
www.helmholtz.ai

Multivariate methods
Machine learning in particle physics

James Kahn (james.kahn@kit.edu)
Karlsruhe Institute of Technology / 2021-03-24

1/67

Goals

1. Understand the basic concepts of learning theory and machine learning (ML)

2. See how some of the algorithms actually work

3. Gently introduce modern deep learning

4. Glance over some ML examples in Belle II

5. If we get time:
Highlight shortcomings/future research directions

This will not be a tutorial on deep learning techniques (though we will look at the principles of
neural networks)1

Overall: Want to give you a solid foundation to be able to understand/interpret the use of ML
in physics

1This will also not be presented like a rockstar (sorry Florian)

James Kahn (james.kahn@kit.edu) Multivariate methods

1/67

Goals

1. Understand the basic concepts of learning theory and machine learning (ML)

2. See how some of the algorithms actually work

3. Gently introduce modern deep learning

4. Glance over some ML examples in Belle II

5. If we get time:
Highlight shortcomings/future research directions

This will not be a tutorial on deep learning techniques (though we will look at the principles of
neural networks)1

Overall: Want to give you a solid foundation to be able to understand/interpret the use of ML
in physics

1This will also not be presented like a rockstar (sorry Florian)
James Kahn (james.kahn@kit.edu) Multivariate methods

1/67

Goals

1. Understand the basic concepts of learning theory and machine learning (ML)

2. See how some of the algorithms actually work

3. Gently introduce modern deep learning

4. Glance over some ML examples in Belle II

5. If we get time:
Highlight shortcomings/future research directions

This will not be a tutorial on deep learning techniques (though we will look at the principles of
neural networks)1

Overall: Want to give you a solid foundation to be able to understand/interpret the use of ML
in physics

1This will also not be presented like a rockstar (sorry Florian)
James Kahn (james.kahn@kit.edu) Multivariate methods

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

2/67

About Me

Experimental particle physicist by training, now an AI researcher

Master’s with Belle in Australia (B → K0
Sπ

0)

PhD with Belle II in Munich (B → Kνν̄ and ML for
simulation)

First postdoc with Belle II/GridKa at KIT (Belle II
grid computing liaison)

Also head of Belle II MVA group

Now an AI consultant for Helmholtz AI (energy
focused)
Still a technical member of Belle II

If you have questions about transitioning out of physics but staying in academia don’t hesitate
to reach out:
Email: james.kahn@kit.edu Belle II rocket chat: @jkahn (General Kahnobi)

James Kahn (james.kahn@kit.edu) Multivariate methods

mailto:james.kahn@kit.edu

3/67

Terminology

Artificial
Intelligence (AI)
e.g. rule-based system

Machine
Learning
e.g. Logistic
Regression

Deep Learning
e.g. Convolutional
Neural Networks

James Kahn (james.kahn@kit.edu) Multivariate methods

4/67

Machine learning

From Patterns, predictions, and actions: A story about machine learning[1]:
This sets the stage for the subsequent chapters on what is now called machine learn-
ing: making near-optimal decisions from data alone, without probabilistic models of
the environment.

Representation learning

Use machine learning to transform input data into a new representation, learning to do so
from the data alone. You gear this representation towards your needs.

In physics analysis: Decisions often amount to deciding on whether an event was signal or
background*

James Kahn (james.kahn@kit.edu) Multivariate methods

https://arxiv.org/abs/2102.05242

5/67

Learning Approaches

Supervised learning: Learn by “mimicking supervisor”, i.e. pattern annotations
examples: image classification, stock forecasting

Unsupervised learning: Determine patterns purely based on data
examples: customer cluster analysis, distribution estimation

Reinforcement learning: Pavlov-style learning with punishment and reward in dynamic
environments
examples: game AIs, e.g. AlphaGo or Dota OpenAI

James Kahn (james.kahn@kit.edu) Multivariate methods

5/67

Learning Approaches

Supervised learning: Learn by “mimicking supervisor”, i.e. pattern annotations
examples: image classification, stock forecasting

Unsupervised learning: Determine patterns purely based on data
examples: customer cluster analysis, distribution estimation

Reinforcement learning: Pavlov-style learning with punishment and reward in dynamic
environments
examples: game AIs, e.g. AlphaGo or Dota OpenAI

James Kahn (james.kahn@kit.edu) Multivariate methods

6/67

BDTs and NNs are king
Some physics examples

BDT Continuum suppression

BDT Full Event Interpretation

NN Deep Flavor Tagger

NN Neuro-Z trigger

For a living review of ML in HEP see [2].
See the Machine Learning in High Energy Physics Community White Paper[3] for an
LHC-focused overview of methods and field-adoption.
Also: IRIS-HEP has regular meetings on ML in HEP.

James Kahn (james.kahn@kit.edu) Multivariate methods

6/67

BDTs and NNs are king
Some physics examples

BDT Continuum suppression

BDT Full Event Interpretation

NN Deep Flavor Tagger

NN Neuro-Z trigger

For a living review of ML in HEP see [2].
See the Machine Learning in High Energy Physics Community White Paper[3] for an
LHC-focused overview of methods and field-adoption.
Also: IRIS-HEP has regular meetings on ML in HEP.

James Kahn (james.kahn@kit.edu) Multivariate methods

6/67

BDTs and NNs are king
Some physics examples

BDT Continuum suppression

BDT Full Event Interpretation

NN Deep Flavor Tagger

NN Neuro-Z trigger

For a living review of ML in HEP see [2].
See the Machine Learning in High Energy Physics Community White Paper[3] for an
LHC-focused overview of methods and field-adoption.
Also: IRIS-HEP has regular meetings on ML in HEP.

James Kahn (james.kahn@kit.edu) Multivariate methods

6/67

BDTs and NNs are king
Some physics examples

BDT Continuum suppression

BDT Full Event Interpretation

NN Deep Flavor Tagger

NN Neuro-Z trigger

For a living review of ML in HEP see [2].
See the Machine Learning in High Energy Physics Community White Paper[3] for an
LHC-focused overview of methods and field-adoption.
Also: IRIS-HEP has regular meetings on ML in HEP.

James Kahn (james.kahn@kit.edu) Multivariate methods

6/67

BDTs and NNs are king
Some physics examples

BDT Continuum suppression

BDT Full Event Interpretation

NN Deep Flavor Tagger

NN Neuro-Z trigger

For a living review of ML in HEP see [2].
See the Machine Learning in High Energy Physics Community White Paper[3] for an
LHC-focused overview of methods and field-adoption.
Also: IRIS-HEP has regular meetings on ML in HEP.

James Kahn (james.kahn@kit.edu) Multivariate methods

7/67

Introduction to machine learning

James Kahn (james.kahn@kit.edu) Multivariate methods

8/67

ML basics

Introduction to ML will follow [1]:
1. Decision theory

Definitions
Likelihood ratio test
Neyman Pearson lemma
ROC curves

2. Supervised learning
IID assumption
Risk minimisation
The generalisation gap

Then look at:
Fisher discriminant (a.k.a. ye olde class separator)
Decision trees (fast and boosted)
Neural networks (where all the cool kids are these days)

James Kahn (james.kahn@kit.edu) Multivariate methods

9/67

Decision theory

James Kahn (james.kahn@kit.edu) Multivariate methods

9/67

Use available information to
make a decision about an

unknown outcome

Decision theory

James Kahn (james.kahn@kit.edu) Multivariate methods

9/67

Use available information to
make a decision about an

unknown outcome

You will probably never
use this

Decision theory

James Kahn (james.kahn@kit.edu) Multivariate methods

10/67

Basic definitions

Suppose we have two hypothesis: H0 (background/continuum) and H1 (signal)
Each has some a priori probability: p0 = P[H0 is true] p1 = P[H1 is true]

Suppose we have some corresponding data X ∈ Rd which has a different distribution for
H0 and H1

That is: p(x|Hi is true) forms a likelihood function under each scenario
Goal: Optimise over algorithms (functions) that map data to decisions/predictions.
Do so by constructing and appropriate cost for each decision → minimise expected
value of this cost

James Kahn (james.kahn@kit.edu) Multivariate methods

10/67

Basic definitions

Suppose we have two hypothesis: H0 (background/continuum) and H1 (signal)
Each has some a priori probability: p0 = P[H0 is true] p1 = P[H1 is true]
Suppose we have some corresponding data X ∈ Rd which has a different distribution for
H0 and H1

That is: p(x|Hi is true) forms a likelihood function under each scenario

Goal: Optimise over algorithms (functions) that map data to decisions/predictions.
Do so by constructing and appropriate cost for each decision → minimise expected
value of this cost

James Kahn (james.kahn@kit.edu) Multivariate methods

10/67

Basic definitions

Suppose we have two hypothesis: H0 (background/continuum) and H1 (signal)
Each has some a priori probability: p0 = P[H0 is true] p1 = P[H1 is true]
Suppose we have some corresponding data X ∈ Rd which has a different distribution for
H0 and H1

That is: p(x|Hi is true) forms a likelihood function under each scenario
Goal: Optimise over algorithms (functions) that map data to decisions/predictions.

Do so by constructing and appropriate cost for each decision → minimise expected
value of this cost

James Kahn (james.kahn@kit.edu) Multivariate methods

10/67

Basic definitions

Suppose we have two hypothesis: H0 (background/continuum) and H1 (signal)
Each has some a priori probability: p0 = P[H0 is true] p1 = P[H1 is true]
Suppose we have some corresponding data X ∈ Rd which has a different distribution for
H0 and H1

That is: p(x|Hi is true) forms a likelihood function under each scenario
Goal: Optimise over algorithms (functions) that map data to decisions/predictions.
Do so by constructing and appropriate cost for each decision → minimise expected
value of this cost

James Kahn (james.kahn@kit.edu) Multivariate methods

11/67

Labels

In general: want simple, labelled data to use as learning examples for decision making.
Luckily in HEP we have that thanks to simulations.

Definitions:

X The set of (multi-dimensional) input data (observables), e.g. X ∈ RH×W×C for
images

xi Individual samples from the data, e.g. an individual image or event
Y The set of ground-truth labels.
yi Label corresponding to sample xi, e.g. “signal” or “background”
Ŷ The set of label predictions from our model/algorithm
f The algorithm that we are trying to optimise: takes in X and produces
predictions Ŷ (or what we use to make them)

James Kahn (james.kahn@kit.edu) Multivariate methods

11/67

Labels

In general: want simple, labelled data to use as learning examples for decision making.
Luckily in HEP we have that thanks to simulations.

Definitions:
X The set of (multi-dimensional) input data (observables), e.g. X ∈ RH×W×C for

images
xi Individual samples from the data, e.g. an individual image or event

Y The set of ground-truth labels.
yi Label corresponding to sample xi, e.g. “signal” or “background”
Ŷ The set of label predictions from our model/algorithm
f The algorithm that we are trying to optimise: takes in X and produces
predictions Ŷ (or what we use to make them)

James Kahn (james.kahn@kit.edu) Multivariate methods

11/67

Labels

In general: want simple, labelled data to use as learning examples for decision making.
Luckily in HEP we have that thanks to simulations.

Definitions:
X The set of (multi-dimensional) input data (observables), e.g. X ∈ RH×W×C for

images
xi Individual samples from the data, e.g. an individual image or event
Y The set of ground-truth labels.
yi Label corresponding to sample xi, e.g. “signal” or “background”

Ŷ The set of label predictions from our model/algorithm
f The algorithm that we are trying to optimise: takes in X and produces
predictions Ŷ (or what we use to make them)

James Kahn (james.kahn@kit.edu) Multivariate methods

11/67

Labels

In general: want simple, labelled data to use as learning examples for decision making.
Luckily in HEP we have that thanks to simulations.

Definitions:
X The set of (multi-dimensional) input data (observables), e.g. X ∈ RH×W×C for

images
xi Individual samples from the data, e.g. an individual image or event
Y The set of ground-truth labels.
yi Label corresponding to sample xi, e.g. “signal” or “background”
Ŷ The set of label predictions from our model/algorithm
f The algorithm that we are trying to optimise: takes in X and produces
predictions Ŷ (or what we use to make them)

James Kahn (james.kahn@kit.edu) Multivariate methods

12/67

Loss functions (risk)

We construct a loss function which tells us the cost of declaring Hi when we have Hj as
ℓ(i, j)

Define the risk associated with an algorithm f as R[f] = E
[
ℓ(Ŷ(X), Y)

]
Goal is to determine which f minimizes the risk

James Kahn (james.kahn@kit.edu) Multivariate methods

13/67

A Boolean example
Quick mafs

Say we have to decide if a given sample x belongs to H0 or H1, then our expected risks of each decision are:

E[ℓ(0, Y) | X = x] = ℓ(0, 0)P[Y = 0 | X = x] + ℓ(0, 1)P[Y = 1 | X = x]

E[ℓ(1, Y) | X = x] = ℓ(1, 0)P[Y = 0 | X = x] + ℓ(1, 1)P[Y = 1 | X = x]

Optimal choice: pick whichever is smaller (costs less)

Ŷ(x) = 1 {E[ℓ(0, Y) | X = x] ≥ E[ℓ(1, Y) | X = x]}

rearrange…

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ ℓ(1, 0)− ℓ(0, 0)

ℓ(0, 1)− ℓ(1, 1)
P[Y = 0 | X = x]

}
Substitute in Bayes rule:

P[Y = i | X = x] =
p(x | Hi is true)P[Hi is true]

p(x)

and get the likelihood ratio test:

Ŷ(x) = 1

{
p(x | H1 is true)
p(x | H0 is true)

≥ p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

}
.

James Kahn (james.kahn@kit.edu) Multivariate methods

13/67

A Boolean example
Quick mafs

Say we have to decide if a given sample x belongs to H0 or H1, then our expected risks of each decision are:

E[ℓ(0, Y) | X = x] = ℓ(0, 0)P[Y = 0 | X = x] + ℓ(0, 1)P[Y = 1 | X = x]

E[ℓ(1, Y) | X = x] = ℓ(1, 0)P[Y = 0 | X = x] + ℓ(1, 1)P[Y = 1 | X = x]

Optimal choice: pick whichever is smaller (costs less)

Ŷ(x) = 1 {E[ℓ(0, Y) | X = x] ≥ E[ℓ(1, Y) | X = x]}

rearrange…

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ ℓ(1, 0)− ℓ(0, 0)

ℓ(0, 1)− ℓ(1, 1)
P[Y = 0 | X = x]

}
Substitute in Bayes rule:

P[Y = i | X = x] =
p(x | Hi is true)P[Hi is true]

p(x)

and get the likelihood ratio test:

Ŷ(x) = 1

{
p(x | H1 is true)
p(x | H0 is true)

≥ p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

}
.

James Kahn (james.kahn@kit.edu) Multivariate methods

13/67

A Boolean example
Quick mafs

Say we have to decide if a given sample x belongs to H0 or H1, then our expected risks of each decision are:

E[ℓ(0, Y) | X = x] = ℓ(0, 0)P[Y = 0 | X = x] + ℓ(0, 1)P[Y = 1 | X = x]

E[ℓ(1, Y) | X = x] = ℓ(1, 0)P[Y = 0 | X = x] + ℓ(1, 1)P[Y = 1 | X = x]

Optimal choice: pick whichever is smaller (costs less)

Ŷ(x) = 1 {E[ℓ(0, Y) | X = x] ≥ E[ℓ(1, Y) | X = x]}

rearrange…

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ ℓ(1, 0)− ℓ(0, 0)

ℓ(0, 1)− ℓ(1, 1)
P[Y = 0 | X = x]

}

Substitute in Bayes rule:

P[Y = i | X = x] =
p(x | Hi is true)P[Hi is true]

p(x)

and get the likelihood ratio test:

Ŷ(x) = 1

{
p(x | H1 is true)
p(x | H0 is true)

≥ p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

}
.

James Kahn (james.kahn@kit.edu) Multivariate methods

13/67

A Boolean example
Quick mafs

Say we have to decide if a given sample x belongs to H0 or H1, then our expected risks of each decision are:

E[ℓ(0, Y) | X = x] = ℓ(0, 0)P[Y = 0 | X = x] + ℓ(0, 1)P[Y = 1 | X = x]

E[ℓ(1, Y) | X = x] = ℓ(1, 0)P[Y = 0 | X = x] + ℓ(1, 1)P[Y = 1 | X = x]

Optimal choice: pick whichever is smaller (costs less)

Ŷ(x) = 1 {E[ℓ(0, Y) | X = x] ≥ E[ℓ(1, Y) | X = x]}

rearrange…

Ŷ(x) = 1

{
P[Y = 1 | X = x] ≥ ℓ(1, 0)− ℓ(0, 0)

ℓ(0, 1)− ℓ(1, 1)
P[Y = 0 | X = x]

}
Substitute in Bayes rule:

P[Y = i | X = x] =
p(x | Hi is true)P[Hi is true]

p(x)

and get the likelihood ratio test:

Ŷ(x) = 1

{
p(x | H1 is true)
p(x | H0 is true)

≥ p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

}
.

James Kahn (james.kahn@kit.edu) Multivariate methods

14/67

Likelihood ratio test

Likelihood ratio test:

Ŷ(x) = 1

{
p(x | H1 is true)
p(x | H0 is true)

≥ p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

}
.

Likelihood ratio:

L(x) := p(x | H1 is true)
p(x | H0 is true)

And let:

η =
p0(ℓ(1, 0)− ℓ(0, 0))

p1(ℓ(0, 1)− ℓ(1, 1))

Then the risk-minimizing decision rule is then:

Ŷ(x) = 1{L(x) ≥ η}

James Kahn (james.kahn@kit.edu) Multivariate methods

15/67

Likelihood ratio test

Ŷ(x) = 1{L(x) ≥ η}

divides any set of samples X into two unique partitions:

X0 = {x ∈ X : L(x) ≤ η}
X1 = {x ∈ X : L(x) > η} .

We want some function (model) f : X → R which produces the same partitions:

Ŷf(x) = 1{f(L(x)) ≥ f(η)} ≈ 1{L(x) ≥ η}

James Kahn (james.kahn@kit.edu) Multivariate methods

16/67

Types of errors
Confusion matrix

Pr
ed

ic
te

d
va

lu
e

Ground truth
H1 H0 Total

Ŷ(X) = 1
True
Positive

False
Positive

P′

Ŷ(X) = 0
False
Negative

True
Negative N′

Total P N

Precision: PPV = TP
TP+FP = P[H1 is true | Ŷ(X) = 1]

Honestly: Wikipedia article on Confusion matrix summarises the main error metrics

James Kahn (james.kahn@kit.edu) Multivariate methods

16/67

Types of errors
Confusion matrix

Pr
ed

ic
te

d
va

lu
e

Ground truth
H1 H0 Total

Ŷ(X) = 1
True
Positive

False
Positive

P′

Ŷ(X) = 0
False
Negative

True
Negative N′

Total P N

True Positive Rate:
(Recall)

TPR =
TP
P

=
TP

TP+ FN
= P[Ŷ(X) = 1 | H1 is true]

False Negative Rate: FNR = 1− TPR

False Positive Rate:
FPR =

FP
N

=
FP

FP+ TN
= P[Ŷ(X) = 1 | H0 is true]

True Negative Rate: TNR = 1− FPR

Precision: PPV = TP
TP+FP = P[H1 is true | Ŷ(X) = 1]

Honestly: Wikipedia article on Confusion matrix summarises the main error metrics

James Kahn (james.kahn@kit.edu) Multivariate methods

16/67

Types of errors
Confusion matrix

Pr
ed

ic
te

d
va

lu
e

Ground truth
H1 H0 Total

Ŷ(X) = 1
True
Positive

False
Positive

P′

Ŷ(X) = 0
False
Negative

True
Negative N′

Total P N

Special mention

F1-score explicitly accounts for class imbalances

F1 =
2TPR

1 + TPR+ p0
p1

FPR

WARNING: metric must account for
N(background) >> N(signal)

Precision: PPV = TP
TP+FP = P[H1 is true | Ŷ(X) = 1]

Honestly: Wikipedia article on Confusion matrix summarises the main error metrics

James Kahn (james.kahn@kit.edu) Multivariate methods

16/67

Types of errors
Confusion matrix

Pr
ed

ic
te

d
va

lu
e

Ground truth
H1 H0 Total

Ŷ(X) = 1
True
Positive

False
Positive

P′

Ŷ(X) = 0
False
Negative

True
Negative N′

Total P N

Special mention

F1-score explicitly accounts for class imbalances

F1 =
2TPR

1 + TPR+ p0
p1

FPR

WARNING: metric must account for
N(background) >> N(signal)

Precision: PPV = TP
TP+FP = P[H1 is true | Ŷ(X) = 1]

Honestly: Wikipedia article on Confusion matrix summarises the main error metrics

James Kahn (james.kahn@kit.edu) Multivariate methods

17/67

Neyman-Pearson lemma
Minimizing FP and FN errors

Neyman-Pearson lemma tells us whenwe’ve picked the best possible rejection/critical region
for a given fixed error rate

Example: Differentiating signal (positive) and
continuum (negative)

Fix the FNR: P[Ŷ(X) = cont | Hsig is true] = α

Can we find a k > 0 such that:
p(x|Hsig is true)
p(x|Hcont is true) ≤ k for every X ∈ (Ŷ(X) = cont)

p(x|Hsig is true)
p(x|Hcont is true) ≥ k for every X ∈ (Ŷ(X) = sig)

If so then we’ve found the best continuum region
of size α

James Kahn (james.kahn@kit.edu) Multivariate methods

17/67

Neyman-Pearson lemma
Minimizing FP and FN errors

Neyman-Pearson lemma tells us whenwe’ve picked the best possible rejection/critical region
for a given fixed error rate

Example: Differentiating signal (positive) and
continuum (negative)

Fix the FNR: P[Ŷ(X) = cont | Hsig is true] = α

Can we find a k > 0 such that:
p(x|Hsig is true)
p(x|Hcont is true) ≤ k for every X ∈ (Ŷ(X) = cont)

p(x|Hsig is true)
p(x|Hcont is true) ≥ k for every X ∈ (Ŷ(X) = sig)

If so then we’ve found the best continuum region
of size α

James Kahn (james.kahn@kit.edu) Multivariate methods

17/67

Neyman-Pearson lemma
Minimizing FP and FN errors

Neyman-Pearson lemma tells us whenwe’ve picked the best possible rejection/critical region
for a given fixed error rate

Example: Differentiating signal (positive) and
continuum (negative)

Fix the FNR: P[Ŷ(X) = cont | Hsig is true] = α

Can we find a k > 0 such that:
p(x|Hsig is true)
p(x|Hcont is true) ≤ k for every X ∈ (Ŷ(X) = cont)

p(x|Hsig is true)
p(x|Hcont is true) ≥ k for every X ∈ (Ŷ(X) = sig)

If so then we’ve found the best continuum region
of size α

James Kahn (james.kahn@kit.edu) Multivariate methods

17/67

Neyman-Pearson lemma
Minimizing FP and FN errors

Neyman-Pearson lemma tells us whenwe’ve picked the best possible rejection/critical region
for a given fixed error rate

Example: Differentiating signal (positive) and
continuum (negative)

Fix the FNR: P[Ŷ(X) = cont | Hsig is true] = α

Can we find a k > 0 such that:
p(x|Hsig is true)
p(x|Hcont is true) ≤ k for every X ∈ (Ŷ(X) = cont)

p(x|Hsig is true)
p(x|Hcont is true) ≥ k for every X ∈ (Ŷ(X) = sig)

If so then we’ve found the best continuum region
of size α

α

continuum
region

James Kahn (james.kahn@kit.edu) Multivariate methods

17/67

Neyman-Pearson lemma
Minimizing FP and FN errors

Neyman-Pearson lemma tells us whenwe’ve picked the best possible rejection/critical region
for a given fixed error rate

Example: Differentiating signal (positive) and
continuum (negative)

Fix the FNR: P[Ŷ(X) = cont | Hsig is true] = α

Can we find a k > 0 such that:
p(x|Hsig is true)
p(x|Hcont is true) ≤ k for every X ∈ (Ŷ(X) = cont)

p(x|Hsig is true)
p(x|Hcont is true) ≥ k for every X ∈ (Ŷ(X) = sig)

If so then we’ve found the best continuum region
of size α

α

continuum
region

James Kahn (james.kahn@kit.edu) Multivariate methods

18/67

Receiver Operating Characteristic (ROC) curve
A simple way to show performance

A way to visualise and compare model
performances
At different thresholds measure
TPR/Recall/Sensitivity
vs
FPR / 1− Specificity
Summarise performance with area under
the curve (AUC):

1.0 = perfect classifier
0.5 = might as well flip a coin
0.0 = how did you even get here?

AUC does not tell the whole story: shape
of ROC curve is more important

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ue

 P
os

iti
ve

 R
at

e

AUC = 0.8832
0.0

0.2

0.4

0.6

0.8

1.0

Example: binary classifier which outputs a
signal probability between [0− 1]

James Kahn (james.kahn@kit.edu) Multivariate methods

18/67

Receiver Operating Characteristic (ROC) curve
A simple way to show performance

A way to visualise and compare model
performances
At different thresholds measure
TPR/Recall/Sensitivity
vs
FPR / 1− Specificity
Summarise performance with area under
the curve (AUC):

1.0 = perfect classifier
0.5 = might as well flip a coin
0.0 = how did you even get here?

AUC does not tell the whole story: shape
of ROC curve is more important

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Example: Two ROC curves with same AUC

James Kahn (james.kahn@kit.edu) Multivariate methods

19/67

Supervised learning

James Kahn (james.kahn@kit.edu) Multivariate methods

20/67

Independent and identically distributed

This is an underlying assumption in most ML you will do

If we have observed n labelled samples (x1, y1), . . . , (xn, yn)

1. Assume each sample (xi, yi) is drawn from the same underlying distribution (X, Y)

2. Assume each sample is drawn independently

In physics terms:
1. Assume physics and experimental conditions stay the same
2. Assume each event has no influence over others

Like always in physics: pretend this is true and let uncertainties take care of the rest

James Kahn (james.kahn@kit.edu) Multivariate methods

20/67

Independent and identically distributed

This is an underlying assumption in most ML you will do

If we have observed n labelled samples (x1, y1), . . . , (xn, yn)

1. Assume each sample (xi, yi) is drawn from the same underlying distribution (X, Y)

2. Assume each sample is drawn independently

In physics terms:
1. Assume physics and experimental conditions stay the same
2. Assume each event has no influence over others

Like always in physics: pretend this is true and let uncertainties take care of the rest

James Kahn (james.kahn@kit.edu) Multivariate methods

20/67

Independent and identically distributed

This is an underlying assumption in most ML you will do

If we have observed n labelled samples (x1, y1), . . . , (xn, yn)

1. Assume each sample (xi, yi) is drawn from the same underlying distribution (X, Y)

2. Assume each sample is drawn independently

In physics terms:
1. Assume physics and experimental conditions stay the same
2. Assume each event has no influence over others

Like always in physics: pretend this is true and let uncertainties take care of the rest

James Kahn (james.kahn@kit.edu) Multivariate methods

21/67

Empirical risk minimisation
Optimisation in the real world

Recall we defined the risk of an algorithm f as R[f] = E
[
ℓ(Ŷ(X), Y)

]

In practice we only have access to some subset of the data S = ((x1, y1), ..., (xn, yn)), so our
empirical risk is

RS[f] =
1

n

n∑
i=1

ℓ(f(xi), yi)

The learning task then comes down to finding the algorithm (e.g. a neural network) which
minimises the empirical risk:

min
f∈F

RS[f]

But: this is just an approximation of the true risk of f based off the samples we have
available.

The difference between the risk and empirical risk is called the generalisation gap.

James Kahn (james.kahn@kit.edu) Multivariate methods

21/67

Empirical risk minimisation
Optimisation in the real world

Recall we defined the risk of an algorithm f as R[f] = E
[
ℓ(Ŷ(X), Y)

]
In practice we only have access to some subset of the data S = ((x1, y1), ..., (xn, yn)), so our
empirical risk is

RS[f] =
1

n

n∑
i=1

ℓ(f(xi), yi)

The learning task then comes down to finding the algorithm (e.g. a neural network) which
minimises the empirical risk:

min
f∈F

RS[f]

But: this is just an approximation of the true risk of f based off the samples we have
available.

The difference between the risk and empirical risk is called the generalisation gap.

James Kahn (james.kahn@kit.edu) Multivariate methods

21/67

Empirical risk minimisation
Optimisation in the real world

Recall we defined the risk of an algorithm f as R[f] = E
[
ℓ(Ŷ(X), Y)

]
In practice we only have access to some subset of the data S = ((x1, y1), ..., (xn, yn)), so our
empirical risk is

RS[f] =
1

n

n∑
i=1

ℓ(f(xi), yi)

The learning task then comes down to finding the algorithm (e.g. a neural network) which
minimises the empirical risk:

min
f∈F

RS[f]

But: this is just an approximation of the true risk of f based off the samples we have
available.

The difference between the risk and empirical risk is called the generalisation gap.

James Kahn (james.kahn@kit.edu) Multivariate methods

21/67

Empirical risk minimisation
Optimisation in the real world

Recall we defined the risk of an algorithm f as R[f] = E
[
ℓ(Ŷ(X), Y)

]
In practice we only have access to some subset of the data S = ((x1, y1), ..., (xn, yn)), so our
empirical risk is

RS[f] =
1

n

n∑
i=1

ℓ(f(xi), yi)

The learning task then comes down to finding the algorithm (e.g. a neural network) which
minimises the empirical risk:

min
f∈F

RS[f]

But: this is just an approximation of the true risk of f based off the samples we have
available.

The difference between the risk and empirical risk is called the generalisation gap.

James Kahn (james.kahn@kit.edu) Multivariate methods

22/67

Generalisation gap

From [1]:
The generalisation gap (R[f]−RS[f]) …tells us how well the performance of our classi-
fier transfers from seen examples (the training examples) to unseen examples (a fresh
example from the population) drawn from the same distribution.

A large generalisation gap is what we call an overfitted model.

James Kahn (james.kahn@kit.edu) Multivariate methods

23/67

Key considerations

When designing an ML solution consider:
Representation What is the class of algorithms f to choose?
Optimisation How will you solve the optimisation problem?
Generalisation Will the algorithm transfer to unseen samples?

James Kahn (james.kahn@kit.edu) Multivariate methods

23/67

Key considerations

When designing an ML solution consider:
Representation What is the class of algorithms f to choose?
Optimisation How will you solve the optimisation problem?
Generalisation Will the algorithm transfer to unseen samples?

James Kahn (james.kahn@kit.edu) Multivariate methods

24/67

Algorithms in order of coolness chronology

James Kahn (james.kahn@kit.edu) Multivariate methods

25/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

An early form of linear discriminant
analysis
Old and overly simplistic, but
demonstrates clearly a method of
creating a new representation that’s
specific to the task
So old it was published in the journal
Annals of Eugenics

Aims to project data onto a line such that
classes are well separated

James Kahn (james.kahn@kit.edu) Multivariate methods

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

26/67

Fisher’s Linear Discriminant
Dimensionality reduction to minimise class overlap

Suppose we have two classes in R2 space1

Naive way: Project class means into 1D

Ideally: Want to (consistently) get to
here

Approach: Maximise inter-class variance
while minimising intra-class
variance

Maximise:

Fisher’s discriminent ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

µ̃i, σ̃
2
i = projected mean, variance

0Images from article An illustrative introduction to Fisher’s Linear Discriminant
James Kahn (james.kahn@kit.edu) Multivariate methods

https://sthalles.github.io/fisher-linear-discriminant/

27/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

Let v be the unit vector defining the projection line we want to find.
The sample projections are now yi = vTxi

Projected variance: σ̃2i =
∑

yi∈Ci
(yi − µ̃i)

2

σ̃2i =
∑
yi∈Ci

(vTxi − vTµi)
2

= maths…

=
∑
yi∈Ci

vT(xi − µi)(xi − µi)
Tv

= vTSiv

So: σ̃21 + σ̃22 = vTS1v + vTS2v = vTSWv

Projected means: µ̃i = vT 1
ni

∑ni
xi∈Ci

xi = vTµi

(µ̃1 − µ̃2)
2 = (vTµ1 − vTµ2)

2

= vT(µ1 − µ2)(µ1 − µ2)
Tv

= vTSBv

James Kahn (james.kahn@kit.edu) Multivariate methods

27/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

Let v be the unit vector defining the projection line we want to find.
The sample projections are now yi = vTxi

Projected variance: σ̃2i =
∑

yi∈Ci
(yi − µ̃i)

2

σ̃2i =
∑
yi∈Ci

(vTxi − vTµi)
2

= maths…

=
∑
yi∈Ci

vT(xi − µi)(xi − µi)
Tv

= vTSiv

So: σ̃21 + σ̃22 = vTS1v + vTS2v = vTSWv

Projected means: µ̃i = vT 1
ni

∑ni
xi∈Ci

xi = vTµi

(µ̃1 − µ̃2)
2 = (vTµ1 − vTµ2)

2

= vT(µ1 − µ2)(µ1 − µ2)
Tv

= vTSBv

James Kahn (james.kahn@kit.edu) Multivariate methods

27/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22

Let v be the unit vector defining the projection line we want to find.
The sample projections are now yi = vTxi

Projected variance: σ̃2i =
∑

yi∈Ci
(yi − µ̃i)

2

σ̃2i =
∑
yi∈Ci

(vTxi − vTµi)
2

= maths…

=
∑
yi∈Ci

vT(xi − µi)(xi − µi)
Tv

= vTSiv

So: σ̃21 + σ̃22 = vTS1v + vTS2v = vTSWv

Projected means: µ̃i = vT 1
ni

∑ni
xi∈Ci

xi = vTµi

(µ̃1 − µ̃2)
2 = (vTµ1 − vTµ2)

2

= vT(µ1 − µ2)(µ1 − µ2)
Tv

= vTSBv

James Kahn (james.kahn@kit.edu) Multivariate methods

28/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22
=

vTSBv
vTSWv

Taking derivative w.r.t v, setting to zero, and more maths gives an eigenvalue problem:

S−1
W SBv = λv, λ =

vTSBv
vTSWv

But SBv points in the direction of (µ1 − µ2),
so:

SBv = α(µ1 − µ2)

=⇒ S−1
W SBv = αS−1

W (µ1 − µ2) = λv

=⇒ v = S−1
W (µ1 − µ2)

Recalling: SW = S1 + S2 = class variances before projection

The point: You can calculate the ideal projection from the original class means and variances
alone

James Kahn (james.kahn@kit.edu) Multivariate methods

28/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22
=

vTSBv
vTSWv

Taking derivative w.r.t v, setting to zero, and more maths gives an eigenvalue problem:

S−1
W SBv = λv, λ =

vTSBv
vTSWv

But SBv points in the direction of (µ1 − µ2),
so:

SBv = α(µ1 − µ2)

=⇒ S−1
W SBv = αS−1

W (µ1 − µ2) = λv

=⇒ v = S−1
W (µ1 − µ2)

Recalling: SW = S1 + S2 = class variances before projection

The point: You can calculate the ideal projection from the original class means and variances
alone

James Kahn (james.kahn@kit.edu) Multivariate methods

28/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22
=

vTSBv
vTSWv

Taking derivative w.r.t v, setting to zero, and more maths gives an eigenvalue problem:

S−1
W SBv = λv, λ =

vTSBv
vTSWv

But SBv points in the direction of (µ1 − µ2),
so:

SBv = α(µ1 − µ2)

=⇒ S−1
W SBv = αS−1

W (µ1 − µ2) = λv

=⇒ v = S−1
W (µ1 − µ2)

Recalling: SW = S1 + S2 = class variances before projection

The point: You can calculate the ideal projection from the original class means and variances
alone

James Kahn (james.kahn@kit.edu) Multivariate methods

28/67

Fisher’s Linear Discriminant
The maths (kind of)

Fisher’s discriminant ratio =
(µ̃1 − µ̃2)

2

σ̃21 + σ̃22
=

vTSBv
vTSWv

Taking derivative w.r.t v, setting to zero, and more maths gives an eigenvalue problem:

S−1
W SBv = λv, λ =

vTSBv
vTSWv

But SBv points in the direction of (µ1 − µ2),
so:

SBv = α(µ1 − µ2)

=⇒ S−1
W SBv = αS−1

W (µ1 − µ2) = λv

=⇒ v = S−1
W (µ1 − µ2)

Recalling: SW = S1 + S2 = class variances before projection

The point: You can calculate the ideal projection from the original class means and variances
alone

James Kahn (james.kahn@kit.edu) Multivariate methods

29/67

Decision trees

Decision trees are the current workhorse in Belle II
=⇒ FEI, continuum suppression

Classify examples by sorting them from root down
to a leaf
Each node applies a decision to one variable
Discrete targets: classification trees
Continuous targets: regression trees
Branches can be binary or more

James Kahn (james.kahn@kit.edu) Multivariate methods

29/67

Decision trees

Advantages

Captures interactions between features

Simple interpretation of sample groupings (explainable
results)

Trivial to find feature importance

No need to transform input features

Disadvantages

Fails to effectively handle linear relationships

Lack of smoothness: small changes to inputs can have big
impact on predicted outcomes

Unstable to train: small changes to dataset = big changes to
tree

No. of leaves can grow exponentially with depth – kills
interpretability

James Kahn (james.kahn@kit.edu) Multivariate methods

29/67

Decision trees

Advantages

Captures interactions between features

Simple interpretation of sample groupings (explainable
results)

Trivial to find feature importance

No need to transform input features

Disadvantages

Fails to effectively handle linear relationships

Lack of smoothness: small changes to inputs can have big
impact on predicted outcomes

Unstable to train: small changes to dataset = big changes to
tree

No. of leaves can grow exponentially with depth – kills
interpretability

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node
Several common costs exist:

Entropy

Information gain

Gini index

Gain ratio

Reduction in Variance

Chi-square

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node
Several common costs exist:

Entropy

Information gain

■ Gini index

Gain ratio

Reduction in Variance

Chi-square

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Gini = 1−
C∑

i=1

p2i = chance of incorrectness

To decide ideal feature/cut for node, evaluate Gini for
each: x1 ∈ [1.5, 2.5] and x2 ∈ [1.5, 2.5]

P(x > 1.5) = 6
8 , P(x < 1.5) = 2

8

P(r | x1 > 1.5) = 2
6 , P(b | x1 > 1.5) = 4

6

Gini(x1 > 1.5) = 1−
(
(26)

2 + (46)
2
)
= 4

9

Gini(x1 < 1.5) = 1−
(
(22)

2 + (02)
2
)
= 0

Weighted sum of Gini indices:
Gini(x1 : 1.5) = (68)(

4
9) + (28)(0) =

1
3

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Find feature cut with lowest Gini index (e.g.
x1 > 1.5)
This becomes your tree root

Repeat for both branches
Stop when you reach pre-defined conditions (e.g.
max depth)

TrueFalse

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Find feature cut with lowest Gini index (e.g.
x1 > 1.5)
This becomes your tree root
Repeat for both branches

Stop when you reach pre-defined conditions (e.g.
max depth)

TrueFalse

Red

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Find feature cut with lowest Gini index (e.g.
x1 > 1.5)
This becomes your tree root
Repeat for both branches

Stop when you reach pre-defined conditions (e.g.
max depth)

TrueFalse

Red

False True

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

30/67

Decision trees
How to construct them?

Basic principle: Work from root down, using some cost to decide which feature to use at
each node

Find feature cut with lowest Gini index (e.g.
x1 > 1.5)
This becomes your tree root
Repeat for both branches
Stop when you reach pre-defined conditions (e.g.
max depth)

TrueFalse

Red

False True

Blue

3

2

1

1 2 3

James Kahn (james.kahn@kit.edu) Multivariate methods

31/67

FastBDT
Fast and boosted

Current basf2 implementation is FastBDT
B = boosted

Train many weak learners (small trees)
Each find a “rule of thumb”
Combine into a single strong learner

Fast = speed optimised implementation
written by Thomas Keck[4]

Figure: Keck-sama

James Kahn (james.kahn@kit.edu) Multivariate methods

32/67

Scikit learn
Doing the thinking for you

If you want to have a go at using these
and more (classical) machine learning
algorithms:

The supervised learning page from scikit
learn (sklearn) has many easy to use
implementations

James Kahn (james.kahn@kit.edu) Multivariate methods

https://scikit-learn.org/stable/supervised_learning.html

33/67

Neural Networks

James Kahn (james.kahn@kit.edu) Multivariate methods

34/67

Linear Regression

data

x

y

Data set: {samples, labels} = {x, y}

Model: definition ŷ = wx + b
with w and b trainable parameters

Loss function: or cost/error/objective
ℓ(w, b) = MSE(w, b) = 1

N

∑N
i=1(yi − ŷi)

2

Train: the model, e.g. optimization
ŵ, b̂ = argmin ℓ(w, b)

Basic recipe for most machine learning algorithms

James Kahn (james.kahn@kit.edu) Multivariate methods

34/67

Linear Regression

data

model

x

y

Data set: {samples, labels} = {x, y}

Model: definition ŷ = wx + b
with w and b trainable parameters

Loss function: or cost/error/objective
ℓ(w, b) = MSE(w, b) = 1

N

∑N
i=1(yi − ŷi)

2

Train: the model, e.g. optimization
ŵ, b̂ = argmin ℓ(w, b)

Basic recipe for most machine learning algorithms

James Kahn (james.kahn@kit.edu) Multivariate methods

34/67

Linear Regression

data

model

x

y

Data set: {samples, labels} = {x, y}

Model: definition ŷ = wx + b
with w and b trainable parameters

Loss function: or cost/error/objective
ℓ(w, b) = MSE(w, b) = 1

N

∑N
i=1(yi − ŷi)

2

Train: the model, e.g. optimization
ŵ, b̂ = argmin ℓ(w, b)

Basic recipe for most machine learning algorithms

James Kahn (james.kahn@kit.edu) Multivariate methods

34/67

Linear Regression

data

model

x

y

Data set: {samples, labels} = {x, y}

Model: definition ŷ = wx + b
with w and b trainable parameters

Loss function: or cost/error/objective
ℓ(w, b) = MSE(w, b) = 1

N

∑N
i=1(yi − ŷi)

2

Train: the model, e.g. optimization
ŵ, b̂ = argmin ℓ(w, b)

Basic recipe for most machine learning algorithms

James Kahn (james.kahn@kit.edu) Multivariate methods

34/67

Linear Regression

data

model

x

y

Data set: {samples, labels} = {x, y}

Model: definition ŷ = wx + b
with w and b trainable parameters

Loss function: or cost/error/objective
ℓ(w, b) = MSE(w, b) = 1

N

∑N
i=1(yi − ŷi)

2

Train: the model, e.g. optimization
ŵ, b̂ = argmin ℓ(w, b)

Basic recipe for most machine learning algorithms

James Kahn (james.kahn@kit.edu) Multivariate methods

35/67

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − η∇wiℓ(wi)

w1

data

x

y

w1 w

ℓ

η is learning rate, gradient update factor
Stochastic gradient descent (SGD), sample subset (batch) updates

James Kahn (james.kahn@kit.edu) Multivariate methods

35/67

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − η∇wiℓ(wi)

w1

w2

data

x

y

w1

η∇wJ(w)

w2 w

ℓ

η is learning rate, gradient update factor
Stochastic gradient descent (SGD), sample subset (batch) updates

James Kahn (james.kahn@kit.edu) Multivariate methods

35/67

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − η∇wiℓ(wi)

w1

w2

ws

data

x

y

w1

η∇wJ(w)

w2 ws w

ℓ

η is learning rate, gradient update factor
Stochastic gradient descent (SGD), sample subset (batch) updates

James Kahn (james.kahn@kit.edu) Multivariate methods

35/67

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − η∇wiℓ(wi)

w1

w2

ws

data

x

y

w1

η∇wJ(w)

w2 ws w

ℓ

η is learning rate, gradient update factor
Stochastic gradient descent (SGD), sample subset (batch) updates

James Kahn (james.kahn@kit.edu) Multivariate methods

35/67

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − η∇wiℓ(wi)

w1

w2

ws

data

x

y

w1

η∇wJ(w)

w2 ws w

ℓ

η is learning rate, gradient update factor
Stochastic gradient descent (SGD), sample subset (batch) updates

Too simple

James Kahn (james.kahn@kit.edu) Multivariate methods

36/67

Logistic Regression

−4 −2 2 4

0.5

1

y = sig(z)

z

y
Squash linear regression output into
fixed interval, e.g. y ∈ [0, 1]

Interpretation: probability of sample
belonging to a binary class

sigmoid-/logistic function:
sig(z) = 1

1+e−z

Model: f = sig(wx) = 1
1+e−wx

Prediction: ŷ = 1 if f ≥ 0.5
ŷ = 0 if f < 0.5

James Kahn (james.kahn@kit.edu) Multivariate methods

37/67

Logistic Regression

Data set must be mapped
→ 0

→ 1

Model: f = sig(wx) = 1
1+e−wx

Loss function:
ℓ(w) = MSE(w) = 1

n

∑n
i=1(y − f)2

∇wℓ(w) = (f − y)× f2 × e−wx × x

(Hint: chain rule)

Train: gradient descent optimization −4 −2 2 4

0.5

1

wx

f

James Kahn (james.kahn@kit.edu) Multivariate methods

38/67

Fully-connected Neural Network

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

Logistic
Regression

Inspired by biological neural network

A neuron is a logistic regression

Neurons are arranged in layers
ŷ = sig(

∑
i wihi)

Layers are fully-connected with
subsequent layer, also called Dense

Width: neuron count

Depth: layer count

James Kahn (james.kahn@kit.edu) Multivariate methods

39/67

Activation Functions

Activation functions a(x) introduce non-linearity, e.g. sigmoid function
Other non-linear choices, e.g. tanh(x), relu(x) = max(0, x), etc.
Better computational properties, e.g. avoid vanishing gradient

−2 −1 0 1 2
−2

−1

0

1

2

x

a(
x)

sigmoid

−2 −1 0 1 2
x

tanh

−2 −1 0 1 2
x

ReLU

−2 −1 0 1 2
x

SeLU

James Kahn (james.kahn@kit.edu) Multivariate methods

40/67

Backpropagation

Alternate forward and backward pass
Hidden layer are nested functions

Requires chain rule for gradient
Every component must have a
gradient defined
h′(x) = f′(g(x)) ∗ g′(x)
Neurons store forward result

Weight initialization in network
small random numbers
Iterations across dataset called epochs

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

James Kahn (james.kahn@kit.edu) Multivariate methods

41/67

Autograd Frameworks: TensorFlow & Co

Numerical and autograd libraries

Eager and flow graph computation

Multiple supported devices
CPU, GPU, TPU, smartphone

TensorFlow (Google), MXNet (Amazon),
PyTorch (Facebook)

Keras—neural network wrapper for
TensorFlow and MXNet backends

© Google

© Apache

© PyTorch

© Keras

James Kahn (james.kahn@kit.edu) Multivariate methods

42/67

A comment on convexity

Gradient descent guarantees a global minimum for a (quasi)convex loss
The loss of a neural network is in general not convex

Why? Permuting the weights of any two neurons will produce the same loss value
And: many non-linear activations end up producing a complex loss landscape

w1

η∇wJ(w)

w2 w

ℓ

w1

η∇wJ(w)

w2 w

ℓ

James Kahn (james.kahn@kit.edu) Multivariate methods

42/67

A comment on convexity

Gradient descent guarantees a global minimum for a (quasi)convex loss
The loss of a neural network is in general not convex
Why? Permuting the weights of any two neurons will produce the same loss value
And: many non-linear activations end up producing a complex loss landscape

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

James Kahn (james.kahn@kit.edu) Multivariate methods

43/67

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

Good News
Networks can perform highly complex tasks
All necessary ingredients available

Bad News
Does not specify number of necessary nodes
No remarks on neuron connectivity

James Kahn (james.kahn@kit.edu) Multivariate methods

43/67

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

Good News
Networks can perform highly complex tasks
All necessary ingredients available

Bad News
Does not specify number of necessary nodes
No remarks on neuron connectivity

James Kahn (james.kahn@kit.edu) Multivariate methods

43/67

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

Good News
Networks can perform highly complex tasks
All necessary ingredients available

Bad News
Does not specify number of necessary nodes
No remarks on neuron connectivity

James Kahn (james.kahn@kit.edu) Multivariate methods

44/67

Deep Learning

In practice: stacking layers works better
Deep learning: more than one stage of non-linearities, e.g. layers

hand-designed
program

hand-designed
features

features

simple features

mapping

mapping

abstract
features

mapping

Input Output

Rule-based system

Machine learning

Deep learning

machine learned

James Kahn (james.kahn@kit.edu) Multivariate methods

45/67

Multi-class Classification

x1

x2

x3

x4

h1

h2

h3

h4

ŷ1

ŷ2

ŷ3

Input Hidden Output

Extension of binary classification
concept
One-versus-all classification

Build c binary classifiers
Pick class with highest
confidence/probability

In neural networks
Create multiple networks
Add output neurons

James Kahn (james.kahn@kit.edu) Multivariate methods

46/67

Multi-class Classification

Multi-class classification recipe:

One-hot class encoding: encode classes as sparse vectors
y = (y1, y2, ..., yc), only one is active, e.g. class 2 → (0, 1, ..., 0)

Softmax output activation: ŷ = softmax(z) = ezj∑
j ezj for j = 1...c

achieve joint-probability of 1, normalize across model outputs z

Cross-entropy loss: convex-function J(w) = 1
n

∑n
i=1

∑c
j yi,j log ŷi,j

maximum likelihood principle

James Kahn (james.kahn@kit.edu) Multivariate methods

47/67

Over- and Underfitting

degree=0

y

degree=3

x

y

degree=1

degree=9

x
James Kahn (james.kahn@kit.edu) Multivariate methods

48/67

Over- and Underfitting

How do we know a network is not over- or underfitting?
Idea: simulate “unseen” data
Split data artificially into disjoint subsets

Training set for training the model (usually 60%− 80%)
Validation set for fine tunine the model (usually 10%− 20%)
Test set to test validation (usually 20%− 40%)

James Kahn (james.kahn@kit.edu) Multivariate methods

49/67

Over- and Underfitting

Test loss

Training loss

Optimum

epoch

J
Separate monitoring of training and
validation loss during training
Training loss will decrease indefinitely
J → 0, memorization effect
Validation loss minimum is optimal
Stop training when train/val losses
diverge*

*Up until very recently this was believed to true…

James Kahn (james.kahn@kit.edu) Multivariate methods

50/67

Deep double descent[5]
A small aside

Traditional belief was that once validation/test loss diverges it diverges forever.
Recent work shows this is not always the case

Test loss

Training loss

Optimum

epoch

J

James Kahn (james.kahn@kit.edu) Multivariate methods

51/67

Types of neural network layers

Why do variants even exist?

Look again at the fully-connected
network
What if xi represent e.g. the absolute
momentum of two detected particles?
Which particle should be x1? Which
should be x2?
If no clear ordering exists: A
fully-connected network needs to learn
every possible permutation

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

James Kahn (james.kahn@kit.edu) Multivariate methods

52/67

Convolutional neural networks

Element-wise weighted sum of input and filter

(f ∗ g)[n] =
∑K

m=−K f[m]g[n − m]

Filter size K: window size of convolution kernel

Stride: pixel distance for slide

2D input: volume of width × height(×channels)

Models effects on images, e.g. edge detection

In CNN: model “eye”, sparse weight sharing
Figure: Belle II software developer

James Kahn (james.kahn@kit.edu) Multivariate methods

53/67

Convolutional neural networks

© Machine Learning Guru

James Kahn (james.kahn@kit.edu) Multivariate methods

53/67

Convolutional neural networks

© Machine Learning Guru

James Kahn (james.kahn@kit.edu) Multivariate methods

53/67

Convolutional neural networks

© Machine Learning Guru

James Kahn (james.kahn@kit.edu) Multivariate methods

54/67

Pooling

Pooling reduces input sizes,
abstract downsampled copy

Pool size: kernel height/width

Strides: step width

Typical pooling layers

Max Pooling

Average Pooling

1 1

4 6

2 4

7 8

3 2

1 1

1 0

3 4

6 8

3 4

2 × 2 Max Pooling, stride 2 × 2

James Kahn (james.kahn@kit.edu) Multivariate methods

55/67

Convolutional Neural Network Pyramid

Convolutions allow large-scale objects to be anywhere in the image, but the small-scale
structure is rigid → a step up from fully-connected networks

© Medium

James Kahn (james.kahn@kit.edu) Multivariate methods

56/67

Attention

Attention compares pairs of inputs =⇒ highlights interesting pairs
Most current state-of-the-art architectures (e.g. Transformers, GPT-3) are based on this

Input
particle

candidates

1x1
conv

1x1
conv

1x1
conv

Transpose

Softmax

N x F

N x F

N x N

N x F

N x F

N x F

Sigmoid1x1
conv

N x 1

James Kahn (james.kahn@kit.edu) Multivariate methods

57/67

Final remarks: make use of existing processes to plan projects
Example: The machine learning canvas

Source: machinelearningcanvas.com
THE MACHINE LEARNING CANVAS (V1.0) Designed for: Designed by: Date: Iteration: .

PREDICTION TASK

Type of task? Input object?
Output: definition, parameters (e.g.
prediction horizon), possible values?

DECISIONS

Process for turning
predictions into proposed value for
the end-user? Mention
decision-making parameters.

VALUE PROPOSITION

Who is the end-user? What
are their objectives? How
will they benefit from the ML system?
Mention workflow/interfaces.

DATA COLLECTION

Strategy for initial train set,
and continuous update. Collection
rate? Holdout on prod inputs? Output
acquisition cost?

DATA SOURCES

Which raw data sources can
we use (internal, external)? Mention
databases and tables, or APIs and
methods of interest.

OFFLINE EVALUATION

Simulation of the impact of
decisions/predictions? Which test data?
Cost/gain values? Deployment criteria
(min performance value, fairness)?

MAKING PREDICTIONS

When do we make real-time /
batch pred.? Time available for this +
featurization + post-processing?
Compute target?

BUILDING MODELS

How many prod models are
needed? When would we update?
Time available for this (including
featurization and analysis)?

FEATURES

Input representations
available at prediction time,
extracted from raw data sources.

LIVE MONITORING

Metrics to quantify value creation and
measure the ML system’s impact in
production (on end-users and
business)?

machinelearningcanvas.com by Louis Dorard, Ph.D. Licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

James Kahn (james.kahn@kit.edu) Multivariate methods

machinelearningcanvas.com

58/67

Roadshow: ML in Belle II

James Kahn (james.kahn@kit.edu) Multivariate methods

59/67

Broad categories of uses

In Belle II we divide into three main categories1:

Simulation Simulate detector responses
Goal: Speed up simulation time

Reconstruction Identify particle candidates from detector responses
Goal: Improve the accuracy of particle finding

Analysis Use reconstructed particles to measure something
Goal: Improve signal/background separation.

We’ve seen how ML works, let’s look at some examples of its use in Belle II…

1I have simplified the goals here a lot, please don’t be mad :(
James Kahn (james.kahn@kit.edu) Multivariate methods

59/67

Broad categories of uses

In Belle II we divide into three main categories1:

Simulation Simulate detector responses
Goal: Speed up simulation time

Reconstruction Identify particle candidates from detector responses
Goal: Improve the accuracy of particle finding

Analysis Use reconstructed particles to measure something
Goal: Improve signal/background separation.

We’ve seen how ML works, let’s look at some examples of its use in Belle II…

1I have simplified the goals here a lot, please don’t be mad :(
James Kahn (james.kahn@kit.edu) Multivariate methods

60/67

Analysis use case
Continuum suppression

Focus: separate bb̄ events from e+e→qq̄
Motivation: qq̄ are lighter =⇒ more kinetic energy =⇒ jet-like decays

Solution: Use kinematics to separate based on decay shape

Current approach: FastBDT

Requires: Fixed input features

Inputs: High-level, engineered variables

Limitations: Compresses all particles’ kinematics
into fixed number of features

Ideal approach: use the kinematics of individual
particles
First attempt by D. Weyland[6]:

Deep continuum suppression

Use a fully-connected network

Take at most top N momentum particles

Still not ideal…

Current work looking into attention-based neural
networks

e.g.: Thrust = max
n⃗

∑
j |⃗pj · n⃗|∑

j |⃗pj|

James Kahn (james.kahn@kit.edu) Multivariate methods

60/67

Analysis use case
Continuum suppression

Focus: separate bb̄ events from e+e→qq̄
Motivation: qq̄ are lighter =⇒ more kinetic energy =⇒ jet-like decays

Solution: Use kinematics to separate based on decay shape
Current approach: FastBDT

Requires: Fixed input features

Inputs: High-level, engineered variables

Limitations: Compresses all particles’ kinematics
into fixed number of features

Ideal approach: use the kinematics of individual
particles
First attempt by D. Weyland[6]:

Deep continuum suppression

Use a fully-connected network

Take at most top N momentum particles

Still not ideal…

Current work looking into attention-based neural
networks

e.g.: Thrust = max
n⃗

∑
j |⃗pj · n⃗|∑

j |⃗pj|

James Kahn (james.kahn@kit.edu) Multivariate methods

60/67

Analysis use case
Continuum suppression

Focus: separate bb̄ events from e+e→qq̄
Motivation: qq̄ are lighter =⇒ more kinetic energy =⇒ jet-like decays

Solution: Use kinematics to separate based on decay shape
Current approach: FastBDT

Requires: Fixed input features

Inputs: High-level, engineered variables

Limitations: Compresses all particles’ kinematics
into fixed number of features

Ideal approach: use the kinematics of individual
particles

First attempt by D. Weyland[6]:

Deep continuum suppression

Use a fully-connected network

Take at most top N momentum particles

Still not ideal…

Current work looking into attention-based neural
networks

e.g.: Thrust = max
n⃗

∑
j |⃗pj · n⃗|∑

j |⃗pj|

James Kahn (james.kahn@kit.edu) Multivariate methods

60/67

Analysis use case
Continuum suppression

Focus: separate bb̄ events from e+e→qq̄
Motivation: qq̄ are lighter =⇒ more kinetic energy =⇒ jet-like decays

Solution: Use kinematics to separate based on decay shape
Current approach: FastBDT

Requires: Fixed input features

Inputs: High-level, engineered variables

Limitations: Compresses all particles’ kinematics
into fixed number of features

Ideal approach: use the kinematics of individual
particles
First attempt by D. Weyland[6]:

Deep continuum suppression

Use a fully-connected network

Take at most top N momentum particles

Still not ideal…

Current work looking into attention-based neural
networks

James Kahn (james.kahn@kit.edu) Multivariate methods

61/67

Reconstruction use case
Neuro-z trigger

Focus: Use z vertex of tracks to filter out background events
Approach: Use CDC (2D) hits to estimate z-vertex (and θ) of each track

Requirement: Inference performed fast (∼ 2µs)

James Kahn (james.kahn@kit.edu) Multivariate methods

61/67

Reconstruction use case
Neuro-z trigger

Focus: Use z vertex of tracks to filter out background events
Approach: Use CDC (2D) hits to estimate z-vertex (and θ) of each track

Requirement: Inference performed fast (∼ 2µs)

Insert a fully-connected network into the
trigger pipeline
Embed trained network onto FPGA
hardware
A good example of when simplicity is
priority
=⇒ single hidden layer

James Kahn (james.kahn@kit.edu) Multivariate methods

61/67

Reconstruction use case
Neuro-z trigger

Focus: Use z vertex of tracks to filter out background events
Approach: Use CDC (2D) hits to estimate z-vertex (and θ) of each track

Requirement: Inference performed fast (∼ 2µs)

Insert a fully-connected network into the
trigger pipeline
Embed trained network onto FPGA
hardware
A good example of when simplicity is
priority
=⇒ single hidden layer

James Kahn (james.kahn@kit.edu) Multivariate methods

62/67

Simulation use case (in development)
Fast TOP simulation

Focus: Speed up the slowest part of event simulation
Approach: Learn how to propagate photons through the TOP bars

Requirement: Distribution of photons hits for particle types (e.g. K+, π+) preserved

Figure: Tracks of 100 photons starting at (0,0,0) with
ϕ, θ, ψ = 45◦

James Kahn (james.kahn@kit.edu) Multivariate methods

62/67

Simulation use case (in development)
Fast TOP simulation

Focus: Speed up the slowest part of event simulation
Approach: Learn how to propagate photons through the TOP bars

Requirement: Distribution of photons hits for particle types (e.g. K+, π+) preserved

Figure: Pixel hits for 10k Pions (blue) and
Kaons (red)

Figure: Tracks of 100 photons starting at (0,0,0) with
ϕ, θ, ψ = 45◦

James Kahn (james.kahn@kit.edu) Multivariate methods

62/67

Simulation use case (in development)
Fast TOP simulation

Focus: Speed up the slowest part of event simulation
Approach: Learn how to propagate photons through the TOP bars

Requirement: Distribution of photons hits for particle types (e.g. K+, π+) preserved

A fully-connected network is
deterministic
but photon transport is
stochastic
Solution: conditionalise with
photon initial conditions
Conditional variational
autoencdoer (C-VAE)
=⇒ use decoder for inference

Encoder
(fully-connected)

Decoder
(fully-connected)

Production
properties

Mean

Std

Sample
Detection time

Detection X

Detection Y

Detection time

Detection X

Detection Y

James Kahn (james.kahn@kit.edu) Multivariate methods

63/67

Are Neural Networks the future of particle
physics?

James Kahn (james.kahn@kit.edu) Multivariate methods

64/67

Are Neural Networks the future of particle physics?

Yes

…for now

If they’re so great, why aren’t they everywhere?

Three main problems (that I see):
1. Lack of reliable uncertainties
2. Decorrelation to prevent biasing measurements
3. Lack of expertise

James Kahn (james.kahn@kit.edu) Multivariate methods

64/67

Are Neural Networks the future of particle physics?

Yes…for now

If they’re so great, why aren’t they everywhere?

Three main problems (that I see):
1. Lack of reliable uncertainties
2. Decorrelation to prevent biasing measurements
3. Lack of expertise

James Kahn (james.kahn@kit.edu) Multivariate methods

64/67

Are Neural Networks the future of particle physics?

Yes…for now

If they’re so great, why aren’t they everywhere?

Three main problems (that I see):
1. Lack of reliable uncertainties
2. Decorrelation to prevent biasing measurements
3. Lack of expertise

James Kahn (james.kahn@kit.edu) Multivariate methods

64/67

Are Neural Networks the future of particle physics?

Yes…for now

If they’re so great, why aren’t they everywhere?

Three main problems (that I see):
1. Lack of reliable uncertainties
2. Decorrelation to prevent biasing measurements
3. Lack of expertise

James Kahn (james.kahn@kit.edu) Multivariate methods

65/67

Discussion points
If we have spare time

Dealing with uncertainties
Graph neural networks
Implementation in basf2
Other points…?

James Kahn (james.kahn@kit.edu) Multivariate methods

66/67

References

James Kahn (james.kahn@kit.edu) Multivariate methods

67/67

References I

1M. Hardt and B. Recht, “Patterns, predictions, and actions: A story about machine learning”,
arXiv e-prints, arXiv:2102.05242, arXiv:2102.05242 (2021).

2HEP ML Community, A Living Review of Machine Learning for Particle Physics,
3K. Albertsson et al., “Machine Learning in High Energy Physics Community White Paper”, in
Journal of physics conference series, Vol. 1085, Journal of Physics Conference Series (Sept.
2018), p. 022008.

4T. Keck, “FastBDT: A Speed-Optimized Multivariate Classification Algorithm for the Belle II
Experiment”, Comput. Softw. Big Sci. 1, 2 (2017).

5P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep Double Descent:
Where Bigger Models and More Data Hurt”, arXiv e-prints, arXiv:1912.02292,
arXiv:1912.02292 (2019).

6D. Weyland, “Continuum Suppression with Deep Learning techniques for the Belle II
Experiment”, MA thesis (KIT, Karlsruhe, ETP, Nov. 2017).

James Kahn (james.kahn@kit.edu) Multivariate methods

https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.1007/s41781-017-0002-8

	Introduction to machine learning
	Supervised learning
	Algorithms in order of coolness chronology
	Neural Networks
	Generalization

	Roadshow: ML in Belle II
	Are Neural Networks the future of particle physics?
	References
	References

