Fitting: A guided overview

Angelo Di Canto Belle II Academy — March 25, 2021

Basics about fitting (for more see D. Tonelli's talk)

What is fitting?

- Combining observed data x into a statistical model p(x|m) to infer the value of parameter m and its uncertainty
- Typically made by means of an estimator e(x) which is a function of the data x.
 Because the data are a random variable, so is the estimator e(x), which has its own probability distribution p[e(x)]
- For all practical purposes, the estimators that you will encounter in the great majority of analysis applications are the following:
 - Maximum-likelihood estimate is asymptotically $(N \rightarrow \infty)$ consistent (unbiased), efficient (smallest possible variance), and normal (Gaussian distributed)
 - Least-squares estimate is asymptotically efficient for binned data, can be numerically more stable (particularly when the model depends linearly on *m*), and convenient when an assessment of goodness-of-fit is important

Maximum likelihood

- The model p(x|m) is the probability density function to observe a generic data point x, given the unobservable value of the parameters m
- The likelihood is computed by taking the actual observed data points x_i and evaluate

$$L(m) = \prod_{i}^{\text{events}} p(x_i|m)$$

- The likelihood expresses the probability of observing data *x* for different values of the parameter *m* (not the probability that m has some value given the data)
- Given the data, the parameter values m_{low} that decrease L(m) are disfavored as it would be unlikely for nature to generate that set of observed data, had the true value of m been m_{low} . Conversely, values m_{high} that increase L(m) are favored
 - The value of m that maximizes the likelihood is not the "most likely value of m", it is the value of m that makes your data most likely

Least-squares from the maximum-likelihood

Assume to have *N* independent observations $y_1, ..., y_N$ that fluctuate following Gaussian distributions of known variance $V[y_i] = \sigma_i^2$.

around their known expected values

$$E[y_i] = \lambda(x_i; \theta)$$

that are functions of a known variable x_i and unknown parameter θ .

The likelihood function is $L(\theta) = \prod_{i=1}^{N} f(y_i; \theta) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{(y_i - \lambda(x_i; \theta))^2}{2\sigma_i^2}\right]$ The logarithm is $\ln L(\theta) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \lambda(x_i; \theta))^2}{\sigma_i^2} + \text{ terms not depending on } \theta$

Hence, maximizing the likelihood is equivalent to minimizing the least-squares

$$\chi^{2}(\theta) = -2\ln L(\theta) = \sum_{i=1}^{N} \frac{(y_{i} - \lambda(x_{i}; \theta))^{2}}{\sigma_{i}^{2}}$$

Maximum-likelihood/least-squares on a plot

Maximum-likelihood/least-squares on a plot

Maximum-likelihood/least-squares on a plot

Fitting roadmap by D. Tonelli

Which fitting framework shall I use?

- Any that you understand and that best suits your needs
- The most used/recommended in HEP is RooFit

https://root.cern/manual/roofit/

- However, as most other fitting frameworks, RooFit relies on Minuit to perform the minimization and estimate the uncertainties
- To understand your fitting framework you most likely want to understand Minuit first

What is Minuit?

- A standalone package to find/calculate numerically
 - The (local) minimum of any arbitrary function F(p), where p is a set of parameters (typically least-squares or negative log-likelihood)
 - The covariance matrix of these parameters (at the minimum)
- Minuit was originally written in fortran by F. James, and then adapted to C++ within ROOT by R. Brun
- F. James and M. Winkler have also re-designed and re-implemented the algorithm in C++ (Minuit2)
- There's also a python wrapper called iminuit

What exactly minimization means

- The function to minimize, F, does not need to be known analytically. It is sufficient to know its value $F(\mathbf{p})$, at any point \mathbf{p}
- Minuit looks for a local minimum: *i.e.*, the point \hat{p} where $F(\hat{p}) < F(p)$ for any p in some neighborhood around \hat{p} (different starting points may result in different minima)
- The general strategy for finding a local minimum is simply to vary *p* by small steps, in a direction which causes *F* to decrease, until one finds the point *p̂* from which *F* increases in all allowed directions

• Although not needed, if the numerical values of the derivative $\partial F(\mathbf{p})/\partial \mathbf{p}$ at any point \mathbf{p} is known, they can be used to help in the minimization

What Minuit does not

- All the rest that has to do with fitting:
 - Data handling
 - Graphics (data visualization, fit projections, etc...)
 - Validation with pseudoexperiments
 - *etc...*
- (These instead are typically available in fitting frameworks such as RooFit)

Minuit main algorithms

- MIGRAD Performs a local minimization of the FCN using a variable-step method based on the estimated direction of the gradient. The minimization produces as a by-product also the error matrix of the parameters
- HESSE Calculates the full second-derivative matrix of the FCN using a finite difference method. Used to improve the estimation of the parabolic errors obtained by MIGRAD
- MINOS Performs a scan of the FCN, profiled in each given dimension (*i.e.*, by minimizing all other parameters at each scan point), around the local minimum to estimate asymmetric errors
 - CONTOUR Performs a scan of the FCN, profiled in the given two dimensions, around the local minimum to estimate border (contour) of 2D confidence-level intervals

HESSE vs MINOS

Some practical examples

Instructions

• Get the fitting examples from **b2-fitting-training**

git clone ssh://git@stash.desy.de:7999/b2t/b2-fitting-training.git cd b2-fitting-training/

- Sphinx documentation
- Today we concentrate on the examples based on Minuit (which are written in C++ and require to be compiled)

cd minuit

Instructions (if you are not using KEKCC)

• To compile you just need CMake, ROOT and TCLAP. If they are installed in your system, compile all examples with

mkdir build; cd build cmake ../ make

 If TCLAP is not installed in your system, download it and run cmake with

cmake -D TCLAP_PATH=path_to_tclap_dir ../

• If CMake or ROOT are not installed... then work from KEKCC

Instructions (for KEKCC)

 On KEKCC you can get CMake and ROOT by setting up any recent basf2 release

source /cvmfs/belle.cern.ch/tools/b2setup release-04-01-04

• Then follow the instructions from the previous slide but specify gcc/g++ as compilers when running the cmake command with

```
mkdir build; cd build
cmake -D CMAKE_C_COMPILER=`which gcc` \
-D CMAKE_CXX_COMPILER=`which g++` \
-D TCLAP_PATH=path_to_tclap_dir ../
```

make

How to run the examples

• The compiled executables are in the bin directory

ls ../bin

 To understand how to use any of them, run with the –h argument, e.g. do

cd .. ./bin/simple-ld-fit -h

• To run do

mkdir output ./bin/simple-ld-fit -p -o output

Example 1: simple 1D unbinned likelihood fit

Simple 1D fit

- Unbinned likelihood fit to the beam-constrained mass distribution of $B^0 \rightarrow K^* \gamma$ decay candidates reconstructed in simulation, to determine the fraction of signal decays
- The input data is provided by the ROOT ntuple BtoKstG contained in the file example-data/fitme.root. The branch of the tree corresponding to the beamconstrained mass is B0_mbc
- The example code using the ROOT's **TFitter** interface to Minuit (but the basic concepts are independent of the interface)

Design a fitter based on Minuit

- Conceptual steps:
 - Prepare the data to fit to
 - Write the function to minimize (*i.e.*, choose model and estimator)
 - Setup Minuit
 - Define the parameters of the fit, their starting values and their allowed ranges
 - Specify the sequence of algorithms to use for minimization and estimation of the covariance matrix
 - Configure each algorithm
 - Access fit results
 - Plot the results for graphical visualization
 - Prepare tools for validation of the fitter (*e.g.*, generation of pseudoexperiments)

The function to minimize: FCN

$$-2\log L(\vec{\theta}) = -2\sum_{i \in \text{data}} \log \text{pdf}(m_i | \vec{\theta})$$

```
49 // Computation of -2*log(likelihood)
   void logLfun(int &/*npar*/, double * /*gin*/, double &result, double *pars, int /* flag */)
50
51 {
      result = 0.;
52
      for (auto m : data) {
53
         double prob = fit_pdf(&m,pars);
54
         if (prob<=0.) prob = 1e-300;</pre>
55
         result -= 2.*log(prob);
56
      }
57
58 }
```

Fit model

 Assuming two components: signal described by a Crystal Ball with *n* fixed to 15, and background described by Argus

$$\mathrm{pdf}_{\mathrm{sgn}}(m|\mu,\sigma,\alpha) \propto \begin{cases} e^{-\frac{1}{2}\left(\frac{m-\mu}{\sigma}\right)^2} & \text{if } \frac{m-\mu}{\sigma} > \alpha\\ \left(\frac{n}{|\alpha|} - |\alpha| - \frac{m-\mu}{\sigma}\right)^{-n} & \text{if } \frac{m-\mu}{\sigma} \le -\alpha \end{cases}$$

$$pdf_{bkg}(m|m_0,c) \propto \begin{cases} \frac{m}{m_0^3} \sqrt{1 - \frac{m^2}{m_0^2}} e^{-\frac{1}{2}c^2 \left(1 - \frac{m^2}{m_0^2}\right)} & \text{if } m \le m_0 \\ 0 & \text{if } m > m_0 \end{cases}$$

• The total PDF is the sum weighted by the signal fraction $pdf(m|\mu, \sigma, \alpha, m_0, c) = f_{sgn} pdf_{sgn}(m|\mu, \sigma, \alpha) + (1 - f_{sgn}) pdf_{bkg}(m|m_0, c)$

Setup Minuit (using ROOT's TFitter interface)

```
// Configure MINUIT
93
       TFitter *fitter = new TFitter(npars);
94
95
       fitter->SetFCN(logLfun);
96
97
       double printlevel(args.prlevel);
       fitter->ExecuteCommand("SET PRI",&printlevel,1);
98
       if (printlevel<0) fitter->ExecuteCommand("SET NOW",&printlevel,0);
99
100
101
       double strategy(2.);
       fitter->ExecuteCommand("SET STRAT",&strategy,1);
102
103
       double errdef(1.);
104
       fitter->ExecuteCommand("SET ERR",&errdef,1);
105
106
107
       double eps_machine(std::numeric_limits<double>::epsilon());
       fitter->ExecuteCommand("SET EPS",&eps_machine,1);
108
109
110
       // Define and initialize parameters
       fitter->SetParameter(0,
                                "f_{sig}", 0.7, 1e-3, 0.0, 1.0);
111
                                    "#mu_{CB}", 5.28, 1e-3, 5.2, 5.3);
       fitter->SetParameter(1,
112
       fitter->SetParameter(2, "#sigma_{CB}", 3e-3, 1e-4, 0.0, 1.5e-2);
113
       fitter->SetParameter(3, "#alpha_{CB}", 1.3, 1e-3, 0.1, 5.0);
114
       fitter->SetParameter(4,
                                      "n_{CB}", 15., 1e-3, 0.0, 0.0);
115
       fitter->FixParameter(4);
116
       fitter->SetParameter(5, "m_{cutoff}", 5.29, 1e-3, 5.2, 5.3);
117
       fitter->SetParameter(6, "c_{curvature}", -20., 1.0, -80., -1.0);
118
119
       // Run minimization and compute uncertainties
120
121
       double arglist[] = {5000., 1.};
       fitter->ExecuteCommand("MIGRAD", arglist, 2);
122
       fitter->ExecuteCommand("HESSE",arglist,2);
123
```

The arguments of ExecuteCommand are the same as those used in fortran 24

Setup Minuit

• Set minimization strategy to 2 for reliable results

SET STRategy <level>

Sets the strategy to be used in calculating first and second derivatives and in certain minimization methods. In general, low values of <level> mean fewer function calls and high values mean more reliable minimization. Currently allowed values are 0, 1 (default), and 2.

• Set errors' definition according to your use-case (1D 68% CL intervals corresponds to $\Delta \chi = 1$ or $\Delta \log L = 0.5$)

SET ERRordef <up>

Sets the value of UP (default value= 1.), defining parameter errors. Minuit defines parameter errors as the change in parameter value required to change the function value by UP. Normally, for chisquared fits UP=1, and for negative log likelihood, UP=0.5.

Setup Minuit

• Define the fit parameters

 SetParameter() 		
Int_t TFitter::SetParameter (Int_t const Doubl Doubl Doubl Doubl Doubl)	<pre>ipar, ipar, char * parname, le_t value, le_t verr, le_t vlow, le_t vhigh</pre>	virtual
 set initial values for a parameter ipar : parameter number parname : parameter name value : initial parameter value verr : initial error for this para vlow : lower value for the par vhigh : upper value for the par 	e ameter ← initial step size (if set to 0, parameter remain fixed) ^{rameter} } boundaries (none, if both set to 0)	

Parameter boundaries

 When boundaries on a parameter are specified, Minuit internally converts the parameter such that the boundaries cannot be exceeded

- Boundaries should be avoided: they complicate the problem (since the above transformation is non-linear) and, more importantly, they may affect the estimation of the error matrix by HESSE (when a parameter gets close to the limit, the error matrix becomes singular)
- Workaround when that is not possible: (1) find the minimum with boundaries, (2) release the boundaries, (3) rerun MIGRAD and HESSE to confirm to be in a minimum and compute the uncertainties

Run the minimization

Call MIGRAD

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single method, recommended for general functions (see also MINImize). The minimization produces as a by-product the error matrix of the parameters, which is usually reliable unless warning messages are produced. The optional argument [maxcalls] specifies the (approximate) maximum number of function calls after which the calculation will be stopped even if it has not yet converged. The optional argument [tolerance] specifies required tolerance on the function value at the minimum. The default tolerance is 0.1, and the minimization will stop when the estimated vertical distance to the minimum (EDM) is less than 0.001*[tolerance]*UP (see SET ERR).

 One should use at least HESSE (same arguments as MIGRAD) after MIGRAD to obtain reliable errors for a given fit result. MINOS will give the best estimate of the errors, but may be computationally expensive (particularly for large numbers of free parameters)

** 1 **SET PRI 1	

** 2 **SET STRAT 2	

NOW USING STRATEGY 2: MAKE SURE MINIMUM TRUE, ERRORS CORRECT	

** 3 **SET ERR 1	

** 4 **SET EPS 2.22e-16	

FLOATING-POINT NUMBERS ASSUMED ACCURATE TO 2.22045e-16	
PARAMETER DEFINITIONS:	
NO. NAME VALUE STEP SIZE LIMITS	
1 f_{sig} 7.00000e-01 1.00000e-03 0.00000e+00 1.00000e+00	
2 #mu_{CB} 5.28000e+00 1.00000e-03 5.20000e+00 5.30000e+00	
3 #sigma_{CB}	
4 #alpha_{CB}	
5 n_{CB} 1.50000e+01 1.00000e-03 no limits	

** 5 **FIX 5	

PARAMETER DEFINITIONS:	
NO. NAME VALUE STEP SIZE LIMITS	
6 m_{cutoff} 5.29000e+00 1.00000e-03 5.20000e+00 5.30000e+00	
7 c_{curvature} -2.00000e+01 1.00000e+00 -8.00000e+01 -1.00000e+00	

** 6 **MIGRAD 5000 1	

FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4.	
START MIGRAD MINIMIZATION. STRATEGY 2. CONVERGENCE WHEN EDM .LT. 1.00e-	-03
MINILL WARNING IN HESSE	

MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=-42065.7 FROM MIGRAD STATUS=CONVERGED 521 CALLS 522 TOTAL
EDM=3.25071e-05 STRATEGY= 2 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 f_{sig} 5.43992e-01 1.09225e-02 7.25749e-04 -4.63661e-02
2 #mu_{CB} 5.27958e+00 8.80003e-05 8.51942e-05 -1.06408e+00
3 #sigma_{CB} 3.32971e-03 7.43293e-05 4.40399e-04 1.81416e-02
4 #alpha_{CB} 1.08400e+00 7.93500e-02 1.23038e-03 -1.53757e-01
5 n_{CB} 1.50000e+01 fixed
6 m_{cutoff} 5.28980e+00 1.44704e-04 2.31412e-04 1.31000e+00
7 c_{curvature} -4.41732e+01 3.29219e+00 2.97963e-03 -1.14514e-02
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 6 ERR DEF=1
1.193e-04 1.673e-07 1.000e-07 -4.520e-04 -3.948e-08 2.416e-02
1.673e-07 7.744e-09 -3.093e-09 -3.991e-06 6.639e-11 4.353e-05
1.000e-07 -3.093e-09 5.525e-09 2.665e-06 -1.821e-09 3.362e-05
-4.520e-04 -3.991e-06 2.665e-06 6.300e-03 -1.087e-06 -1.160e-01
-3.948e-08 6.639e-11 -1.821e-09 -1.087e-06 2.094e-08 3.655e-05
2.416e-02 4.353e-05 3.362e-05 -1.160e-01 3.655e-05 1.086e+01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 6 7
1 0.75053 1.000 0.174 0.123 -0.521 -0.025 0.671
2 0.62698 0.174 1.000 -0.473 -0.571 0.005 0.150
3 0.67554 0.123 -0.473 1.000 0.452 -0.169 0.137
4 0.79403 -0.521 -0.571 0.452 1.000 -0.095 -0.443
6 0.24386 -0.025 0.005 -0.169 -0.095 1.000 0.077
7 0.70424 0.671 0.150 0.137 -0.443 0.077 1.000

** 7 **HESSE 5000 1

COVARIANCE MATRIX CALCULATED SUCCESSEULLY
FCN=-42065.7 FROM HESSE STATUS=0K 40 CALLS 562 TOTAL
EDM=3.25445c 05 STRATEGY= 2 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE
1 f_{sig} 5.43992e-01 1.09214e-02 1.45150e-04 8.80987e-02
2 #mu_{CB} 5.27958e+00 8.80710e-05 1.70388e-05 6.33034e-01
3 #sigma_{CB} 3.32971e-03 7.44537e-05 1.76159e-05 -5.89613e-01
4 #alpha_{CB} 1.08400e+00 7.93465e-02 2.46075e-04 -1.32078e+01
5 n_{CB} 1.50000e+01 fixed
6 m_{cutoff} 5.28980e+00 1.44897e-04 9.25649e-06 9.20754e-01
7 c_{curvature} -4.41732e+01 3.29116e+00 5.95925e-04 -9.31271e-02
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 6 ERR DEF=1
1.193e-04 1.674e-07 1.002e-07 -4.512e-04 -4.214e-08 2.415e-02
1.674e-07 7.757e-09 -3.107e-09 -4.000e-06 7.183e-11 4.352e-05
1.002e-07 -3.107e-09 5.544e-09 2.678e-06 -1.857e-09 3.368e-05
-4.512e-04 -4.000e-06 2.678e-06 6.299e-03 -1.095e-06 -1.157e-01
-4.214e-08 7.183e-11 -1.857e-09 -1.095e-06 2.100e-08 3.583e-05
2.415e-02 4.352e-05 3.368e-05 -1.157e-01 3.583e-05 1.086e+01
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2 3 4 6 7
1 0.75047 1.000 0.174 0.123 -0.520 -0.027 0.671
2 0.62779 0.174 1.000 -0.474 -0.572 0.006 0.150
3 0.67689 0.123 -0.474 1.000 0.453 -0.172 0.137
4 0.79433 -0.520 -0.572 0.453 1.000 -0.095 -0.443
6 0.24599 -0.027 0.006 -0.172 -0.095 1.000 0.075
7 0.70402 0.671 0.150 0.137 -0.443 0.075 1.000

Status of covariance matrix from the code

```
// Access status of the covariance matrix
125
       TMinuit *minuit = fitter->GetMinuit();
126
       double fmin, fedm; int npari, nparx, istat;
127
       minuit->mnstat(fmin,fedm,errdef,npari,nparx,istat);
128
       if (istat!=3) {
129
          // istat is a status integer indicating how good is the covariance matrix:
130
          // 0= not calculated at all
131
          // 1= approximation only, not accurate
132
          // 2= full matrix, but forced positive-definite
133
          // 3= full accurate covariance matrix
134
          std::cout << "Covariance matrix status = " << istat << std::endl;</pre>
135
          return -2;
136
       }
137
```

Fit projections

Goodness-of-fit for unbinned likelihood fits

- Goodness-of-fit is built-in in least-squares estimates. Can we devise a solid goodness-of-fit determination for unbinned MLE too?
- Some (e.g., G. Cowan book) suggest to use the distribution of the value of the likelihood at its maximum as a distribution from which to extract a *p*-value. It is easy to demonstrate that such approach is flawed, for example see arXiv:physics/0310167
- Others (e.g., arXiv:006.3019) have cooked up various ad-hoc methods and claim they achieve the desired goal, but no general demonstration of their success and properties is given, so no guarantee exists that they'll work in general problems
- To date, no widely accepted method for evaluating goodness-of-fit in unbinned fits exists
 - Approximated goodness-of-fit measures based on binning the unbinned data offer a semiqualitative indication of the compatibility with the model and are usually reported when goodness-of-fit is important in unbinned fits
Goodness-of-fit for least-squares fits

- If the model is correct, the value of the least-squares at the minimum LS($\hat{\theta}$) is distributed like a χ^2 with ndf equal to the number of points minus the number of free parameters
- Since *E*(χ²) = ndf, some usually quote χ²/ndf as measurement of the goodness-of-fit. That's flawed, you should instead use the probability (computed by TMath::Prob(chi2,ndf) in ROOT)

$$p(\mathrm{LS}(\hat{\theta}), \mathrm{ndf}) = \int_{\mathrm{LS}(\hat{\theta})}^{\infty} \chi^2(t|\mathrm{ndf})dt \qquad \begin{array}{l} \text{e.g., } p(3,2) \approx 22\% \\ p(300,200) \approx 6 \times 10^{-6} \end{array}$$

• Does the χ^2 capture the full goodness-of-fit? Not really, being insensitive to the sign of the deviation between the data and the model. The χ^2 test can be complemented with the runs test of the deviations

Small uncertainties do not imply a good fit (nor viceversa)

Small statistical uncertainties do not mean the fit is good, nor viceversa:

Uncertainty size is driven by the curvature of LS/–logL near its minimum

 \Box For LS goodness of fit is driven by the actual value at minimum LS_{min}~ χ^2

Variance of estimator (*i.e.*, statistical uncertainty on the estimate) tells us about the spread in values of the estimator if one repeats the estimate many times on independent samples

Goodness of fit ($\chi^2 p$ -value) tells us what fraction of repeated experiments will give equal of worse agreement with model according to LS_{min} and assuming that the hypothesis is correct. Low *p*-value suggest incorrect model (==> systematic uncertainty)

Likelihood profile in 1D

Likelihood profile in 1D

```
223
           // Likelihood profile
           std::cout << "Plotting likelihood profile vs " << fitter->GetParName(1) << "..." << std::endl;</pre>
224
           double minFCN(fmin);
225
           double fcn[21], par[21];
226
           double pmin(5.27), pstep(0.001);
227
228
           unsigned int n(0);
           char name[20];
229
           double oldvalue, err, low, high;
230
           for (unsigned int i=0; i<21; ++i) {</pre>
231
              fitter->GetParameter(1, name, oldvalue, err, low, high);
232
              fitter->SetParameter(1, name, pmin+i*pstep, 0., low, high);
233
              if ( 0 != fitter->ExecuteCommand("MIGRAD", arglist, 2) ) continue;
234
              minuit->mnstat(fmin,fedm,errdef,npari,nparx,istat);
235
              par[n] = fitter->GetParameter(1);
236
              fcn[n] = fmin;
237
              if (fcn[n] < minFCN) {</pre>
238
                 minFCN = fcn[n];
239
                 std::cout << "Found new global minimum." << std::endl;</pre>
240
              }
241
242
              n++;
           }
243
          for (unsigned int i=0; i<n; ++i) fcn[i] -= minFCN;</pre>
244
245
           auto g_profile = new TGraph(n,par,fcn);
246
           g_profile->SetTitle("");
247
           g_profile->GetXaxis()->SetTitle(fitter->GetParName(1));
248
           g_profile->GetYaxis()->SetTitle("#minus2#Deltalog#it{L}");
249
           g_profile->SetLineWidth(2);
250
```

Likelihood profile in 2D (CONTOUR)

Likelihood profile in 2D (CONTOUR)

```
196
           // 2D contour
           std::cout << "Plotting 95% CL contour in (" << fitter->GetParName(1) << "," <<</pre>
197
              fitter->GetParName(3) << ") plane..." << std::endl;</pre>
          printlevel = -1;
198
199
          fitter->ExecuteCommand("SET PRI",&printlevel,1);
          fitter->ExecuteCommand("SET NOW",&printlevel,0);
200
201
          fitter->SetErrorDef( ROOT::Math::chisguared_guantile(0.95,2) );
202
           auto g_cont = (TGraph*) minuit->Contour(60,1,3);
203
          fitter->SetErrorDef(errdef);
204
205
          TCanvas c2("c2","c2");
206
          if (g_cont) {
207
              g_cont->SetTitle("");
208
              g_cont->GetXaxis()->SetTitle(fitter->GetParName(1));
209
              g_cont->GetYaxis()->SetTitle(fitter->GetParName(3));
210
              g_cont->SetLineWidth(2);
211
              g_cont->Draw("al");
212
213
              Plotter::plot_text("95% C.L.",0.9,0.88);
214
215
              outfilename = args.outdir + "simple-1d-fit_contour.pdf";
216
              c2.Print(outfilename.c_str());
217
           } else {
218
              std::cout << "Contour failed" << std::endl;</pre>
219
              c2.Close();
220
           }
221
```

Likelihood profile in 2D (CONTOUR)

	Confidence level (probability contents desired inside				
Number of	hypercontour of $\chi^2 = \chi^2_{\min} + UP$)				
Parameters	50%	70%	90%	95%	99%
1	0.46	1.07	2.70	3.84	6.63
2	1.39	2.41	4.61	5.99	9.21
3	2.37	3.67	6.25	7.82	11.36
4	3.36	4.88	7.78	9.49	13.28
5	4.35	6.06	9.24	11.07	15.09
6	5.35	7.23	10.65	12.59	16.81
7	6.35	8.38	12.02	14.07	18.49
8	7.34	9.52	13.36	15.51	20.09
9	8.34	10.66	14.68	16.92	21.67
10	9.34	11.78	15.99	18.31	23.21
11	10.34	12.88	17.29	19.68	24.71
	If FCN is $-\log(\text{likelihood})$ instead of χ^2 , all values of UP				
	should be divided by 2.				

Example 2: efficiency fit

Frequentist approach

- Let's consider a simple counting experiment where N_{pass} is the number of events satisfying a given selection criteria out of a total of N events
- The estimated efficiency is

$$\hat{\varepsilon} = \frac{N_{\text{pass}}}{N}$$

• Since the process of applying some selection criteria is binomial (the event can either pass or fail the criteria) with probability equal to the "true" efficiency ε , the estimated statistical uncertainty is

$$\hat{\sigma}_{\varepsilon} = \sqrt{\frac{\hat{\varepsilon}(1-\hat{\varepsilon})}{N}}$$

• This is the most used approach to compute the uncertainty on the efficiency, when sufficiently far away from the limiting cases in which $\hat{\varepsilon}=0$ or 1 (for other approaches see, e.g., ROOT's **TEfficiency**)

Alternative derivation

• Changing point of view, let's consider the number of events passing (N_{pass}) or failing ($N_{fail} = N - N_{pass}$) the selection criteria as independent Poisson countings

$$\hat{\varepsilon} = \frac{N_{\text{pass}}}{N_{\text{pass}} + N_{\text{fail}}}, \quad \hat{\sigma}_{N_{\text{pass}/\text{fail}}} = \sqrt{N_{\text{pass}/\text{fail}}}$$

$$\hat{\sigma}_{\varepsilon} = \frac{\sqrt{N_{\text{pass}}^2 \sigma_{N_{\text{fail}}}^2 + N_{\text{fail}}^2 \sigma_{N_{\text{pass}}}^2}}{(N_{\text{pass}} + N_{\text{fail}})^2} = \frac{\sqrt{N_{\text{pass}}^2 N_{\text{fail}} + N_{\text{fail}}^2 N_{\text{pass}}}}{(N_{\text{pass}} + N_{\text{fail}})^2}$$

$$= \sqrt{\frac{\hat{\varepsilon}(1 - \hat{\varepsilon})}{N}}$$

Alternative derivation: why does it work?

$$\begin{array}{l} x \sim \operatorname{Poisson}(\mu_x) \\ y \sim \operatorname{Poisson}(\mu_y) \end{array} \implies P(x = k | x + y = n) = \operatorname{Binomial}\left(k; n, \varepsilon = \frac{\mu_x}{\mu_x + \mu_y}\right) \end{array}$$

Proof:

$$P(x = k|x + y = n) = \frac{P(x = k)P(x + y = n|x = k)}{P(x + y = n)}$$

$$= \frac{\frac{\mu_x^k}{k!} e^{-\mu_x} \frac{\mu_y^{n-k}}{(n-k)!} e^{-\mu_y}}{\frac{(\mu_x + \mu_y)^n}{n!} e^{-(\mu_x + \mu_y)}} = \frac{n!}{k!(n-k)!} \frac{\mu_x^k \mu_y^{n-k}}{(\mu_x + \mu_y)^n}$$

$$= \frac{n!}{k!(n-k)!} \frac{\mu_x^k \mu_y^{n-k}}{(\mu_x + \mu_y)^{n-k+k}} = \frac{n!}{k!(n-k)!} \left(\frac{\mu_x}{\mu_x + \mu_y}\right)^k \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{n-k}$$

$$= \binom{n}{k} \varepsilon^k (1 - \varepsilon)^{n-k}$$

What if it's not just counting?

- All the above holds for a simple counting experiments.
 Often, however, we need to determine the number of "signal" events out of a sample where also background is present
- Typically this is done by separating signal and background on a statistical basis using a fit to some distribution that gives enough discrimination power
- The fit returns an uncertainty on the number of signal events that includes also the uncertainty due to the background subtraction

Uncertainty on the efficiency in the case of fitting

 Among possible correct methods, the easiest is to use the alternative approach: *i.e.*, fit the independent samples that pass and fail the selection criteria and compute

$$\hat{\sigma}_{\varepsilon} = \frac{\sqrt{\hat{N}_{\text{pass}}^2 \hat{\sigma}_{N_{\text{fail}}}^2 + \hat{N}_{\text{fail}}^2 \hat{\sigma}_{N_{\text{pass}}}^2}}{(\hat{N}_{\text{pass}} + \hat{N}_{\text{fail}})^2}$$

- Other approaches have been suggested/used, some of which may occasionally even work, but they generally misestimate the uncertainty (*e.g.*, see this talk)
- Even better would be to perform a simultaneous fit with *ɛ* as shared parameter, *e.g.*,

./bin/efficiency-fit -p -g -n 1000000 -o output/

Efficiency fit

- Simultaneous least-squares fit to the mass distributions of $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ decay candidates passing and failing the requirement $p(K^-) > 1$ GeV/c, to determine the efficiency of the requirement on both signal and background decays.
- The data consists pseudo data generated from some assumed mass model and input efficiencies
- Two histograms are filled: the first with candidates passing the kaon-momentum requirement (h_{pass}), the second with candidates failing the requirement (h_{fail})

The function to minimize: FCN

$$\mathrm{LS}(\vec{\theta}_{\mathrm{pass}}, \vec{\theta}_{\mathrm{fail}}) = \sum_{i \in h_{\mathrm{pass}}} \left(\frac{n_i - n_i^{\mathrm{pass}}(\vec{\theta}_{\mathrm{pass}})}{\sigma_i} \right)^2 + \sum_{i \in h_{\mathrm{fail}}} \left(\frac{n_i - n_i^{\mathrm{fail}}(\vec{\theta}_{\mathrm{fail}})}{\sigma_i} \right)^2$$

```
71 // Computation of least squares
72 double chi2(0.); int ndf(0);
73
74 void leastSquares(int &/*npar*/, double * /*gin*/, double &result, double *pars, int /* flag */)
75 {
      chi2 = 0.; ndf = 0;
76
77
      // compute least squares
78
      for (unsigned int i=1; i<nbins; ++i) {</pre>
79
          double m = hpass->GetBinCenter(i);
80
81
          double epass = hpass->GetBinError(i);
82
         if (epass!=0.) {
83
             double res = hpass->GetBinContent(i) - fpass(&m,pars);
84
             chi2 += res*res/epass/epass;
85
             ndf++;
86
         }
87
88
89
         double efail = hfail->GetBinError(i);
         if (efail!=0.) {
90
91
             double res = hfail->GetBinContent(i) - ffail(&m,pars);
92
             chi2 += res*res/efail/efail;
             ndf++;
93
94
         }
95
      }
96
97
      result = chi2;
98 }
```

Predicted number of candidates (*i.e.*, the fit function)

 Mass distribution of signal and background candidates described by

$$pdf_{sgn}(m|\mu,\sigma) \propto e^{-\frac{1}{2}\left(\frac{m-\mu}{\sigma^2}\right)^2}$$
$$pdf_{bkg}(m|\lambda) \propto e^{-\lambda m}$$

 Shapes for candidates passing/failing the selection could be different: *e.g.*, assume different peak resolution for signal and different slopes for background

 $n_{i}^{\text{pass}}(N_{\text{sgn}}, \epsilon_{\text{sgn}}, \mu, \sigma_{\text{pass}}, N_{\text{bkg}}, \epsilon_{\text{bkg}}, \lambda_{\text{pass}}) = N_{\text{sgn}}\epsilon_{\text{sgn}} \text{pdf}_{\text{sgn}}(m_{i}|\mu, \sigma_{\text{pass}}) + N_{\text{bkg}}\epsilon_{\text{bkg}} \text{pdf}_{\text{bkg}}(m_{i}|\lambda_{\text{pass}})$ $n_{i}^{\text{fail}}(N_{\text{sgn}}, \epsilon_{\text{sgn}}, \mu, \sigma_{\text{fail}}, N_{\text{bkg}}, \epsilon_{\text{bkg}}, \lambda_{\text{fail}}) = N_{\text{sgn}}(1 - \epsilon_{\text{sgn}}) \text{pdf}_{\text{sgn}}(m_{i}|\mu, \sigma_{\text{fail}}) + N_{\text{bkg}}(1 - \epsilon_{\text{bkg}}) \text{pdf}_{\text{bkg}}(m_{i}|\lambda_{\text{fail}})$

** 6 **HESSE 5000 1					

COVARIANCE MATRIX CALCULATED SUCCESSFULLY					
FCN=264.632 FROM HESSE STATUS=0K 75 CALLS 1488 TOTAL					
EDM=2.10224e-06 STRATEGY= 2 ERROR MATRIX ACCURATE					
EXT PARAMETER INTERNAL INTERNAL					
NO. NAME VALUE ERROR STEP SIZE VALUE					
1 N_{sig} 3.99902e+05 6.95535e+02 8.60820e-08 -1.44422e+00					
2 #epsilon_{sig} 6.99934e-01 8.40303e-04 1.39374e-06 4.11372e-01					
3 N_{bkg} 5.99500e+05 8.28125e+02 8.43860e-08 -1.41576e+00					
4 #epsilon_{bkg} 2.98510e-01 6.37407e-04 1.08683e-06 -4.14770e-01					
5 #mu 1.86499e+00 6.25911e-06 6.69834e-08 -1.33826e-01					
6					
7 #sigma_{fail} 3.10719e-03 1.05031e-05 2.86439e-08 -1.45925e+00					
8 #lambda_{pass} 1.53915e+00 5.53262e-02 4.39965e-05 1.53915e+00					
9 #lambda_{fail} 1.60332e+01 4.14499e-02 6.55460e-06 1.60332e+01					
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 9 ERR DEF=1					
4.838e+05 -7.077e-02 -8.419e+04 -9.017e-03 -3.501e-05 4.121e-04 1.193e-03 -6.242e-01 1.564e+00					
-7.077e-02 7.061e-07 7.101e-02 -7.356e-08 6.602e-11 3.088e-10 -2.087e-09 -4.532e-07 -2.737e-06					
-8.419e+04 7.101e-02 6.858e+05 1.000e-02 3.438e-05 -4.139e-04 -1.197e-03 3.750e-01 -1.684e+00					
-9.017e-03 -7.356e-08 1.000e-02 4.063e-07 -1.122e-11 -4.841e-10 5.958e-10 4.303e-07 8.388e-07					
-3.501e-05 6.602e-11 3.438e-05 -1.122e-11 3.918e-11 -1.697e-13 -1.092e-12 6.427e-09 2.427e-09					
4.121e-04 3.088e-10 -4.139e-04 -4.841e-10 -1.697e-13 3.598e-11 4.731e-15 -8.368e-09 -1.052e-11					
1.193e-03 -2.087e-09 -1.197e-03 5.958e-10 -1.092e-12 4.731e-15 1.103e-10 -1.791e-10 3.472e-08					
-6.242e-01 -4.532e-07 3.750e-01 4.303e-07 6.427e-09 -8.368e-09 -1.791e-10 3.061e-03 3.982e-07					
1.564e+00 -2.737e-06 -1.684e+00 8.388e-07 2.427e-09 -1.052e-11 3.472e-08 3.982e-07 1.718e-03					
PARAMETER CORRELATION COEFFICIENTS					
NO.GLOBAL 1 2 3 4 5 6 7 8 9					
1 0.24298 1.000 -0.121 -0.146 -0.020 -0.008 0.099 0.163 -0.016 0.054					
2 0.29607 -0.121 1.000 0.102 -0.137 0.013 0.061 -0.237 -0.010 -0.079					
3 0.21382 -0.146 0.102 1.000 0.019 0.007 -0.083 -0.138 0.008 -0.049					
4 0.19679 -0.020 -0.137 0.019 1.000 -0.003 -0.127 0.089 0.012 0.032					
5 0.02970 -0.008 0.013 0.007 -0.003 1.000 -0.005 -0.017 0.019 0.009					
6 0.18519 0.099 0.061 -0.083 -0.127 -0.005 1.000 0.000 -0.025 -0.000					
7 0.30096 0.163 -0.237 -0.138 0.089 -0.017 0.000 1.000 -0.000 0.080					
8 0.03678 -0.016 -0.010 0.008 0.012 0.019 -0.025 -0.000 1.000 0.000					
9 0.11364 0.054 -0.079 -0.049 0.032 0.009 -0.000 0.080 0.000 1.000					
chi2/ndf = 264.632/289					
Probability = 0.845097					

Fit projections

Validate fit with pseudoexperiments

- Use pseudoexperiments (*a.k.a.* toy Monte Carlo simulation) drawn from the PDF to understand the distribution of the fit estimators and their properties prior to applying them to data
- Choose a plausible true value of the relevant parameters m and generate several sets of simulated data x from random numbers distributed according to p(x|m)
- Run the fit on each set (that is, repeat the experiment) and look at the distribution of the estimator
- Repeat for all relevant choices of true values for *m* (important and often overlooked)

Validate for any possible true fit parameters

Different methods to compute the uncertainty on the efficiency

Different true values for fit parameters

Pseudoexperiments

- Use numerical methods for sampling distributions of relevant quantities (e.g., observables, estimators, likelihood ratios, etc) to then calculate probabilities and related quantities
- Typically it boils down to:
 - Generate a random sequence $r_1, r_2, ..., r_n$ uniformly distributed in [0,1]
 - Use this to produce another sequence $x_1, x_2, ..., x_n$ distributed according to some PDF, p(x) x can be multidimensional
 - Use the x values to estimate the properties of p(x), e.g., mean, variance, fraction of values with a < x < b, etc
- Genuinely random numbers can be extracted from physics processes (time intervals between radioactive decays, thermal noise across a resistor, atmospheric radio noise). Usually tabulated in large databases and impractical to use (*e.g.*, www.random.org)

Pseudorandom number generators

- Typically we use sequences of pseudorandom numbers. If properly handled, they are indistinguishable from true random numbers and are reproducible, which is useful for debugging
- Various available with different performances (*e.g.*, mid-square method, linear congruential generators, Mersenne Twister algorithm, *etc*).
 As usual, understand what you're doing
- In practice, TRandom3 from ROOT (based on the Mersenne Twister algorithm) is relatively fast and sufficiently random for most HEP usages

Triplets generated with LCG

From uniform to *p*(x): the inverse cumulative method

- Generate r_i uniformly distributed in [0,1]
- Compute x_i such that $r_i = CDF(x_i)$ where

$$\operatorname{CDF}(x) = \int_0^x p(t)dt$$

• That is $x_i = CDF^{-1}(r_i)$

From uniform to p(x): the (von Neumann) accept-reject method

- Enclose the *f*(*x*) in a "box"
 - Generate x_i uniformly in [x_{min}, x_{max}] starting from r_i uniform in [0,1]

 $X_i = X_{\min} + r_i \left(X_{\max} - X_{\min} \right)$

- Generate y_i uniformly in [0, f_{max}]
- If $y_i < f(x)$, then accept x_i , otherwise reject it

From uniform to p(x): the (von Neumann) accept-reject method

- Enclose the *f*(*x*) in a "box"
 - Generate x_i uniformly in [x_{min}, x_{max}] starting from r_i uniform in [0,1]

 $X_i = X_{\min} + r_i \left(X_{\max} - X_{\min} \right)$

- Generate y_i uniformly in [0, f_{max}]
- If $y_i < f(x)$, then accept x_i , otherwise reject it
- For improved efficiency smooth the "box" as much as possible

From uniform to p(x): the (von Neumann) accept-reject method

- Enclose the *f*(*x*) in a "box"
 - Generate x_i uniformly in [x_{min}, x_{max}] starting from r_i uniform in [0,1]

 $X_i = X_{\min} + r_i \left(X_{\max} - X_{\min} \right)$

- Generate y_i uniformly in [0, f_{max}]
- If $y_i < f(x)$, then accept x_i , otherwise reject it
- For improved efficiency smooth the "box" as much as possible

Code to generate pseudodata

```
// Parameters used in the toy generation
const double toy_epssig(0.7), toy_epsbkg(0.3);//signal and background efficiencies
const double toy_fsig(0.4);//fraction of signal decays
const double toy_mu(1.865);//signal peak position
const double toy_spass(3.5e-3), toy_sfail(3.1e-3);//signal peak widths for candidates
passing/failing the selection
29 const double toy_lbpass(1.5), toy_lbfail(16.);//background slopes for candidates passing/failing
```

```
the selection
```

```
123
       // Fill the input data
        if ( args.gentoy ) {
124
125
           std::cout << "Generating toy..." << std::endl;</pre>
126
127
           TRandom3 r(args.seed);
           unsigned int n = r.Poisson(args.nevents);
128
129
           for (unsigned int i=0; i<n; i++) {</pre>
              double m; bool pass;
130
131
              if (r.Uniform(0.,1.) < toy_fsig) {</pre>
132
                 // generate signal event
133
                 do {
134
                     // simulate signal efficiency
135
                     pass = (r.Uniform(0.,1.) < toy_epssig);</pre>
136
137
                     // generate mass
                     m = (pass) ? r.Gaus(toy_mu,toy_spass) : r.Gaus(toy_mu,toy_sfail);
138
139
                 } while (m<m_min || m>m_max);
              } else {
140
                 // generate bkg event with the iverse cumulative method
141
                 pass = (r.Uniform(0., 1.) < toy_epsbkg);
142
                 double l = (pass) ? toy_lbpass : toy_lbfail;
143
144
                 double u = r.Uniform(0.,1.);
                 m = -\log(\exp(-1*m_{min}) - u*(\exp(-1*m_{min})-\exp(-1*m_{max})))/1;
145
              }
146
147
148
              if (pass) hpass->Fill(m);
149
              else hfail->Fill(m);
           }
150
        } else {
151
```

Example 3: 2D fit with correlated variables

Lifetime fit

 Assume you want to measure the lifetime of the D⁰ meson by fitting the decay-time distribution

$$pdf(t|\tau, b, \sigma, ...) \propto \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true}|b, \sigma, ...) dt_{true}$$

- The resolution function *R* depends on the experimental setup and can be often quite complicated
- In general its mean value, b, quantifies
 a possible bias in the estimation of t and
 its standard deviation, σ, quantifies
 how well the decay time is measured

Lifetime fit with per-candidate resolution

- However, for some candidates the decay time is much easier to measure than for some others. The candidate-by-candidate decay-time uncertainty, σ_t , is then often used to have a more precise estimation of the resolution function
- The PDF now becomes function of two observables t and \(\sigma_t\), which in this case can be conveniently written as the product of two terms using the conditional probability:

$$pdf(t, \sigma_t | \tau, b) = pdf(\sigma_t) pdf(t | \sigma_t, \tau, b)$$
$$\propto pdf(\sigma_t) \int_0^\infty e^{-t_{\text{true}}/\tau} G(t - t_{\text{true}} | b, \sigma_t) dt_{\text{true}}$$

Lifetime fit with per-candidate resolution

- However, for some candidates the decay time is much easier to measure than for some others. The candidate-by-candidate decay-time uncertainty, σ_t , is then often used to have a more precise estimation of the resolution function
- The PDF now becomes function of two observables t and \(\sigma_t\), which in this case can be conveniently written as the product of two terms using the conditional probability:

This term is often forgotten/ignored

$$pdf(t, \sigma_t | \tau, b) = pdf(\sigma_t) pdf(t | \sigma_t, \tau, b)$$
$$\propto pdf(\sigma_t) \int_0^\infty e^{-t_{\text{true}}/\tau} G(t - t_{\text{true}} | b, \sigma_t) dt_{\text{true}}$$

The Punzi effect

Giovanni Punzi:

``Comments on likelihood fits with variable resolution,"

In the Proceedings of PHYSTAT2003: Statistical Problems in Particle Physics, Astrophysics, and Cosmology, Menlo Park, California, 8-11 Sep 2003, pp WELT002

[arXiv:physics/0401045]
A toy problem: sample composition

• Two classes of events, A and B, distinguished by variable x

 $\mu(x) = 0$, 1 for A, B $\sigma(x)$ is unknown for both

 Determine fraction of type-A events with likelihood fit:

$$L(f) = \prod_{i} [f G(x_i | \mu = 0, \sigma) + (1 - f) G(x_i | \mu = 1, \sigma)]$$

- Check result with toys generated with f=1/3
- All as expected. Statistical uncertainty on *f* is ~0.083

Now a little modification

- Assume that for each event we measure, in addition to x_i , also its uncertainty σ_i
- We can use the per-event uncertainty σ_i in place of the average uncertainty σ to improve the precision of the estimated fraction (since we use more information)
- One is tempted to write the new likelihood as

$$L(f) = \prod_{i} \left[f G(x_i|0,\sigma) + (1-f) G(x_i|1,\sigma) \right]$$

$$L(f) = \prod_{i} \left[f G(x_i|0,\sigma_i) + (1-f) G(x_i|1,\sigma_i) \right]$$

Check again with toys and...

- *f* is biased and its uncertainty is larger. What did go wrong?
- NB: toy generated *σ_i* uniformly distributed in [1.0,2.0] for category *A*, and in [1.5,3.0] for category *B*

The likelihood is wrong

- The new problem is very different from the previous one: it has two observables (x_i, σ_i). The likelihood must now be written based on the PDF of the (x_i, σ_i) pair
- The expression

$$f G(x_i|0,\sigma_i) + (1-f) G(x_i|1,\sigma_i)$$

is not the probability to find the pair (x_i, σ_i) , $P(x_i, \sigma_i)$. Actually, it's not even the probability to find x_i , $P(x_i)$. It's the probability to find x_i given σ_i , $P(x_i|\sigma_i)$

• It should be obvious that $P(x_{i},\sigma_{i})$ is not the same as $P(x_{i}|\sigma_{i})$, nor the same as $P(x_{i})$: *e.g.*,

 $P(\text{female}) \neq P(\text{female} \mid \text{pregnant}) \neq P(\text{female}, \text{pregnant})$

Fixing the mistake

• The (only) correct PDF is

$$P(x_i, \sigma_i) = P(x_i, \sigma_i, (A \circ rB))$$

= $P(x_i, \sigma_i, A) + P(x_i, \sigma_i, B)$
= $P(A)P(x_i, \sigma_i|A) + P(B)P(x_i, \sigma_i|B)$
= $fP(x_i, \sigma_i|A) + (1 - f)P(x_i, \sigma_i|B)$
= $fP(x_i|\sigma_i, A) \cdot P(\sigma_i|A) + (1 - f)P(x_i|\sigma_i, B) \cdot P(\sigma_i|B)$

• Hence, the (only) correct likelihood is

$$L(f) = \prod_{i} \left[f G(x_i|0,\sigma_i) P(\sigma_i|A) + (1-f) G(x_i|1,\sigma_i) P(\sigma_i|B) \right]$$

 And, as expected, the uncertainty on the fraction is smaller than in the case with fixed resolution

- It may happen that the wrong likelihood actually works, but that's not a good reason to use it (the PDF remains wrong!)
 - *E.g.*, IFF $P(\sigma_i|A) = P(\sigma_i|B)$, the term becomes an irrelevant constant multiplying the likelihood

$$L(f) = \prod_{i} [f G(x_{i}|0,\sigma_{i}) + (1-f) G(x_{i}|1,\sigma_{i})] P(\sigma_{i})$$
$$\max L(f) = \max \prod_{i} [f G(x_{i}|0,\sigma_{i}) + (1-f) G(x_{i}|1,\sigma_{i})]$$

 Always explicitly assign a PDF for all observables (*i.e.*, any quantity with an event index *i*) to each of your likelihood terms

Typical hiccups from real-life fitting

The fit does not converge... there has to be something wrong...

- Not necessarily
- The convergence of a minimization procedure is a numerical issue associated with our lack of skill in finding suitable algorithms for minimizing complicated functions
- In principle, it should always be possible to find the minimum of a function evaluated over a set of data and as a function of some parameters
- Convergence or not convergence per se does not tell much about the model quality

The fit does not converge... there has to be something wrong...

- However, always look for mistakes on your side starting from the implementation of the FCN in the code: *e.g.*, incorrect PDF normalization in the likelihood, ill-defined problem with unneeded free parameters, *etc...*
- Started too far from the solution. The FCN may have unphysical local minima, especially at infinity in some variables. Change starting values to avoid these regions, change parametrization, or add boundaries (but remember the caveats from few slides ago)
- The fit may converge even for ill-defined problem, always check that the error matrix is positive-definite at the minimum (if not, the estimated uncertainties are meaningless)

Frequent "mistakes" affecting the converge of a fit

• A straight line has two parameters, but a linear probability distribution function has only one:

$$\begin{cases} f(x|a,b) = a + bx \\ \int_{x_1}^{x_2} f(x|a,b) = 1 \end{cases} \implies p(x|q \equiv b/a) = \frac{1+qx}{(x_2 - x_1) + \frac{q}{2}(x_2^2 - x_1^2)}$$

Frequent "mistakes" affecting the converge of a fit

• A straight line has two parameters, but a linear probability distribution function has only one:

$$\begin{cases} f(x|a,b) = a + bx \\ \int_{x_1}^{x_2} f(x|a,b) = 1 \end{cases} \implies p(x|q \equiv b/a) = \frac{1+qx}{(x_2 - x_1) + \frac{q}{2}(x_2^2 - x_1^2)}$$

• When fitting for fractions use a robust parametrization:

$$p(x|f_1, f_2, f_3) = \sum_{i=1}^{3} f_i p_i(x) \implies \sum_{i=1}^{3} f_i = 1$$

$$0 \leq q_i \leq 1$$

$$f_1 = q_1$$

$$f_2 = q_2$$

$$f_3 = (1 - q_1 - q_2)$$

Frequent "mistakes" affecting the converge of a fit

• A straight line has two parameters, but a linear probability distribution function has only one:

$$\begin{cases} f(x|a,b) = a + bx \\ \int_{x_1}^{x_2} f(x|a,b) = 1 \end{cases} \implies p(x|q \equiv b/a) = \frac{1+qx}{(x_2 - x_1) + \frac{q}{2}(x_2^2 - x_1^2)}$$

• When fitting for fractions use a robust parametrization:

$$p(x|f_1, f_2, f_3) = \sum_{i=1}^3 f_i p_i(x) \implies \sum_{i=1}^3 f_i = 1$$

$$0 \le q_i \le 1$$

$$f_1 = q_1$$

$$f_2 = q_2$$

$$f_3 = (1 - q_1 - q_2)$$

$$0 \le q_i \le 1$$

$$f_1 = q_1$$

$$f_2 = (1 - q_1)q_2$$

$$f_3 = (1 - q_1)(1 - q_2)$$

