> systematic uncertainty)

36

Likelihood profile in 1D

—2AlogL

4000
3500
3000
2500
2000 F-
1500 f-
1000 f-
500

527 5275 528 50285

5.29

w

CB

37

Likelihood profile in 1D

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
247
242
243
244
245
246
247
248
249
250

// Likelihood profile
std::cout << "Plotting likelihood profile vs " << fitter->GetParName(1l) <<
double minFCN(fmin);
double fcn[21], parl[21];
double pmin(5.27), pstep(90.001);
unsigned int n(9);
char name[20];
double oldvalue, err, low, high;
for (unsigned int i=0; i<21; ++i) {
fitter->GetParameter(1,name,oldvalue,err,low,high);
fitter->SetParameter(1,name,pmin+ixpstep,0.,low,high);
if (@ !'= fitter->ExecuteCommand("MIGRAD",arglist,2)) continue;
minuit->mnstat(fmin, fedm,errdef,npari,nparx,istat);
par[n] = fitter->GetParameter(1);
fecnln]l = fmin;
if (fenln] < minFCN) {
minFCN = fcnlnl;
std::cout << "Found new global minimum." << std::endl;
¥
nN++;
}

for (unsigned int i=0; i<n; ++i) fcn[i] —-= minFCN;

auto g_profile = new TGraph(n,par,fcn);
g_profile->SetTitle("");
g_profile->GetXaxis()->SetTitle(fitter->GetParName(1));
g_profile->GetYaxis()->SetTitle("#minus2#Deltalog#it{L}");
g_profile->SetLinewidth(2);

." << std::endl;

38

Ikelihood profile in 2

5&‘3 1.18
1.16
1.14
1.12

1.1
1.08
1.06
1.04

1.02 F

D (CONTOUR)

95% C.L

5.27795

5.27955

5.2'796

5.27965

W

CB

39

ikelihood profile in 2D (CONTOUR)

196 // 2D contour

197 std::cout << "Plotting 95% CL contour in (" << fitter->GetParName(l) << "," <<
fitter->GetParName(3) << ") plane..." << std::endl;

198 printlevel = -1;

99 fitter->ExecuteCommand("SET PRI",&printlevel,1);

200 fitter->ExecuteCommand("SET NOW",&printlevel,0);

202 fitter->SetErrorDef(ROOT::Math::chisquared_quantile(0.95,2));
203 auto g_cont = (TGraph*) minuit->Contour(60,1,3);
204 fitter->SetErrorDef(errdef);

206 TCanvas c2("c2","c2");
207 if (g_cont) {
208 g_cont->SetTitle("");

209 g_cont->GetXaxis()->SetTitle(fitter->GetParName(1));
210 g_cont->GetYaxis()->SetTitle(fitter->GetParName(3));
211 g_cont->SetLinewWidth(2);

212 g_cont->Draw("al");

21

214 Plotter::plot_text("95% C.L.",0.9,0.88);

215

216 outfilename = args.outdir + "simple-1d-fit_contour.pdf";

217 c2.Print(outfilename.c_str());

218 } else {

219 std::cout << "Contour failed" << std::endl;
220 c2.Close();

221 ¥

40

Ikelihood profile in 2

D (CONTOUR)

Confidence level (probability contents desired inside

Number of hypercontour of x* = x2. + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 6.63
2 1.39 241 4.61 9.21
3 2.37 3.67 6.25 11.36
4 3.36 4.88 7.78 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 2471
If FCN is — log(likelihood) instead of x?, all values of UP

should be divided by 2.

41

—xample 2: efficiency fit

42

Frequentist approach

- Let’s consider a simple counting experiment where Npass IS the number of events
satisfying a given selection criteria out of a total of N events

- The estimated efficiency is

Npass
N

- Since the process of applying some selection criteria is binomial (the event can
either pass or fail the criteria) with probability equal to the “true” efficiency g, the
estimated statistical uncertainty is

NS
05_\/ N

- This is the most used approach to compute the uncertainty on the efficiency, when
sufficiently far away from the limiting cases in which £€=0 or 1 (for other approaches
see, e.g., ROOT’s TEfficiency)

o

43

https://root.cern.ch/doc/master/classTEfficiency.html

Alternative derivation

+ Changing point of view, let’s consider the number of
events passing (Npass) or failing (Nsii= N — Npass) the
selection criteria as independent Poisson countings

s Npass a_N _ \/N /
o) ass/fail pass/fail
Npass + Nfail pass/
2 2 2 2 2 . 2
R \/NpaSSO-Nfaﬂ T NfaiIO-NpaSS \/Npasstall -+ Nfaileass
0-5 — J—

(Npass T Nfail)2 (Npass + Nfail)2

44

Alternative derivation: why does it work"?

x ~ Poisson ()

—> P(x = k|x+y = n) = Binomial (k; n,c = s)

y ~ Poisson () fe + Ly

Proof:

Plx=k)P(x+y=nlzr =k)

Plx=klz+y=n)=

Pz +y=n)
k n—k
k! (n —k)! B n! [Ly,
(e F py)" e~ (Hatiiy) k(= k)! (pe + pry)"
n!

- o e = e) ()
kl(n — k) (pe + py)" 750 Kl — k) \ o + gy Lo - fiy

45

What if it’s not just counting”

- All the above holds for a simple counting experiments.
Often, however, we need to determine the number of

“signal” events out of a sample where also background is
present

- Typically this is done by separating signal and backgrouno
on a statistical basis using a fit to some distribution that
gives enough discrimination power

- The fit returns an uncertainty on the number of signal
events that includes also the uncertainty due to the
background subtraction

46

Uncertainty on the efficiency in the case of fitting

- Among possible correct methods, the easiest is to use the alternative

approach: i.e., fit the independent samples that pass and fail the selection
criteria and compute

- Other approaches have been suggested/used, some of which may
occasionally even work, but they generally misestimate the uncertainty
(e.g., see this talk)

- Even better would be to perform a simultaneous fit with € as shared

parameter, e.g.,

Jbin/efficiency-fit -p -€ -n 1000000 -0 output/

47

https://indico.belle2.org/event/2296/contributions/11391/attachments/5708/8838/hadron-id-uncertainty-eff-fit.pdf

—fficiency fit

-+ Simultaneous least-squares fit to the mass distributions of
DO—= K-rr+ri-r1+ decay candidates passing and failing the
requirement p(K-) > 1 GeV/c, to determine the efficiency
of the requirement on both signal and background

decays.

- The data consists pseudo data generated from some
assumed mass model and input efficiencies

- Two histograms are fil
the kaon-momentum
candidates failing the

ed: t
requl

requl

ne first with candidates passing
rement (hpass), the second with

rement (Pl

48

The function to minimize: FCN

2

2 —
. . n; — nE " (0, s n; — ni (O
LS(Hpassaefail) — Z (:) T Z ; ()

iehpass 1€ N tail

// Computation of least squares
double chi2(@.); int ndf(@);

void leastSquares(int &/*nparx/, double * /*ginx/, double &result, double xpars, int /x flag */)

{
chi2 = 0.; ndf = 0;

// compute least squares
for (unsigned int i=1; i<nbins; ++i) {
double m = hpass->GetBinCenter(i);

double epass = hpass->GetBinError(i);

if (epass!=0.) {
double res = hpass->GetBinContent(i) - fpass(&m,pars);

chi2 += resxres/epass/epass;
ndf++;

double efail = hfail->GetBinError(i);

if (efail!=0.) {
double res = hfail->GetBinContent(i) - ffail(&m,pars);

chi2 += resxres/efail/efail;
ndf++;

result = chi2;

Predicted number of candidates
(l.e., the fit function)

Mass distribution of signal and background candidates
described by

pdfsgn(mLuaO_) X 6_5(o2)

Pl () ox e

Shapes for candidates passing/failing the selection could
be different: e.g., assume different peak resolution for
signal and different slopes for background

]E)E-LSS(

i ngna €sgny My Opass; kaga €bkg)\pass) — ngnesgnpdfsgn (mz |,u7 Upass) + kagebkgpdfbkg (mip\pass)

f_ail(

n;

ngna €sgn s M, Ofail, kaga €bkg)\fail) — ngn(l - 6sgn)pdfsgn (mz |,LL7 Jfail) + kag(l - ebkg)pdf]okg (mz |>\fail)

50

skskskskokokskokokk
%k 6 kk
skeskskokkokskskkok

HESSE

5000

1

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=264.632 FROM HESSE

EXT PARAM
NO. NAM
1 N_{si
#epsi
N_{bk
#epsi
#mu
#sigm
#sigm
#lamb
#lamb

ETER

= VALUE
g}
lon_{sig}
g}
lon_{bkg}

a_{pass}
a_{fail}
da_{pass}
da_{fail}

STATUS=0K
EDM=2.10224e-06

3.99902e+05
6.99934e-01
5.99500e+05
2.98510e-01
1.86499e+00
3.51101e-03
3.10719e-03
1.53915e+00
1.60332e+01

ERROR

6.95535e+02
8.40303e-04
8.28125e+02
6.37407e-04
6.25911e-06
5.99840e-06
1.05031e-05
5.53262e-02
4.14499%e-02

75 CALLS

STRATEGY= 2
INTERNAL
STEP SIZE

8.60820e-08
1.39374e-06
8.43860e-08
1.08683e-06
6.69834e-08
8.65590e-08
2.86439e-08
4.39965e-05
6.55460e-06

1488 TOTAL

ERROR MATRIX ACCURATE

INTERNAL
VALUE

-1.44422e+00
4.11372e-01
-1.41576e+00
-4.14770e-01
-1.33826e-01
-1.45222e+00
-1.45925e+00
1.53915e+00
1.60332e+01

EXTERNAL ERROR MATRIX.
4.838e+05 -7.077e-02
-7.077e-02 7.061e-07
-8.419%9e+04 7.101le-02
-9.017e-03 -7.356e-08
-3.501e-05 6.602e-11
4.121e-04 3.088e-10
1.193e-03 -2.087e-09

NDIM= 25 NPAR= 9 ERR DEF=1
-8.419e+04 -9.017e-03 -3.501e-05 4.121e-04 1.193e-03
7.101e-02 -7.356e-08 6.602e-11 3.088e-10 -2.087e-09
6.858e+05 1.000e-02 3.438e-05 -4.139e-04 -1.197e-03
1.000e-02 4.063e-07 -1.122e-11 -4.841e-10 5.958e-10
3.438e-05 -1.122e-11 3.918e-11 -1.697e-13 -1.092e-12
-4.139e-04 -4.841e-10 -1.697e-13 3.598e-11 4.731e-15
-1.197e-03 5.958e-10 -1.092e-12 4.731e-15 1.103e-10
-6.242e-01 -4.532e-07 3.750e-01 4.303e-07 6.427e-09 -8.368e-09 -1.791e-10
1.564e+00 -2.737e-06 -1.684e+00 8.388e-07 2.427e-09 -1.052e-11 3.472e-08
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4) 6 7 8 9
1 0.24298 1.000 -0.121 -0.146 -0.020 -0.008 0.099 0.163 -0.016
2 0.29607 -0.121 1.000 0.102 -0.137 ©0.013 0.061 -0.237 -0.010
3 0.21382 -0.146 0.102 1.000 0.019 0.007 -0.083 -0.138 0.008
4 0.19679 -0.020 -0.137 0.019 1.000 -0.003 -0.127 0.089 0.012
5 0.02970 -0.008 0.013 0.007 -0.003 1.000 -0.005 -0.017 0.019
6 0.18519 0.099 0.061 -0.083 -0.127 -0.005 1.000 0.000 -0.025
7
8
9

-6.242e-01
—-4.532e-07
3.750e-01
4.303e-07
6.427e-09
-8.368e-09
-1.791e-10
3.061e-03
3.982e-07

1.564e+00
-2.737e-06
-1.684e+00
8.388e-07
2.427e-09
-1.052e-11
3.472e-08
3.982e-07
1.718e-03

0.30096 0.163 -0.237 -0.138 0.089 -0.017 0.000 1.000 -0.000
0.03678 -0.016 -0.010 0.008 0.012 0.019 -0.025 -0.000 1.000
0.11364 0.054 -0.079 -0.049 0.032 0.009 -0.000 0.080 0.000
chi2/ndf = 264.632/289
Probability = 0.845097

Fit projections

Candidates per 1 MeV/c?

NL)

% ¢ Data (pass)

E ¢ Data (fail)

g — Fit

|3 - - Background

=

S

=

<

@)

1.95

m [GeV/c?] m [GeV/c?]

52

Validate fit with pseudoexperiments

- Use pseudoexperiments (a.k.a. toy Monte Carlo simulation)
drawn from the PDF to understand the distribution of the fit
estimators and their properties prior to applying them to data

»+ Choose a plausible true value of the relevant parameters m
and generate several sets of simulated data x from random
numbers distributed according to p(x|m)

Run the fit on each set (that is, repeat the experiment) and
look at the distribution of the estimator

Repeat for all relevant choices of true values for m (important
and often overlooked)

53

A standard diagnostics — fit pulls

Toys per 0.1

25F

™1
u=-0.05+0.05
o=1.01+0.03:

(X,

Toys per 0.1

L BN BELENL AL BELL L BELENLENL B
w=0.08 = 0.04
:1.0010.03
[

e 1 . 45 41 |ih>|
4 2 0 2 4
(y -y)/Ofit

fit true

Distribution of the difference
between fit estimate and the true |
¢ value of the parameter, divided by |
| the estimate of the std dev. s §

A standard diagnostics — fit pulls

— N LA L I B B — 22'|"'|"'|"'|"'|'
T s u=-005+005] < 0 u=0.08 =0.04
S o=1.01=x003] 2 " “ g=1.00+0.03
o : =
o 20 L - o 16 |
i M | 1 - 14 |
‘ | .
15 - 12 l
’ Nl E 10 | \
10 r | - 8 |'
N 6 ‘ ’\
5 i"| |‘ — 4 ‘ "l
; A 2 AL \
0 _.:ﬂ7|li;| 0 o, s s 1IN
4) 0 2 4 —4) 0 2 4
(Xfit_ Xtrue)/ Oﬁt (yfit_ ytru e)/ Oﬁt

Each entry is a simulated
. experiment, generated with the
t same set of true parameters. |

Distribution of the difference
between fit estimate and the true |
¢ value of the parameter, divided by |
| the estimate of the std dev. s §

A standard diagnostics — fit pulls

I DL BELNL AL BNLENLANL BELENLENLE
75 u=-0.05=+0.05
o=1.01+0.03

L BN BELENL AL BELL L BELENLENL B
u=0.08 = 0.04
:1.0010.03
[

22
20
18
16

15 { Fitestimatorofx 1}
j 0 | unbiased. Uncertainty §
10 ' “, ¢ seems OK !

20

Toys per 0.1
Toys per 0.1

\ 4
_ \ : 2 L
0 _.:ﬂ7|||:;| i 0 ...|...|

-4 -2 0 2 4 -4 -2 0 2 4
(X - Xtrue)/ Oﬁt (y -y)/Ofit

fit true

fit

Each entry is a simulated
- experiment, generated with the
L__same set of true parameters. |

Distribution of the difference
between fit estimate and the true
¢ value of the parameter, divided by |
| the estimate of the std dev. =« |

A standard diagnostics — fit pulls

{ Fit estimator ofy"
rTrrrrrrrrrrrr T T TTTE :

=005 0 perhaps biased.
- | Uncertainty seems OK_§5=100 3001

“IT\
Al

v O

HL| RN B

15 § Fit estimator of x
j) t unbiased. Uncertainty
N I\ seemsOK

20

Toys per 0.1
Q
I
>
N
<
-

O , _:ﬂ Ly 3 3 1 45 4 4 7.|I:;| - e a1 5 45 41 |ih,|
4 2 0 2 4 4 2 0 2 4
(X - Xt1‘ue)/ Oﬁt (y -y)/Ofit

fit true

fit

Each entry is a simulated
. experiment, generated with the
|..Same set of true parameters. |

Distribution of the difference
between fit estimate and the true
¢ value of the parameter, divided by |
. the estimate of the std dev. s+ |

Validate for any possible true fit parameters

Different methods to compute the uncertainty on the efficiency

o 50f - :] 60 F
30F -] :
§ - 355 8 0 0 = F
-Gl_j a0l] - - 1- 1 i [] 5] S0
E i 25¢ 30F g -
i : 3] 40F
© 30F 20F 25F i _ :
N L L o e ’] B
@© : 15f 20F | il | 'l 1 30f
O f : sk i o 7 Lt
i s : , il] 20F
= I - 10 1 ! 3 -
= 101 : - 3 |] i
— i SH 5F * ' v 1oy
O C :* f)i +3 C
[L I N B B # C.obe % | 1
- 0 0 O T Ty T 0=
0 _ _
D
D)
B 60F T ™ " T 1T T 45F 60 F
= 50 : 03 + 0.0 1 4o ;
50 1- = n 2 7 s n 50F
D . 1 3s5p g
- 40_ 40 i 1 30F 40F
- i r o -
r C 25F C
+— 30¢ 30 c 30
- - 20¢ -
9 20F 20F ISE 20F
D L C 10 C
4= 101 10 10F

ot

]

E
Fit pulls — (pull width) 55

O¢

Pseudoexperiments

- Use numerical methods for sampling distributions of relevant quantities (e.g.,
observables, estimators, likelihood ratios, etc) to then calculate probabilities
and related quantities

- Typically it boils down to:
- Generate a random sequence ry, o, ..., In uniformly distributed in [0,1]

- Use this to produce another sequence x1, xo, ..., Xn distributed according to
some PDF, p(x) — x can be multidimensional

- Use the x values to estimate the properties of p(x), €.g., mean, variance,
fraction of values with a < x < b, etc

- Genuinely random numbers can be extracted from physics processes (time
Intervals between radioactive decays, thermal noise across a resistor,
atmospheric radio noise). Usually tabulated in large databases and impractical

to use (e.g., www.random.org)
56

http://www.random.org

Pseudorandom number generators

- Typically we use sequences of pseudorandom numbers. If properly
handled, they are indistinguishable from true random numbers and
are reproducible, which is useful for debugging

n = 59049

- Various available with different
performances (e.g., mid-square method,
inear congruential generators,
Mersenne Twister algorithm, etc).

As usual, understand what you're doing

- In practice, TRandomd3 from ROOT
(based on the Mersenne Twister | Z 7 &
algorithm) is relatively fast and s 4 Lo
sufficiently random for most HEP usages 00

Triplets generated with LCG

57

https://en.wikipedia.org/wiki/Middle-square_method
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Mersenne_Twister
https://root.cern.ch/doc/master/classTRandom3.html

From uniform to p(x):
the Inverse cumulative method

1

uniformly ¢ - - - oo >
distributed
Fi

A= = — -

transformed variable x;
- Generate r; uniformly distributed in [0, 1]
X
+ Compute x; such that ri = CDF(x) where CDF(x) = / p(t)dt
0

- That is xi = CDF-1(r)

58

From uniform to p(X):

the (von Neumann) accept-reject method

- Enclose the f(x) in a “lbox”

- Generate x; uniformly in [Xmin, Xmax]
starting from r; uniform in [0, 1]

Xi = Xmin + [(Xmax — Xmin)
- Generate y; uniformly in [0, fmax]

- If yi < f(x), then accept x;,
otherwise reject it

02

01 F

fmax %&
03

min

From uniform to p(X):

the (von Neumann) accept-reject method

- Enclose the f(x) in a “lbox”

- Generate x; uniformly in [Xmin, Xmax]
starting from r; uniform in [0, 1]

Xi = Xmin + [(Xmax — Xmin)
- Generate y; uniformly in [0, fmax]

- If yi < f(x), then accept x;,
otherwise reject it

- For improved efficiency smooth the
“box” as much as possible

03 F

02

01 F

From uniform to p(X):

the (von Neumann) accept-reject method

- Enclose the f(x) in a “lbox”

- Generate x; uniformly in [Xmin, Xmax]
starting from r; uniform in [0, 1]

Xi = Xmin + [(Xmax — Xmin)
- Generate y; uniformly in [0, fmax]

- If yi < fix), then accept x;,
otherwise reject it

- For improved efficiency smooth the
“box” as much as possible

03 F

02

01 F

r---

Code to generate pseudodata

24
25
26
27
28

29

// Parameters used in the toy generation

const double toy_epssig(0.7), toy_epsbkg(@.3);//signal and background efficiencies

const double toy_fsig(@.4);//fraction of signal decays

const double toy_mu(1.865);//signal peak position

const double toy_spass(3.5e-3), toy_sfail(3.l1e-3);//signal peak widths for candidates
passing/failing the selection

const double toy_lbpass(1.5), toy_lbfail(16.);//background slopes for candidates passing/failing
the selection

123 // Fill the input data

124 if (args.gentoy) {

125 std::cout << "Generating toy..." << std::endl;

126

127 TRandom3 r(args.seed);

128 unsigned int n = r.Poisson(args.nevents);

129 for (unsigned int i=0; i<n; i++) {

130 double m; bool pass;

131

132 if (r.Uniform(@.,1.) < toy_fsig) {

133 // generate signal event

134 do {

135 // simulate signal efficiency

136 pass = (r.Uniform(@.,1.) < toy_epssig);

137 // generate mass

138 m = (pass) ? r.Gaus(toy_mu,toy_spass) : r.Gaus(toy_mu,toy_sfail);
139 } while (m<m_min || m>m_max);

140 } else {

141 // generate bkg event with the iverse cumulative method
142 pass = (r.Uniform(@.,1.) < toy_epsbkg);

143 double 1 = (pass) ? toy_lbpass : toy_lbfail;

144 double u = r.Uniform(@.,1.);

145 m = -log(exp(=1*m_min) - ux(exp(-1xm_min)-exp(-1xm_max)))/1;
146 }

147

148 if (pass) hpass->Fill(m);

149 else hfail->Fill(m);

150 ¥

151 } else {

60

—Xample 3: 2

D fit with correlated variables

61

Lifetime fit

-+ Assume you want to measure the lifetime of the DO meson by
fitting the decay-time distribution

pdf(t]T, b, g,) X / G_ttrue/TR(t — ttrue|b7 g, ---)dttrue
0

- The resolution function R depends on
the experimental setup and can be
often quite complicated

10°

10%

Events per 20 fs

10°E

[E—

02k

In general its mean value, b, quantifies _
a possible bias in the estimation of t and "¢
its standard deviation, o, guantifies It
how well the decay time is measured

Litetime fit with per-candidate resolution

However, for some candidates the

decay time is much easier to measure
than for some others. The candidate-by-
candidate decay-time uncertainty, oy, is |
then often used to have a more precise
estimation of the resolution function

firue LPS]

5

- The PDF now becomes function of two
observables t and ot, which Iin this case
can be conveniently written as the

product of two terms using the
conditional probability:

pdf(ta Ot |T7 b) — pdf(gt)pdf(t‘gta T, b)

0.¢ pdf(O’t) / €_ttrue/TG(t — ttrue‘ba Ut)dttrue
0

63

Litetime fit with per-candidate resolution

However, for some candidates the

decay time is much easier to measure
than for some others. The candidate-by-
candidate decay-time uncertainty, oy, is |
then often used to have a more precise
estimation of the resolution function

firue LPS]

5

- The PDF now becomes function of two
observables t and ot, which Iin this case
can be conveniently written as the

product of two terms using the

conditional probabillity:
P Y This term is often forgotten/ignored

63

The Punzi effect

Giovanni Punazi:
“Comments on likelihood fits with variable resolution,"

In the Proceedings of PHYSTAT2003: Statistical Problems
in Particle Physics, Astrophysics, and Cosmology, Menlo
Park, California, 8-11 Sep

2003, pp WELT002

larXiv:physics/0401045]

64

https://arxiv.org/abs/physics/0401045v1

A toy problem: sample composition

- Two classes of events, A and B,
distinguished by variable x

ux)=0, 1forA B
o(x) is unknown for both

- Determine fraction of type-A events
with likelihood fit:

- Check result with toys generated with
=1/3

- All as expected. Statistical uncertainty
onfis ~0.083

807

60}

40

20¢

Mean = 0.337 + 0.004
Std dev = 0.083

65

Now a little modification

- Assume that for each event we measure, In addition to x;,
also its uncertainty o;

- We can use the per-event uncertainty o;in place of the
average uncertainty oto improve the precision of the
estimated fraction (since we use more information)

- One is tempted to write the new likelihood as

L(f) — H [f G(Cﬁz\OaU) + (1 o f) G(ajiu?a)]

L(f) = H S G(240,04) + (1 =) G(i[1, 0)]

1

66

Check again with toys and...

80

60

40+

207

L(f) — H [fG(il?z|Oaf7) + (1 - f) G(xi‘laa)]

Mean = 0.337 + 0.004
Std dev = 0.083

L(f) = H f G(xi]0,00) + (1 = f) G(z4]1,04)]

60f

50¢

40¢

30}

20}

10}

Mean = 0.514 + 0.007

Stddev=0.14

.6 0.8 1

- fis biased and its uncertainty is larger. What did go wrong®?

NB: toy generated o; uniformly distributed in [1.0,2.0] for category

A, and in [1.5,3.0] for category B

67

The likelihood is wrong

- The new problem is very different from the previous one: it has two
observables (x;,0i). The likelihood must now be written based on the PDF
of the (x;,0) pair

+ The expression

fG(xi]0,0;) + (1 = f) G(x:]1, 0;)

Is not the probability to find the pair (x;,0), P(x;,0). Actually, it’s not even the
probability to find x;, P(x). It’s the probability to find x; given o, P(xi|o))

+ |t should be obvious that P(x;0)) is not the same as P(xj|oi), nor the same
as P(x). e.q.,

P(female) # P(female | pregnant) # P(female, pregnant)

68

FIXing the mistake

+ The (only) correct PDF Is
P(QJZ', 0'7;)

P(x;,0;, (AorB))
(5,04, A) + P(x;,04, B)

|
e

— P(A)P(xs,04|A) + P(B)P(,0:| B)
= [P(@s,0i|A) + (1~))P(x:, 04| B)

— P(xz|0'z:) g z’fl) + <1 - f)P(xZ‘O-Z B)P(UZ‘B)

+ Hence, the (only) correct likelihood is

L(f) = H S G(i]0,0;)P(oi|A) + (1 = f)

1

G(xi|1,0;)P(0;|B)]

69

Now It works!

L(f) = H Lf G(xi]0,04)P(0;]|A)
L(f) =][[f G(xil0,03) + (1 = f) G(wi[1,04)] " (1= f)G(zill, 0:)P(0:| B)]

1

60}
Mean = 0.335 + 0.003

Std dev = 0.03

Mean = 0.514 + 0.007 200;
Std dev =0.14 150}

50¢

40+

30¢ 1007
20¢
507
107

And, as expected, the uncertainty on the fraction is also
smaller than in the case with fixed resolution

70

Avoid the “Punzi effect”

- |t may happen that the wrong likelihood actually works, but
that’s not a good reason to use it (the PDF remains wrong!)

- E.g., IFF P(0ilA) = P(oi|B), the term becomes an irrelevant
constant multiplying the likelihood

L(f) = H S G(zi]0,04) + (1 — f) G(zi|1, 04)] P(oi)

1

max L(f) = maXH fG(2i|0,0;) + (1 = f) G(x4|1, 04)]

- Always explicitly assign a PDF for all olbbservables (i.e., any
guantity with an event index /) to each of your likelihood terms

71

Typical hiccups from real-life fitting

72

The fit does not converge... there has to be
something wrong...

Not

necessarily

- The convergence of a minimization procedure Is a
numerical issue associated with our lack of skill in finding
suitable algorithms for minimizing complicated functions

Inp

mMinN|

a fu

rinciple, it should always be possible to find the
mum of a function evaluated over a set of data and as

nction of some parameters

- Convergence or not convergence per se does not tell
much about the model quality

73

The fit does not converge... there has to be
something wrong...

- However, always look for mistakes on your side starting from the
implementation of the FCN in the code: e.g., incorrect PDF
normalization in the likelihood, ill-defined problem with unneeded
free parameters, etc...

- Started too far from the solution. The FCN may have unphysical
local minima, especially at infinity in some variables. Change
starting values to avoid these regions, change parametrization, or
add boundaries (but remember the caveats from few slides ago)

- The fit may converge even for ill-defined problem, always check
that the error matrix is positive-definite at the minimum (if not, the
estimated uncertainties are meaningless)

74

Frequent “mistakes” affecting the converge of a fit

- A straight line has two parameters, but a linear probability
distribution function has only one:

f(z|a,b) = a + bx
l4+qgx

} = p(x[g=b/a) =

Fla,b) =1

I1

q
(w2 —x1) + 5@3 — x7)

75

Frequent “mistakes” affecting the converge of a fit

- A straight line has two parameters, but a linear probabillity
distribution function has only one:

f(z|a,b) = a + bx .
T2 =b/a) = a2
xif(x‘a’ =1 L= (72 — 71) + g(fg — 27)

+ When fitting for fractions use a robust parametrization:

3
p(x|fy, f2. f3) Zfzpz —) fi=1
1=1

O0< g <1

1=aq

5 5

1_Q1_QQ) 75

Frequent “mistakes” affecting the converge of a fit

- A straight line has two parameters, but a linear probabillity
distribution function has only one:

f(z|a,b) = a + bx .
T2 =b/a) = a2
xif(m‘a’ =1 L= (72 — 71) + %(w% — 27)

+ When fitting for fractions use a robust parametrization:

3
p(x|fy, f2. f3) Zfzpz —) fi=1
1=1

0<qg <1 0<qg <1

1=aq 1=aq

.f2—(12 .f2 (1—q1)q

(1 —q1 — q2) = (1—q1) 1_Q2) 75

