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Basics about fitting 
(for more see D. Tonelli’s talk)
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https://indico.belle2.org/event/1332/contributions/6424/attachments/3194/4876/Fitting.pdf


What is fitting?

• Combining observed data x into a statistical model p(x|m) to infer the value of 
parameter m and its uncertainty 

• Typically made by means of an estimator e(x) which is a function of the data x. 
Because the data are a random variable, so is the estimator e(x), which has its 
own probability distribution p[e(x)] 

• For all practical purposes, the estimators that you will encounter in the great 
majority of analysis applications are the following: 

• Maximum-likelihood estimate is asymptotically (N→∞) consistent (unbiased), 
efficient (smallest possible variance), and normal (Gaussian distributed) 

• Least-squares estimate is asymptotically efficient for binned data, can be 
numerically more stable (particularly when the model depends linearly on m), 
and convenient when an assessment of goodness-of-fit is important
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Maximum likelihood

• The model p(x|m) is the probability density function to observe a generic data point x, 
given the unobservable value of the parameters m 

• The likelihood is computed by taking the actual observed data points xi and evaluate 
 
 
 

• The likelihood expresses the probability of observing data x for different values of the 
parameter m (not the probability that m has some value given the data) 

• Given the data, the parameter values mlow that decrease L(m) are disfavored as it would 
be unlikely for nature to generate that set of observed data, had the true value of m 
been mlow. Conversely, values mhigh that increase L(m) are favored  

• The value of m that maximizes the likelihood is not the “most likely value of m”, it is 
the value of m that makes your data most likely
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Least-squares from the maximum-likelihood
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Assume to have N independent observations y1,…,yN  
that fluctuate following Gaussian distributions of 
known variance 
 
around their known expected values


that are functions of a known variable xi and unknown 
parameter θ. 
 
The likelihood function is 


The logarithm is


Hence, maximizing the likelihood is equivalent to minimizing the least-squares



Maximum-likelihood/least-squares on a plot
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Maximum-likelihood/least-squares on a plot
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central value



Maximum-likelihood/least-squares on a plot
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central value

logL(m̂± �̂) ⇡ logLmax �
1
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Uncertainty
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Fitting roadmap by D. Tonelli

I absolutely need GOF or 
have so many data that 

unbinned ~ binned

Least-squares fit 

I need most precise estimate and/
or have a small data sample

Assume model p(x|m)

Maximum likelihood fit to unbinned data

Check estimator properties

Lots of 
simulation

Lots of 
simulation



Which fitting framework shall I use?

• Any that you understand and that best suits your needs 

• The most used/recommended in HEP is RooFit 
 
                   https://root.cern/manual/roofit/ 

• However, as most other fitting frameworks, RooFit relies 
on Minuit to perform the minimization and estimate the 
uncertainties 

• To understand your fitting framework you most likely want 
to understand Minuit first
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http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/


What is Minuit?

• A standalone package to find/calculate numerically  

• The (local) minimum of any arbitrary function F(p), where p is a set 
of parameters (typically least-squares or negative log-likelihood) 

• The covariance matrix of these parameters (at the minimum) 

• Minuit was originally written in fortran by F. James, and then adapted 
to C++ within ROOT by R. Brun 

• F. James and M. Winkler have also re-designed and re-implemented 
the algorithm in C++ (Minuit2) 

• There’s also a python wrapper called iminuit
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What exactly minimization means

• The function to minimize, F, does not need to be known analytically. It is 
sufficient to know its value F(p), at any point p 

• Minuit looks for a local minimum: i.e., the 
point p̂ where F(p̂) < F(p) for any p in some 
neighborhood around p̂ (different starting points 
may result in different minima) 

• The general strategy for finding a local 
minimum is simply to vary p by small 
steps, in a direction which causes F to 
decrease, until one finds the point p̂ from 
which F increases in all allowed directions 

• Although not needed, if the numerical values of the derivative ∂F(p)/∂p at any 
point p is known, they can be used to help in the minimization
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What Minuit does not

• All the rest that has to do with fitting: 

• Data handling 

• Graphics (data visualization, fit projections, etc…) 

• Validation with pseudoexperiments 

• etc… 

• (These instead are typically available in fitting frameworks 
such as RooFit)
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Minuit main algorithms

• MIGRAD — Performs a local minimization of the FCN using a variable-step 
method based on the estimated direction of the gradient. The minimization 
produces as a by-product also the error matrix of the parameters 

• HESSE — Calculates the full second-derivative matrix of the FCN using a 
finite difference method. Used to improve the estimation of the parabolic 
errors obtained by MIGRAD 

• MINOS — Performs a scan of the FCN, profiled in each given dimension 
(i.e., by minimizing all other parameters at each scan point), around the local 
minimum to estimate asymmetric errors 

• CONTOUR — Performs a scan of the FCN, profiled in the given two 
dimensions, around the local minimum to estimate border (contour) of 2D 
confidence-level intervals
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HESSE vs MINOS
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Some practical examples
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Instructions

• Get the fitting examples from b2-fitting-training 
 
git clone ssh://git@stash.desy.de:7999/b2t/b2-fitting-training.git 
cd b2-fitting-training/ 

• Sphinx documentation 

• Today we concentrate on the examples based on Minuit 
(which are written in C++ and require to be compiled) 
 
cd minuit
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https://stash.desy.de/projects/B2T/repos/b2-fitting-training/browse
https://software.belle2.org/development/sphinx/zzz-fitting/doc/index.html


Instructions (if you are not using KEKCC)

• To compile you just need CMake, ROOT and TCLAP. If they 
are installed in your system, compile all examples with 
 
mkdir build; cd build 
cmake ../ 
make 

• If TCLAP is not installed in your system, download it and run 
cmake with 
 
cmake -D TCLAP_PATH=path_to_tclap_dir ../ 

• If CMake or ROOT are not installed… then work from KEKCC
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http://tclap.sourceforge.net


Instructions (for KEKCC)

• On KEKCC you can get CMake and ROOT by setting up any 
recent basf2 release 
 
source /cvmfs/belle.cern.ch/tools/b2setup release-04-01-04 

• Then follow the instructions from the previous slide but specify 
gcc/g++ as compilers when running the cmake command with 
 
mkdir build; cd build 
cmake -D CMAKE_C_COMPILER=`which gcc` \ 
                  -D CMAKE_CXX_COMPILER=`which g++` \ 
                      -D TCLAP_PATH=path_to_tclap_dir ../ 
make
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How to run the examples

• The compiled executables are in the bin directory 
 
ls ../bin 

• To understand how to use any of them, run with the –h 
argument, e.g. do 
 
cd .. 
./bin/simple-1d-fit –h 

• To run do 
 
mkdir output 
./bin/simple-1d-fit –p –o output
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Example 1: simple 1D unbinned likelihood fit
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Simple 1D fit

• Unbinned likelihood fit to the beam-constrained mass 
distribution of B0 → K*γ decay candidates reconstructed 
in simulation, to determine the fraction of signal decays 

• The input data is provided by the ROOT ntuple BtoKstG 
contained in the file example-data/fitme.root. The 
branch of the tree corresponding to the beam-
constrained mass is B0_mbc 

• The example code using the ROOT’s TFitter interface to 
Minuit (but the basic concepts are independent of the 
interface)
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https://root.cern.ch/doc/master/classTFitter.html


Design a fitter based on Minuit

• Conceptual steps: 

• Prepare the data to fit to 

• Write the function to minimize (i.e., choose model and estimator) 

• Setup Minuit 

• Define the parameters of the fit, their starting values and their allowed ranges 

• Specify the sequence of algorithms to use for minimization and estimation of 
the covariance matrix 

• Configure each algorithm 

• Access fit results 

• Plot the results for graphical visualization 

• Prepare tools for validation of the fitter (e.g., generation of pseudoexperiments)
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The function to minimize: FCN
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Fit model

• Assuming two components: signal described by a Crystal 
Ball with n fixed to 15, and background described by Argus 
 
 
 
 
 
 

• The total PDF is the sum weighted by the signal fraction 
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Setup Minuit (using ROOT’s TFitter interface)

24• The arguments of ExecuteCommand are the same as those used in fortran

https://root.cern.ch/doc/master/classTFitter.html#a82a940e58fed8f5156948922ea8826df
https://root.cern.ch/download/minuit.pdf


Setup Minuit

• Set minimization strategy to 2 for reliable results 
 
 
 

• Set errors’ definition according to your use-case (1D 68% 
CL intervals corresponds to Δ!=1 or ΔlogL = 0.5) 
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Setup Minuit

• Define the fit parameters
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} boundaries (none, if both set to 0)
← initial step size (if set to 0, parameter remain fixed)



• When boundaries on a parameter are specified, Minuit internally converts the parameter 
such that the boundaries cannot be exceeded 
 
 
 
 
 
 
 
 

• Boundaries should be avoided: they complicate the problem (since the above 
transformation is non-linear) and, more importantly, they may affect the estimation of the 
error matrix by HESSE (when a parameter gets close to the limit, the error matrix becomes 
singular) 

• Workaround when that is not possible: (1) find the minimum with boundaries, (2) release 
the boundaries, (3) rerun MIGRAD and HESSE to confirm to be in a minimum and 
compute the uncertainties
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p
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b
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2
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Parameter boundaries
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Run the minimization

• Call MIGRAD 
 
 
 
 
 
 
 

• One should use at least HESSE (same arguments as MIGRAD) 
after MIGRAD to obtain reliable errors for a given fit result. MINOS 
will give the best estimate of the errors, but may be computationally 
expensive (particularly for large numbers of free parameters)
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Status of covariance matrix from the code
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Fit projections
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Goodness-of-fit for unbinned likelihood fits

• Goodness-of-fit is built-in in least-squares estimates. Can we devise a solid 
goodness-of-fit determination for unbinned MLE too?  

• Some (e.g., G. Cowan book) suggest to use the distribution of the value of the 
likelihood at its maximum as a distribution from which to extract a p-value. It is easy 
to demonstrate that such approach is flawed, for example see arXiv:physics/0310167 

• Others (e.g., arXiv:006.3019)  have cooked up various ad-hoc methods and claim 
they achieve the desired goal, but no general demonstration of their success and 
properties is given, so no guarantee exists that they’ll work in general problems 

• To date, no widely accepted method for evaluating goodness-of-fit in unbinned fits 
exists 

• Approximated goodness-of-fit measures based on binning the unbinned data offer 
a semiqualitative indication of the compatibility with the model and are usually 
reported when goodness-of-fit is important in unbinned fits
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https://arxiv.org/abs/physics/0310167
https://arxiv.org/abs/1006.3019


Goodness-of-fit for least-squares fits

• If the model is correct, the value of the least-squares at the minimum LS(θ̂) 
is distributed like a !2 with ndf equal to the number of points minus the 
number of free parameters 

• Since E(!2) = ndf, some usually quote !2/ndf as measurement of the 
goodness-of-fit. That’s flawed, you should instead use the probability 
(computed by TMath::Prob(chi2,ndf) in ROOT) 
 
 
 

• Does the !2 capture the full goodness-of-fit? Not really, being insensitive to 
the sign of the deviation between the data and the model. The !2 test can 
be complemented with the runs test of the deviations
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p(LS(✓̂), ndf) =
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e.g., p(3,2) ≈ 22% 
        p(300,200) ≈ 6×10–6

https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test


Small uncertainties do not imply a good fit 
(nor viceversa)

36

Small statistical uncertainties do not mean the fit is good, nor viceversa:


Uncertainty size is driven by the curvature of LS/–logL near its minimum


 For LS goodness of fit is driven by the actual value at minimum LSmin~χ²


Variance of estimator (i.e., statistical uncertainty on the estimate) tells us 
about the spread in values of the estimator if one repeats the estimate many 
times on independent samples


Goodness of fit (χ² p-value) tells us what fraction of repeated experiments 
will give equal of worse agreement with model according to LSmin and 
assuming that the hypothesis is correct. Low p-value suggest incorrect 
model ( ==> systematic uncertainty)



Likelihood profile in 1D
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Likelihood profile in 1D
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Likelihood profile in 2D (CONTOUR)
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Likelihood profile in 2D (CONTOUR)
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Likelihood profile in 2D (CONTOUR)
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Example 2: efficiency fit
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Frequentist approach

• Let’s consider a simple counting experiment where Npass is the number of events 
satisfying a given selection criteria out of a total of N events 

• The estimated efficiency is 
 
 

• Since the process of applying some selection criteria is binomial (the event can 
either pass or fail the criteria) with probability equal to the ‘‘true’’ efficiency ε, the 
estimated statistical uncertainty is 
 
 

• This is the most used approach to compute the uncertainty on the efficiency, when 
sufficiently far away from the limiting cases in which ε̑=0 or 1 (for other approaches 
see, e.g., ROOT’s TEfficiency)
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Alternative derivation

• Changing point of view, let’s consider the number of 
events passing (Npass) or failing (Nfail = N – Npass) the 
selection criteria as independent Poisson countings
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Alternative derivation: why does it work?
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What if it’s not just counting?

• All the above holds for a simple counting experiments. 
Often, however, we need to determine the number of 
‘‘signal’’ events out of a sample where also background is 
present 

• Typically this is done by separating signal and background 
on a statistical basis using a fit to some distribution that 
gives enough discrimination power 

• The fit returns an uncertainty on the number of signal 
events that includes also the uncertainty due to the 
background subtraction
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Uncertainty on the efficiency in the case of fitting

• Among possible correct methods, the easiest is to use the alternative 
approach: i.e., fit the independent samples that pass and fail the selection 
criteria and compute 
 
 
 

• Other approaches have been suggested/used, some of which may 
occasionally even work, but they generally misestimate the uncertainty 
(e.g., see this talk) 

• Even better would be to perform a simultaneous fit with ε as shared 
parameter, e.g., 
 
./bin/efficiency-fit –p –g –n 1000000 –o output/
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Efficiency fit

• Simultaneous least-squares fit to the mass distributions of 
D0→K–π+π–π+ decay candidates passing and failing the 
requirement p(K–) > 1 GeV/c, to determine the efficiency 
of the requirement on both signal and background 
decays. 

• The data consists pseudo data generated from some 
assumed mass model and input efficiencies 

• Two histograms are filled: the first with candidates passing 
the kaon-momentum requirement (hpass), the second with 
candidates failing the requirement (hfail)
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The function to minimize: FCN
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• Mass distribution of signal and background candidates 
described by 
 
 

• Shapes for candidates passing/failing the selection could 
be different: e.g., assume different peak resolution for 
signal and different slopes for background

Predicted number of candidates 
(i.e., the fit function)
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Fit projections
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Validate fit with pseudoexperiments

• Use pseudoexperiments (a.k.a. toy Monte Carlo simulation) 
drawn from the PDF to understand the distribution of the fit 
estimators and their properties prior to applying them to data 

• Choose a plausible true value of the relevant parameters m  
and generate several sets of simulated data x from random 
numbers distributed according to p(x|m)   

• Run the fit on each set (that is, repeat the experiment) and 
look at the distribution of the estimator 

• Repeat for all relevant choices of true values for m (important 
and often overlooked)
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A standard diagnostics — fit pulls
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A standard diagnostics — fit pulls
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A standard diagnostics — fit pulls
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A standard diagnostics — fit pulls
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Pseudoexperiments

• Use numerical methods for sampling distributions of relevant quantities (e.g., 
observables, estimators, likelihood ratios, etc) to then calculate probabilities 
and related quantities 

• Typically it boils down to: 

• Generate a random sequence r1, r2, …, rn uniformly distributed in [0,1] 

• Use this to produce another sequence x1, x2, …, xn distributed according to 
some PDF, p(x) — x can be multidimensional 

• Use the x values to estimate the properties of p(x), e.g., mean, variance, 
fraction of values with a < x < b, etc 

• Genuinely random numbers can be extracted from physics processes (time 
intervals between radioactive decays, thermal noise across a resistor, 
atmospheric radio noise). Usually tabulated in large databases and impractical 
to use (e.g., www.random.org)
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Pseudorandom number generators

• Typically we use sequences of pseudorandom numbers. If properly 
handled, they are indistinguishable from true random numbers and 
are reproducible, which is useful for debugging 

• Various available with different 
performances (e.g., mid-square method, 
linear congruential generators, 
Mersenne Twister algorithm, etc). 
As usual, understand what you’re doing 

• In practice, TRandom3 from ROOT 
(based on the Mersenne Twister 
algorithm) is relatively fast and 
sufficiently random for most HEP usages
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From uniform to p(x): 
the inverse cumulative method

• Generate ri uniformly distributed in [0,1] 

• Compute xi such that ri = CDF(xi) where 

• That is xi = CDF–1(ri)
58
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Transformation method
The method

The transformation method allows in principle to draw
values at random from any distribution

1. Given a distribution p(y), the cumulative distribution
function (CDF) of p(y) is F (y) =

R
y

0 p(w) dw

2. We want to draw y uniformly in the shaded area, i.e.
uniformly over F (y); by construction 0  F (y)  1,

3. We draw x ⇠ U(0, 1) and find y so that x = F (y)

4. Therefore y(x) = F�1(x), x ⇠ U(0, 1)
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From uniform to p(x): 
the (von Neumann) accept-reject method

• Enclose the f(x) in a “box” 

• Generate xi uniformly in [xmin, xmax] 
starting from ri uniform in [0,1] 
 
      xi = xmin + ri (xmax – xmin) 

• Generate yi uniformly in [0, fmax] 

• If yi < f(x), then accept xi, 
otherwise reject it 

• For improved efficiency smooth the 
“box” as much as possible
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Code to generate pseudodata
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Example 3: 2D fit with correlated variables
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Lifetime fit

• Assume you want to measure the lifetime of the D0 meson by 
fitting the decay-time distribution 
 

• The resolution function R depends on 
the experimental setup and can be 
often quite complicated 

• In general its mean value, b, quantifies 
a possible bias in the estimation of t and 
its standard deviation, σ, quantifies 
how well the decay time is measured
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Lifetime fit with per-candidate resolution

• However, for some candidates the 
decay time is much easier to measure 
than for some others. The candidate-by-
candidate decay-time uncertainty, σt, is 
then often used to have a more precise 
estimation of the resolution function 

• The PDF now becomes function of two 
observables t and σt, which in this case 
can be conveniently written as the 
product of two terms using the 
conditional probability:
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The Punzi effect

[arXiv:physics/0401045]

https://arxiv.org/abs/physics/0401045v1


A toy problem: sample composition

• Two classes of events, A and B, 
distinguished by variable x 
 
  µ(x) = 0, 1 for A, B 
  σ(x) is unknown for both 

• Determine fraction of type-A events 
with likelihood fit: 
 
 

• Check result with toys generated with 
f=1/3 

• All as expected. Statistical uncertainty 
on f is ~0.083
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Comments on Likelihood fits with variable resolution
Giovanni Punzi
Scuola Normale Superiore and INFN, 56100 Pisa, Italy

Unbinned likelihood fits are frequent in Physics, and often involve complex functions with several components.
We discuss the potential pitfalls of situations where the templates used in the fit are not fixed but depend on the
event observables, as it happens when the resolution of the measurement is event–dependent, and the procedure
to avoid them.

When several categories of events are present in the
same data sample, an unbinned Maximum Likelihood
fit is often used to determine the proportion and the
properties of each class of events. This procedure
makes use of “templates”, representing the probability
distribution of the observables used in the fit for each
class of events. In the simplest cases the templates
are completely determined by the values assigned to
the parameters of the fit, but frequently a more so-
phisticated approach is chosen where templates vary
on an event by event basis, according to the resolution
of the measurement for that particular event. These
variations are due to the dependence of resolution on
extra variables, that change on an event-by-event ba-
sis . This may happen, for instance, when events are
recorded by a detector that has different resolutions
in different regions within its acceptance.

A common example of this kind of fit in HEP is
given by lifetime and/or mass fits (see [1] for a sample
list of recent experimental papers), where variations
in resolution occur as a consequence of different con-
figuration of each individual decay. The same kind of
issue hovewer is likely to arise in other situations.

The purpose of this short paper is to point out some
potential pitfalls in this kind of fitting procedure. I
will illustrate the point with reference to a simple toy
problem.

1. A toy problem

Consider an experiment in which two types of
events, A and B, can occur. Let f be the fraction
of type–A events, that is, the probability of a generic
event to be of type A. We want to extract a measure-
ment of f from a given sample of data. In order to do
this, we measure the value of an observable x, having
the following probability distributions:

p(x|A) = N(0, σ)

p(x|B) = N(1, σ)

Where σ is a known constant and N(µ, σ) is the nor-
mal distribution

This problem is easily solved using an “unbinned
Likelihood fit”. This consists of maximizing the Like-

lihood function:

L(f) =
∏

i

(fN(xi, 0, σ) + (1 − f)N(xi, 1, σ)) (1)

with respect to the required parameter f (here
N(x, µ, σ) indicates the gaussian function in the vari-
able x). This is very simple to perform with the help
of a numerical maximization program.

Let’s make a specific numeric example, where f =
1/3 and σ = 1 (see illustration in Fig. 1), and the
size of the data sample is 150 events. By repeteadly
generating MC samples of 150 events each, we obtain
the distribution of the Maximum Likelihood estimator
of f , which is shown in Fig. 2.
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Figure 1: Probability distribution of x for the toy
problem described in the text. Contribution of type–A
and type–B events are also shown.

Its mean is 0.3368 ± 0.0041 and SD = 0.083, in
agreement with expectations of 0.3333 and 0.088 re-
spectively (the latter coming from Fisher information
).
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Figure 2: Distribution of ML estimate of the fraction f
of type-A events (see text)
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Comments on Likelihood fits with variable resolution
Giovanni Punzi
Scuola Normale Superiore and INFN, 56100 Pisa, Italy

Unbinned likelihood fits are frequent in Physics, and often involve complex functions with several components.
We discuss the potential pitfalls of situations where the templates used in the fit are not fixed but depend on the
event observables, as it happens when the resolution of the measurement is event–dependent, and the procedure
to avoid them.

When several categories of events are present in the
same data sample, an unbinned Maximum Likelihood
fit is often used to determine the proportion and the
properties of each class of events. This procedure
makes use of “templates”, representing the probability
distribution of the observables used in the fit for each
class of events. In the simplest cases the templates
are completely determined by the values assigned to
the parameters of the fit, but frequently a more so-
phisticated approach is chosen where templates vary
on an event by event basis, according to the resolution
of the measurement for that particular event. These
variations are due to the dependence of resolution on
extra variables, that change on an event-by-event ba-
sis . This may happen, for instance, when events are
recorded by a detector that has different resolutions
in different regions within its acceptance.

A common example of this kind of fit in HEP is
given by lifetime and/or mass fits (see [1] for a sample
list of recent experimental papers), where variations
in resolution occur as a consequence of different con-
figuration of each individual decay. The same kind of
issue hovewer is likely to arise in other situations.

The purpose of this short paper is to point out some
potential pitfalls in this kind of fitting procedure. I
will illustrate the point with reference to a simple toy
problem.

1. A toy problem

Consider an experiment in which two types of
events, A and B, can occur. Let f be the fraction
of type–A events, that is, the probability of a generic
event to be of type A. We want to extract a measure-
ment of f from a given sample of data. In order to do
this, we measure the value of an observable x, having
the following probability distributions:

p(x|A) = N(0, σ)

p(x|B) = N(1, σ)

Where σ is a known constant and N(µ, σ) is the nor-
mal distribution

This problem is easily solved using an “unbinned
Likelihood fit”. This consists of maximizing the Like-

lihood function:

L(f) =
∏

i

(fN(xi, 0, σ) + (1 − f)N(xi, 1, σ)) (1)

with respect to the required parameter f (here
N(x, µ, σ) indicates the gaussian function in the vari-
able x). This is very simple to perform with the help
of a numerical maximization program.

Let’s make a specific numeric example, where f =
1/3 and σ = 1 (see illustration in Fig. 1), and the
size of the data sample is 150 events. By repeteadly
generating MC samples of 150 events each, we obtain
the distribution of the Maximum Likelihood estimator
of f , which is shown in Fig. 2.
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Figure 1: Probability distribution of x for the toy
problem described in the text. Contribution of type–A
and type–B events are also shown.

Its mean is 0.3368 ± 0.0041 and SD = 0.083, in
agreement with expectations of 0.3333 and 0.088 re-
spectively (the latter coming from Fisher information
).
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Figure 2: Distribution of ML estimate of the fraction f
of type-A events (see text)
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[f G(xi|µ = 0,�) + (1� f)G(xi|µ = 1,�)]



Now a little modification

• Assume that for each event we measure, in addition to xi, 
also its uncertainty σi 

• We can use the per-event uncertainty σi in place of the 
average uncertainty σ to improve the precision of the 
estimated fraction (since we use more information) 

• One is tempted to write the new likelihood as
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Check again with toys and…

• f is biased and its uncertainty is larger. What did go wrong? 

• NB: toy generated σi uniformly distributed in [1.0,2.0] for category 
A, and in [1.5,3.0] for category B
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2. A toy problem, with variable resolution

Let’s now suppose that the resolution of x is not
constant, but rather depends on the event: we are
assuming that each event xi comes together with an
individual value of σ (let it be σi). This situation
is encountered in many real–life problems, and the
common approach found in the literature is to simply
modify the Likelihood function as follows:

L(f) =
∏

i

fN(xi, 0, σi) + (1 − f)N(xi, 1, σi)) (2)

This looks like a pretty obvious generalization of ex-
pression (1). To test it in our toy problem, we mod-
ified our toy MC from previous example, by making
σ fluctuate at each event within an arbitrarily chosen
range (1.0 to 3.0), and again made repeated simulated
experiments of 150 events each, maximizing the Like-
lihood expression (2) to estimate f . The result of this
test is shown in Fig. 3, and rather surprisingly, shows
a very large bias with respect to the true value of f .
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Figure 3: Distribution of ML estimate of the fraction f
of type-A events, obtained from a ”conditional
Likelihood”

This may seem really odd, until one realizes that
this new problem is very different from the previous
one. Our problem now has actually two observables:
each observation consists of the pair of values (xi, σi)
rather than just xi, and its probability density de-
pends on both. This means that the Likelihood must
now be written based on the probability distributions
of the (xi, σi) pair:

L(f) =
∏

i

fp(xi, σi|A) + (1 − f)p(xi, σi|B) (3)

Remembering that p(xi, σi|X) = p(xi|σi, X)p(σi|X)
we can write the correct expression of the Likelihood
for our problem as:

L(f) =
∏

i

fN(xi, 0, σi)p(σi|A)

+ (1 − f)N(xi, 1, σi)p(σi|B) (4)

where p(σi|X) is the pdf of σi for events of type X , an
element that was absent in eq. (2); in fact, comparing
the two expressions shows that (2) is actually the con-
ditional probability distribution p(xi|σi, f) (one might

call it “conditional Likelihood”) rather than the full
distribution p(xi, σi|f). The difference matters for fit-
ting unless it happens that the distribution of σi is the
same for all types of events: p(σi|A) = p(σi|B). In
that case, p(σi) can be factored out, and the incom-
plete Likelihood of eq. (2) differs from the true Likeli-
hood just by a factor independent of f , that does not
affect the maximization.

In the specific MC test reported above, we simu-
lated a resolution 1.5 times worse for events of type
B than for type A, setting the σi distribution as flat
between 1 and 2 for A-type events, and flat between
1.5 and 3 for type-B events. We intentionally avoided
saying this explicitly before, in order to put the reader
in the typical situation encountered in reality, where
no attention is payed to the distribution of those reso-
lutions for the different classes of events considered in
the fit. It turns out from our example that this may
lead to very biased results.

In summary, expression (2) simply does not work for
fitting, and by a large amount: it can be said to belong
to that particular class of solutions nicely defined in
[2] as ‘SNW solutions’.

Conversely, if we use in fitting the correct expres-
sion of the Likelihood (eq. 4) we get the result shown
in fig. 4, showing a negligible bias. The resolution
of the fit is also much better, as the difference in the
distributions of the σ themselves gets exploited in sep-
arating the two samples; this however is a minor point
in comparison with the bias issue.
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Figure 4: Distribution of ML estimate of the fraction f
of type-A events, using the full Likelihood function

3. Additional tests

One may wonder at what features of the distribu-
tions make for a large bias. Table I shows results for
a few variants of the original problem. Tests include:

• Equal-width ranges of σ.

• Disjoint σ ranges.

• Constant, but different σ for A and B.

• Constant, and close σ’s for A and B.

• Same-mean σ distribution with different widths.
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Unbinned likelihood fits are frequent in Physics, and often involve complex functions with several components.
We discuss the potential pitfalls of situations where the templates used in the fit are not fixed but depend on the
event observables, as it happens when the resolution of the measurement is event–dependent, and the procedure
to avoid them.

When several categories of events are present in the
same data sample, an unbinned Maximum Likelihood
fit is often used to determine the proportion and the
properties of each class of events. This procedure
makes use of “templates”, representing the probability
distribution of the observables used in the fit for each
class of events. In the simplest cases the templates
are completely determined by the values assigned to
the parameters of the fit, but frequently a more so-
phisticated approach is chosen where templates vary
on an event by event basis, according to the resolution
of the measurement for that particular event. These
variations are due to the dependence of resolution on
extra variables, that change on an event-by-event ba-
sis . This may happen, for instance, when events are
recorded by a detector that has different resolutions
in different regions within its acceptance.

A common example of this kind of fit in HEP is
given by lifetime and/or mass fits (see [1] for a sample
list of recent experimental papers), where variations
in resolution occur as a consequence of different con-
figuration of each individual decay. The same kind of
issue hovewer is likely to arise in other situations.

The purpose of this short paper is to point out some
potential pitfalls in this kind of fitting procedure. I
will illustrate the point with reference to a simple toy
problem.

1. A toy problem

Consider an experiment in which two types of
events, A and B, can occur. Let f be the fraction
of type–A events, that is, the probability of a generic
event to be of type A. We want to extract a measure-
ment of f from a given sample of data. In order to do
this, we measure the value of an observable x, having
the following probability distributions:

p(x|A) = N(0, σ)

p(x|B) = N(1, σ)

Where σ is a known constant and N(µ, σ) is the nor-
mal distribution

This problem is easily solved using an “unbinned
Likelihood fit”. This consists of maximizing the Like-

lihood function:

L(f) =
∏

i

(fN(xi, 0, σ) + (1 − f)N(xi, 1, σ)) (1)

with respect to the required parameter f (here
N(x, µ, σ) indicates the gaussian function in the vari-
able x). This is very simple to perform with the help
of a numerical maximization program.

Let’s make a specific numeric example, where f =
1/3 and σ = 1 (see illustration in Fig. 1), and the
size of the data sample is 150 events. By repeteadly
generating MC samples of 150 events each, we obtain
the distribution of the Maximum Likelihood estimator
of f , which is shown in Fig. 2.
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Figure 1: Probability distribution of x for the toy
problem described in the text. Contribution of type–A
and type–B events are also shown.

Its mean is 0.3368 ± 0.0041 and SD = 0.083, in
agreement with expectations of 0.3333 and 0.088 re-
spectively (the latter coming from Fisher information
).
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Figure 2: Distribution of ML estimate of the fraction f
of type-A events (see text)
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The likelihood is wrong

• The new problem is very different from the previous one: it has two 
observables (xi,σi). The likelihood must now be written based on the PDF 
of the (xi,σi) pair 

• The expression 
 
 
 
is not the probability to find the pair (xi,σi), P(xi,σi). Actually, it’s not even the 
probability to find xi, P(xi). It’s the probability to find xi given σi, P(xi|σi) 

• It should be obvious that P(xi,σi) is not the same as P(xi|σi), nor the same 
as P(xi): e.g.,  
 
                 P(female) ≠ P(female | pregnant) ≠ P(female, pregnant)
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Fixing the mistake

• The (only) correct PDF is 
 
 
 
 
 

• Hence, the (only) correct likelihood is
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Now it works!

• And, as expected, the uncertainty on the fraction is also 
smaller than in the case with fixed resolution
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2. A toy problem, with variable resolution

Let’s now suppose that the resolution of x is not
constant, but rather depends on the event: we are
assuming that each event xi comes together with an
individual value of σ (let it be σi). This situation
is encountered in many real–life problems, and the
common approach found in the literature is to simply
modify the Likelihood function as follows:

L(f) =
∏

i

fN(xi, 0, σi) + (1 − f)N(xi, 1, σi)) (2)

This looks like a pretty obvious generalization of ex-
pression (1). To test it in our toy problem, we mod-
ified our toy MC from previous example, by making
σ fluctuate at each event within an arbitrarily chosen
range (1.0 to 3.0), and again made repeated simulated
experiments of 150 events each, maximizing the Like-
lihood expression (2) to estimate f . The result of this
test is shown in Fig. 3, and rather surprisingly, shows
a very large bias with respect to the true value of f .
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Figure 3: Distribution of ML estimate of the fraction f
of type-A events, obtained from a ”conditional
Likelihood”

This may seem really odd, until one realizes that
this new problem is very different from the previous
one. Our problem now has actually two observables:
each observation consists of the pair of values (xi, σi)
rather than just xi, and its probability density de-
pends on both. This means that the Likelihood must
now be written based on the probability distributions
of the (xi, σi) pair:

L(f) =
∏

i

fp(xi, σi|A) + (1 − f)p(xi, σi|B) (3)

Remembering that p(xi, σi|X) = p(xi|σi, X)p(σi|X)
we can write the correct expression of the Likelihood
for our problem as:

L(f) =
∏

i

fN(xi, 0, σi)p(σi|A)

+ (1 − f)N(xi, 1, σi)p(σi|B) (4)

where p(σi|X) is the pdf of σi for events of type X , an
element that was absent in eq. (2); in fact, comparing
the two expressions shows that (2) is actually the con-
ditional probability distribution p(xi|σi, f) (one might

call it “conditional Likelihood”) rather than the full
distribution p(xi, σi|f). The difference matters for fit-
ting unless it happens that the distribution of σi is the
same for all types of events: p(σi|A) = p(σi|B). In
that case, p(σi) can be factored out, and the incom-
plete Likelihood of eq. (2) differs from the true Likeli-
hood just by a factor independent of f , that does not
affect the maximization.

In the specific MC test reported above, we simu-
lated a resolution 1.5 times worse for events of type
B than for type A, setting the σi distribution as flat
between 1 and 2 for A-type events, and flat between
1.5 and 3 for type-B events. We intentionally avoided
saying this explicitly before, in order to put the reader
in the typical situation encountered in reality, where
no attention is payed to the distribution of those reso-
lutions for the different classes of events considered in
the fit. It turns out from our example that this may
lead to very biased results.

In summary, expression (2) simply does not work for
fitting, and by a large amount: it can be said to belong
to that particular class of solutions nicely defined in
[2] as ‘SNW solutions’.

Conversely, if we use in fitting the correct expres-
sion of the Likelihood (eq. 4) we get the result shown
in fig. 4, showing a negligible bias. The resolution
of the fit is also much better, as the difference in the
distributions of the σ themselves gets exploited in sep-
arating the two samples; this however is a minor point
in comparison with the bias issue.
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Figure 4: Distribution of ML estimate of the fraction f
of type-A events, using the full Likelihood function

3. Additional tests

One may wonder at what features of the distribu-
tions make for a large bias. Table I shows results for
a few variants of the original problem. Tests include:

• Equal-width ranges of σ.

• Disjoint σ ranges.

• Constant, but different σ for A and B.

• Constant, and close σ’s for A and B.

• Same-mean σ distribution with different widths.
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2. A toy problem, with variable resolution

Let’s now suppose that the resolution of x is not
constant, but rather depends on the event: we are
assuming that each event xi comes together with an
individual value of σ (let it be σi). This situation
is encountered in many real–life problems, and the
common approach found in the literature is to simply
modify the Likelihood function as follows:

L(f) =
∏

i

fN(xi, 0, σi) + (1 − f)N(xi, 1, σi)) (2)

This looks like a pretty obvious generalization of ex-
pression (1). To test it in our toy problem, we mod-
ified our toy MC from previous example, by making
σ fluctuate at each event within an arbitrarily chosen
range (1.0 to 3.0), and again made repeated simulated
experiments of 150 events each, maximizing the Like-
lihood expression (2) to estimate f . The result of this
test is shown in Fig. 3, and rather surprisingly, shows
a very large bias with respect to the true value of f .
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Figure 3: Distribution of ML estimate of the fraction f
of type-A events, obtained from a ”conditional
Likelihood”

This may seem really odd, until one realizes that
this new problem is very different from the previous
one. Our problem now has actually two observables:
each observation consists of the pair of values (xi, σi)
rather than just xi, and its probability density de-
pends on both. This means that the Likelihood must
now be written based on the probability distributions
of the (xi, σi) pair:

L(f) =
∏

i

fp(xi, σi|A) + (1 − f)p(xi, σi|B) (3)

Remembering that p(xi, σi|X) = p(xi|σi, X)p(σi|X)
we can write the correct expression of the Likelihood
for our problem as:

L(f) =
∏

i

fN(xi, 0, σi)p(σi|A)

+ (1 − f)N(xi, 1, σi)p(σi|B) (4)

where p(σi|X) is the pdf of σi for events of type X , an
element that was absent in eq. (2); in fact, comparing
the two expressions shows that (2) is actually the con-
ditional probability distribution p(xi|σi, f) (one might

call it “conditional Likelihood”) rather than the full
distribution p(xi, σi|f). The difference matters for fit-
ting unless it happens that the distribution of σi is the
same for all types of events: p(σi|A) = p(σi|B). In
that case, p(σi) can be factored out, and the incom-
plete Likelihood of eq. (2) differs from the true Likeli-
hood just by a factor independent of f , that does not
affect the maximization.

In the specific MC test reported above, we simu-
lated a resolution 1.5 times worse for events of type
B than for type A, setting the σi distribution as flat
between 1 and 2 for A-type events, and flat between
1.5 and 3 for type-B events. We intentionally avoided
saying this explicitly before, in order to put the reader
in the typical situation encountered in reality, where
no attention is payed to the distribution of those reso-
lutions for the different classes of events considered in
the fit. It turns out from our example that this may
lead to very biased results.

In summary, expression (2) simply does not work for
fitting, and by a large amount: it can be said to belong
to that particular class of solutions nicely defined in
[2] as ‘SNW solutions’.

Conversely, if we use in fitting the correct expres-
sion of the Likelihood (eq. 4) we get the result shown
in fig. 4, showing a negligible bias. The resolution
of the fit is also much better, as the difference in the
distributions of the σ themselves gets exploited in sep-
arating the two samples; this however is a minor point
in comparison with the bias issue.
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Figure 4: Distribution of ML estimate of the fraction f
of type-A events, using the full Likelihood function

3. Additional tests

One may wonder at what features of the distribu-
tions make for a large bias. Table I shows results for
a few variants of the original problem. Tests include:

• Equal-width ranges of σ.

• Disjoint σ ranges.

• Constant, but different σ for A and B.

• Constant, and close σ’s for A and B.

• Same-mean σ distribution with different widths.
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L(f) =
Y

i

[f G(xi|0,�i)P (�i|A) + (1� f)G(xi|1,�i)P (�i|B)]

<latexit sha1_base64="WH/1KP6SzLfOGaVlTZmogXUg3jw="></latexit>

L(f) =
Y

i

[f G(xi|0,�i) + (1� f)G(xi|1,�i)]



Avoid the “Punzi effect”

• It may happen that the wrong likelihood actually works, but 
that’s not a good reason to use it (the PDF remains wrong!) 

• E.g., IFF P(σi|A) = P(σi|B), the term becomes an irrelevant 
constant multiplying the likelihood 
 
 
 
 

• Always explicitly assign a PDF for all observables (i.e., any 
quantity with an event index i) to each of your likelihood terms

71

<latexit sha1_base64="ufiTRZM3SIjOa8tx8e9A3p1eTho=">AAACpHicrVFNT+MwEHXCd5ePAkcuFtWuUgFVghBwQeqyBzhwKGILSHWIHNdpLewksieoVbe/iF/ElV+ybikCCkdGsvT03sw8602cS2HA958cd2Z2bn5hcan0Y3llda28vnFtskIz3mSZzPRtTA2XIuVNECD5ba45VbHkN/H9n5F+88C1EVn6F/o5DxXtpCIRjIKlovLjhZdU8Qkmuc7akSCSJ9BKyO6Z14vEP3+XGNFRNBJVvIO9YC+pvkrBm0S06HQhbHhvDCkRRXv4dbnF32AQlSt+zR8X/gyCCaigSTWi8jNpZ6xQPAUmqTGtwM8hHFANgkk+LJHC8Jyye9rhLQtTqrgJB+NQh/inZdo4ybR9KeAx+35iQJUxfRXbTkWha6a1EfmlFqspZ0iOw4FI8wJ4yl6Mk0JiyPDoYrgtNGcg+xZQpoX9O2ZdqikDe9eSDSWYjuAzuN6vBYe14PKgUj+dxLOIttA28lCAjlAdnaMGaiLmrDtHTt357f5yL9wrt/nS6jqTmU30ody7/6/jybA=</latexit>

L(f) =
Y

i

[f G(xi|0,�i) + (1� f)G(xi|1,�i)]P (�i)

maxL(f) = max
Y

i

[f G(xi|0,�i) + (1� f)G(xi|1,�i)]



Typical hiccups from real-life fitting
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The fit does not converge… there has to be 
something wrong…

• Not necessarily 

• The convergence of a minimization procedure is a 
numerical issue associated with our lack of skill in finding 
suitable algorithms for minimizing complicated functions 

• In principle, it should always be possible to find the 
minimum of a function evaluated over a set of data and as 
a function of some parameters 

• Convergence or not convergence per se does not tell 
much about the model quality
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The fit does not converge… there has to be 
something wrong…

• However, always look for mistakes on your side starting from the 
implementation of the FCN in the code: e.g., incorrect PDF 
normalization in the likelihood, ill-defined problem with unneeded 
free parameters, etc… 

• Started too far from the solution. The FCN may have unphysical 
local minima, especially at infinity in some variables. Change 
starting values to avoid these regions, change parametrization, or 
add boundaries (but remember the caveats from few slides ago) 

• The fit may converge even for ill-defined problem, always check 
that the error matrix is positive-definite at the minimum (if not, the 
estimated uncertainties are meaningless)

74



• A straight line has two parameters, but a linear probability 
distribution function has only one: 
 
 
 
 
 

f(x|a, b) = a+ bx
Z x2

x1

f(x|a, b) = 1

9
>=

>;
=) p(x|q⌘b/a) =

1 + q x

(x2 � x1) +
q

2
(x2

2 � x2
1)

<latexit sha1_base64="C1/gcG+xIpqp3FT71gc7rbMb6xA="></latexit>

Frequent ‘‘mistakes’’ affecting the converge of a fit
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•  
 
 
 

• When fitting for fractions use a robust parametrization: 
 
 
 

p(x|f1, f2, f3) =
3X

i=1

fipi(x) =)
3X

i=1

fi = 1
<latexit sha1_base64="YeSlBA1o2b/Ldk0Dzot5YqjaayI=">AAACPnicbVDNSgMxGMz6b/2revQSFKGClF2L6KUgetCDhwpWhW4N2TS7Dc0ma5JVy7Yv5Ct48Rm8efTiQRGvHk1bD1od+GCYmY/kmyDhTBvXfXJGRsfGJyanpnMzs3PzC/nFpTMtU0VolUgu1UWANeVM0KphhtOLRFEcB5yeB62Dnn9+TZVmUpyadkLrMY4ECxnBxkooX00Kt50QeZsh2rJT2oBl6Os0Rhkre93LEgwRgwlihdsN/yrFDf9YikixqGmwUvJmoA3lyx7Kr7lFtw/4l3jfZG3vEN75qBNVUP7Rb0iSxlQYwrHWNc9NTD3DyjDCaTfnp5ommLRwRGuWChxTXc/653fhulUaMJTKjjCwr/7cyHCsdTsObDLGpqmHvZ74n1dLTbhbz5hIUkMFGTwUphwaCXtdwgZTlBjetgQTxexfIWlihYmxjedsCd7wyX/J2VbRKxW3T2wb+2CAKbACVkEBeGAH7IEjUAFVQMA9eAav4M15cF6cd+djEB1xvneWwS84n1+oPLCs</latexit>

☒f1 = q1

f2 = q2

f3 = (1� q1 � q2)
<latexit sha1_base64="jTOVn7ynw9rVRHemEfVXorjJFDQ=">AAACEHicbZDLSgMxFIYz9VbrrerSTbBY68IymSq6KRTduKxgL9ApQybNtKGZi0lGKEMfwY2v4saFIm5duvNtTNtZaOuBAx//fw7J+d2IM6lM89vILC2vrK5l13Mbm1vbO/ndvaYMY0Fog4Q8FG0XS8pZQBuKKU7bkaDYdzltucPrid96oEKyMLhTo4h2fdwPmMcIVlpy8seeg4rVewfZNsx5jjVhy7Y1VorVEjrVjm7rxMkXzLI5LbgIKIUCSKvu5L/sXkhinwaKcCxlB5mR6iZYKEY4HefsWNIIkyHu047GAPtUdpPpQWN4pJUe9EKhO1Bwqv7eSLAv5ch39aSP1UDOexPxP68TK++ym7AgihUNyOwhL+ZQhXCSDuwxQYniIw2YCKb/CskAC0yUzjCnQ0DzJy9C0yqjSvn89qxQu0rjyIIDcAhKAIELUAM3oA4agIBH8AxewZvxZLwY78bHbDRjpDv74E8Znz8EGJjM</latexit>

0 6 qi 6 1
<latexit sha1_base64="u2V9Vry13UyaA+/0H/zn36yQaOk=">AAACAnicbVDLSsNAFL3xWesr6koUCRbBVUkU0WXRjcsW7APaECbTSTt0MklnJkIJxY1+ihsXirjpwq9w5zf4E04foLYeGDj3nHu5c48fMyqVbX8ac/MLi0vLmZXs6tr6xqa5tV2RUSIwKeOIRaLmI0kY5aSsqGKkFguCQp+Rqt+5GvrVWyIkjfiN6sXEDVGL04BipLTkmbt2g5GuZIgrq+vRn8LxzJydt0ewZokzIbnC/qD09XAwKHrmR6MZ4SQkXGGGpKw7dqzcFAlFMSP9bCORJEa4g1qkrilHIZFuOjqhbx1ppWkFkdBPbx+pvydSFErZC33dGSLVltPeUPzPqycquHBTyuNEEY7Hi4KEWSqyhnlYTSoIVqynCcKC6r9auI0EwkqnltUhONMnz5LKSd45zZ+VdBqXMEYG9uAQjsGBcyjANRShDBju4BGe4cW4N56MV+Nt3DpnTGZ24A+M92+vp5qt</latexit>

• A straight line has two parameters, but a linear probability 
distribution function has only one: 
 
 
 
 
 

f(x|a, b) = a+ bx
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x1

f(x|a, b) = 1
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=) p(x|q⌘b/a) =
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2 � x2
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<latexit sha1_base64="C1/gcG+xIpqp3FT71gc7rbMb6xA=">AAACsHicbVFNj9MwEHXC1xK+Chy5eFkhteq22xQhuFSq4IJWe1gE3a1Ut5HjTFJTx0ltZ2kV8vu4c+M38Cdw0gXBLiPZenpvxuN5E+aCazMY/HDcGzdv3b6zd9e7d//Bw0etx0/OdFYoBhOWiUxNQ6pBcAkTw42Aaa6ApqGA83D1rtbPL0BpnslPZpvDPKWJ5DFn1FgqaH0jAmLT90gICZclFTyREFVe3N58pYdhB48wxV0cbgjxCJcmKDeBXy3sPazICpTs+YPc4N/pI+x7BGT05yGieLI0pCLrgkbkJJNJQ1Clsi8Nh3Nbuib7BNYFvyD74RHtjEisKCv97pocbqqybZv1bNtOl0SNsK7KYVWzi4ZfDDtV0DoY9AdN4OvAvwQH47fHJ+Nj9fM0aH0nUcaKFKRhgmo9q+eYl1QZzgRUHik05JStaAIzCyVNQc/LxvAKv7BMhONM2SMNbti/K0qaar1NQ5uZUrPUV7Wa/J82K0z8Zl5ymRcGJNs1iguBTYbr7eGIK2BGbC2gTHH7V8yW1Hpi7I49a4J/deTr4GzY91/2X32o3UC72EPP0HPURj56jcboPTpFE8ScnvPRIc7cHbpTN3DpLtV1Lmueon/C/fwLFIXUnQ==</latexit>
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•  
 
 
 

• When fitting for fractions use a robust parametrization: 
 
 
 

p(x|f1, f2, f3) =
3X

i=1

fipi(x) =)
3X

i=1

fi = 1
<latexit sha1_base64="YeSlBA1o2b/Ldk0Dzot5YqjaayI="></latexit>

☒f1 = q1

f2 = q2

f3 = (1� q1 � q2)
<latexit sha1_base64="jTOVn7ynw9rVRHemEfVXorjJFDQ=">AAACEHicbZDLSgMxFIYz9VbrrerSTbBY68IymSq6KRTduKxgL9ApQybNtKGZi0lGKEMfwY2v4saFIm5duvNtTNtZaOuBAx//fw7J+d2IM6lM89vILC2vrK5l13Mbm1vbO/ndvaYMY0Fog4Q8FG0XS8pZQBuKKU7bkaDYdzltucPrid96oEKyMLhTo4h2fdwPmMcIVlpy8seeg4rVewfZNsx5jjVhy7Y1VorVEjrVjm7rxMkXzLI5LbgIKIUCSKvu5L/sXkhinwaKcCxlB5mR6iZYKEY4HefsWNIIkyHu047GAPtUdpPpQWN4pJUe9EKhO1Bwqv7eSLAv5ch39aSP1UDOexPxP68TK++ym7AgihUNyOwhL+ZQhXCSDuwxQYniIw2YCKb/CskAC0yUzjCnQ0DzJy9C0yqjSvn89qxQu0rjyIIDcAhKAIELUAM3oA4agIBH8AxewZvxZLwY78bHbDRjpDv74E8Znz8EGJjM</latexit>

0 6 qi 6 1
<latexit sha1_base64="u2V9Vry13UyaA+/0H/zn36yQaOk=">AAACAnicbVDLSsNAFL3xWesr6koUCRbBVUkU0WXRjcsW7APaECbTSTt0MklnJkIJxY1+ihsXirjpwq9w5zf4E04foLYeGDj3nHu5c48fMyqVbX8ac/MLi0vLmZXs6tr6xqa5tV2RUSIwKeOIRaLmI0kY5aSsqGKkFguCQp+Rqt+5GvrVWyIkjfiN6sXEDVGL04BipLTkmbt2g5GuZIgrq+vRn8LxzJydt0ewZokzIbnC/qD09XAwKHrmR6MZ4SQkXGGGpKw7dqzcFAlFMSP9bCORJEa4g1qkrilHIZFuOjqhbx1ppWkFkdBPbx+pvydSFErZC33dGSLVltPeUPzPqycquHBTyuNEEY7Hi4KEWSqyhnlYTSoIVqynCcKC6r9auI0EwkqnltUhONMnz5LKSd45zZ+VdBqXMEYG9uAQjsGBcyjANRShDBju4BGe4cW4N56MV+Nt3DpnTGZ24A+M92+vp5qt</latexit>

• A straight line has two parameters, but a linear probability 
distribution function has only one: 
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<latexit sha1_base64="C1/gcG+xIpqp3FT71gc7rbMb6xA="></latexit>
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f1 = q1

f2 = (1� q1)q2

f3 = (1� q1)(1� q2)
<latexit sha1_base64="pYy5FAInyK9+VcHsWzSWr1pxU68=">AAACGnicbVDLTgIxFO3gC8cX6tJNI5HAQjIFjW5IiG5cYiKPhCGTTulAQ+dB2zEhhO9w46+4caEx7owb/8YyEKPgSZqennNvbu9xI86ksqwvI7Wyura+kd40t7Z3dvcy+wcNGcaC0DoJeShaLpaUs4DWFVOctiJBse9y2nQH11O/eU+FZGFwp0YR7fi4FzCPEay05GSQ56BcZegg24am55RylTw61c/C0CnZtlbKP0pylQpOJmsVrQRwmaA5yYI5ak7mw+6GJPZpoAjHUraRFanOGAvFCKcT044ljTAZ4B5taxpgn8rOOFltAk+00oVeKPQJFEzU3x1j7Es58l1d6WPVl4veVPzPa8fKu+yMWRDFigZkNsiLOVQhnOYEu0xQovhIE0wE03+FpI8FJkqnaeoQ0OLKy6RRKqJy8fz2LFu9mseRBkfgGOQBAhegCm5ADdQBAQ/gCbyAV+PReDbejPdZacqY9xyCPzA+vwE7eJti</latexit>

☑
0 6 qi 6 1

<latexit sha1_base64="u2V9Vry13UyaA+/0H/zn36yQaOk=">AAACAnicbVDLSsNAFL3xWesr6koUCRbBVUkU0WXRjcsW7APaECbTSTt0MklnJkIJxY1+ihsXirjpwq9w5zf4E04foLYeGDj3nHu5c48fMyqVbX8ac/MLi0vLmZXs6tr6xqa5tV2RUSIwKeOIRaLmI0kY5aSsqGKkFguCQp+Rqt+5GvrVWyIkjfiN6sXEDVGL04BipLTkmbt2g5GuZIgrq+vRn8LxzJydt0ewZokzIbnC/qD09XAwKHrmR6MZ4SQkXGGGpKw7dqzcFAlFMSP9bCORJEa4g1qkrilHIZFuOjqhbx1ppWkFkdBPbx+pvydSFErZC33dGSLVltPeUPzPqycquHBTyuNEEY7Hi4KEWSqyhnlYTSoIVqynCcKC6r9auI0EwkqnltUhONMnz5LKSd45zZ+VdBqXMEYG9uAQjsGBcyjANRShDBju4BGe4cW4N56MV+Nt3DpnTGZ24A+M92+vp5qt</latexit>
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