Analysis presentation \(V_{cb} \)

Part 1: Overview and tag side

Florian Bernlochner\(^1\), Thomas Kuhr\(^2,3\), Kilian Lieret\(^2,3\), Felix Metzner\(^4\), Markus Prim\(^1\)

\(^1\)Universität Bonn
\(^2\)Ludwig-Maximilian University
\(^3\)Excellence Cluster Origins
\(^4\)Karlsruher Institut für Technologie

March 16, 2021
Overview

- Part 2 (Kilian): Tagging calibration for $|V_{cb}|$ measurement with $B \rightarrow D^* \ell \bar{\nu}_\ell$ (but the calibration looks at $B \rightarrow X \ell \nu$)
- Part 3 (Markus): $|V_{cb}|$ measurement with $B \rightarrow D^* \ell \bar{\nu}_\ell$

Caveats:
- Not a physics talk: We’ll cut corners and go on tangents about doing analysis
- I’m a bit out of the loop with recent $|V_{cb}|$ papers...
- Not a rockstar presentation :/
Part 1

1 Why?

2 How?
 - Measuring $|V_{cb}|$
 - Exclusive vs Inclusive Analyses
 - Tagging
Why $|V_{cb}|$?

- The CKM matrix $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cb} & V_{cs} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ is unitary in the SM, i.e.

$$VV^\dagger = 1 = V^\dagger V$$

- Thus $\sum_k |V_{ik}|^2 = 1$ for all k (weak unitarity) and
- $\sum_k V_{ik} V_{jk}^* = 0$ for all i,j
- Most popular: $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$
- Powerful test of the SM
- Can also be visualized as a triangle “unitarity triangle”
Why $|V_{cb}|$

![Diagram showing the ρ-η plane with various exclusions and solutions](attachment:image.png)
Measuring $|V_{cb}|$

- Pure leptonic: $B_c \rightarrow \ell \bar{\nu}$. Unavailable @ B-factories
- Pure hadronic: Hard theoretically
- Semileptonic:
 - Theory: Small EW corrections; QCD uncertainties under control
 - Experiment: Only one neutrino missing, good BRs ($\approx 10\%$)
 - \Rightarrow Best opportunity to measure $|V_{cb}|$
 - Exclusively: Either $B \rightarrow D^* \ell \bar{\nu}_\ell$ (this analysis) or $B \rightarrow D \ell \bar{\nu}_\ell$
 - Inclusively: $B \rightarrow X_c \ell \nu$

Exclusive decays
Exclusive vs Inclusive Analyses

- **Tension** between inclusive \(B \rightarrow X_c \ell \nu\) and exclusive \(B \rightarrow D^{(*)} \ell \bar{\nu}_\ell\) determination of \(V_{cb} > 3\sigma\) (2018)

![inclusive vs exclusive analysis graph]

- Speculation about tension being related to FF parametrization in exclusive mode (CLN vs BGL)
How to extract $|V_{cb}|$ (exclusive)

- Say we want to extract $|V_{cb}|$ from $B \rightarrow D^* \ell \bar{\nu}_\ell$

$$\frac{d\Gamma(B \rightarrow D^* \ell \bar{\nu}_\ell)}{dw} = \text{stuff we know} \cdot \text{FF}^2(w) \cdot |V_{cb}|^2,$$

- $w = \vec{v}_B \vec{v}_D(\ast) = \frac{m_B^2 + m_{D(\ast)}^2 - q^2}{2m_B m_{D(\ast)}}, \quad q^2 = (p_B - p_{D(\ast)})^2$

- $\text{FF}^2(w)$: form factors
- In order to get $|V_{cb}|^2$ we need to know something about $\text{FF}^2(w)$
- Lattice QCD can only confidently tell us $\text{FF}^2(1)$ (but this corresponds to $q^2 = 0$ and we don't have data there)

- Only solution: Use parameterized model for $\text{FF}^2(w)$ (model dependency! CLN vs BGL etc.), fit parameters, extrapolate to $w = 1$ and then use lattice result to get $|V_{cb}|^2$

- In other words: need to fit form factor parameters \Rightarrow measure kinematic distributions
- $B \rightarrow D \ell \bar{\nu}_\ell$ is similar
Tagged vs Untagged Analyses

Tagged Analysis

+ High purity
 - Low efficiency

 (0.3% @Belle → 0.55% @Belle II)

+ Get B meson momentum from tag side!

Untagged Analysis

- Low purity
+ High efficiency

 (11% @Belle → 20% @Belle II)
Part 2: $|V_{cb}|$ from hadronically tagged $B \rightarrow D^* \ell \bar{\nu}_\ell$ at Belle: Tag side & tagging calibration
Goals

Reanalysis of hadronically tagged $B \rightarrow D^* \ell \bar{\nu}_\ell$ at Belle

- Previous measurement: [1702.01521] (preliminary)
- Extract $|V_{cb}|$, form factors, kinematic distributions (separately for e/μ, potentially also investigating model dependencies)
- Belle dataset still exceeds Belle II dataset by large margin
- Expect around $2 \times$ efficiency when using Belle II software (FEI)

⇒ Use Belle II software on Belle data! (b2bii)
Improved hadronic tagging @Belle II

Hadronic tagging @Belle II:
Around 5000 channels!
2.5× efficiency!

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>MVA</th>
<th>Efficiency</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle v1</td>
<td>Cut</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Belle v3</td>
<td>Cut</td>
<td>0.1%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Belle NB</td>
<td>NB</td>
<td>0.2%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Belle II FEI</td>
<td>BDT</td>
<td>0.5%</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

Calibration for excl. $B \rightarrow D^{(*)}l\bar{\nu}_l$
$B \rightarrow Xl\nu$ (systematics limited)

$B^+ \rightarrow D^0\pi^+$
$B^+ \rightarrow D^0\pi^+\pi^0$
$B^+ \rightarrow D^0\pi^+\pi^0\pi^0$
$B^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0$
$B^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0$
$B^+ \rightarrow D_s^+D^0$
$B^+ \rightarrow J/\psi K^+$

$B^0 \rightarrow D^0\pi^+$
$B^0 \rightarrow D^0\pi^+\pi^0$
$B^0 \rightarrow D^0\pi^+\pi^0\pi^0$
$B^0 \rightarrow D^0\pi^+\pi^0\pi^0\pi^0$
$B^0 \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0$
$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$

$D^+ \rightarrow D^0\pi^+\pi^0$
Calibration of hadronic tagging

Tagging

- The FEI returns a list of B_{tag} candidates with a likelihood and the decay channel.
- Often we need to know the efficiency of this selection.
- Unfortunately this efficiency can be different between MC and data \Longrightarrow calibration!

How?

- Reconstruct $\Upsilon(4S) \rightarrow B_{\text{tag}}B_{\text{sig}}$ on MC and data.
- Idea: Find B_{sig} channel with large BF that we trust.
- Compare yields and blame all differences on B_{tag} reconstruction, i.e. the FEI.
- Here: Inclusive $B_{\text{sig}} \rightarrow X\ell\nu$.
- Need to do this in bins of the decay channel and the likelihood output.
Dataset & MC fixes

The dataset

- Full Belle (1!) dataset \((710 \text{ fb}^{-1}, 771 \times 10^6 B\bar{B}) + 1 \text{ stream of MC}\)
- In total there are 10 streams of Belle MC \((1 \text{ stream} = \text{MC equivalent of total data taken})\)
- “Generic” MC types: Charged \((B^+B^-)\), Mixed \((B^0\bar{B}^0)\), Charm \((c\bar{c})\), UDS \((q\bar{q})\)
- There is also special/rare/signal MC for special purposes

MC updates

- Belle MC was produced long ago \(\implies\) need to update to match better understanding
- Most simple updates: branching fractions (BFs)
- Only need to do this for most relevant BF: \(B \rightarrow D(*)\)
In practice: MC reweighting

Simplest case

- Let’s say our MC was generated with $BF(B \rightarrow XYZ) = 0.5$ (this is written in the decay file), but it’s actually 0.25!
- Do we need to regenerate our MC? 😱
- Easy fix: Simply add weight of 0.5 to all $B \rightarrow XYZ$ events

Uncertainties

- What if we only know $BF(B \rightarrow XYZ) = 0.5 \pm 0.1$?
- Uncertainty needs to be propagated to later results
- Add varied weight columns, i.e. `__weight__`, `__weight_xyz_up__`, `__weight_xyz_down__`
- Either repeat analysis for different weights or have other way to incorporate them (→ fitting)

Form factors (FF)

- Can also set weights to adjust *differential* cross sections! → Update FFs and more!
Dataset & MC fixes

- Lepton PID corrections
- Updated BFs for $B \rightarrow D^{(*)}$, FF reweighted for $B \rightarrow D, D^*, D^{**}$
- Generate dedicated D^{**} samples (family of poorly known particles)
- Big issue: The gap
 - Sum up all exclusive $B \rightarrow X\ell\nu$ modes in MC, e.g. $B \rightarrow D^{(*)}\ell\bar{\nu}_\ell, \ldots$
 - Much smaller than direct measurement of $B \rightarrow X\ell\nu \rightarrow$ Gap between sum of exclusive and inclusive
 - We need to fill this gap somehow \rightarrow educated guesses + large uncertainties
- Update Belle gap filling with dedicated samples $D_1(\rightarrow D_{\pi\pi})\ell^+\nu_\ell$, $D^*\eta\ell^+\nu_\ell$ and $D^{(*)}_{\pi\pi}\ell^+\nu_\ell$ (currently 100% scaling uncertainty for total gap component)
In practice: Generating signal MC

- You normally shouldn’t generate MC yourself → data production liaison
- MC generation is governed by decay files → read them to understand your MC!
- There’s a online book lesson about it

Define dm 0.507e12

Alias myB0 B0
Alias myAnti-B0 anti-B0
ChargeConj myB0 myAnti-B0

Decay Upsilon(4S)
1.000000 B0 anti-B0 myB0 myAnti-B0 VSS_BMIX dm;
Enddecay

Alias myD_1- D_1-
Alias myD_1+ D_1+
ChargeConj myD_1- myD_1+

Decay myB0
1.000 myD_1- e+ nu_e PHOTOS ISGW2;
Enddecay
CDecay myAnti-B0

Decay myD_1-
1.000 anti-D*0 pi- PHOTOS VVS_PWAVE 0.0 0.0 0.0 0.0 1.0 0.0;
Enddecay
CDecay myD_1+

End
In practice: Cuts & Best candidate selection

- Cuts & best candidate selection drastically reduce memory/disk requirements
- **Dilemma**: Do them “online” (using basf2) or “offline” (e.g. pandas)
- **Online**: Change cut value needs reprocessing with basf2 to (takes a lot of time)
- **Offline**: Dealing with a lot of data (memory & disk space issues for Belle dataset – Belle 2 data is smaller, so you might be fine) ⟷ consider looking into dask and friends for an intermediate step
- Makes sense to use soft online cuts and harder offline cuts
- Similar problem: Which **columns** to write out? ⟷ columnar data formats might at least help with fast reading of partial column set
- No golden rule, but **deliberate choices** are better
Example fits

$$B_{\text{sig}} \rightarrow X\ell\nu, \ B_{\text{tag}} \rightarrow \bar{D}^0\pi^+\pi^+\pi^-$$

Before fitting

Fitted
In practice: Fitting frameworks

- Many fitting frameworks: ROOFit, zFit, pyHF, ... → choose wisely!
 - Vary a lot in usability and quality of documentation!
 - Good to think ahead! (Features? How are uncertainties handled? Integration in your code? Help?)

- Different ways to incorporate uncertainties: Either
 - fits with fixed templates/weights → repeat fits with varied templates/weights → collect results and calculate uncertainty from differences
 - have more complicated likelihood where uncertainties are nuisance parameters

\[
\mathcal{L} = \prod_i \mathcal{P}(n_i; \nu_i) \times \prod_k \mathcal{G}_k(\vec{0}, \vec{\theta}_k, \Sigma_k)
\]

\[
\nu_i = \sum_k \eta_k \prod_s (1 + \tilde{\theta}_{ks}) \frac{\eta_{ik}(1 + \theta_{ik})}{\sum_j \eta_{jk}(1 + \theta_{jk})},
\]
The calibration factors
CFs and uncertainties
In practice: Validating fits

How do we know to trust our fits?

- Expect to repeat fits very, very, often...
- Simple validation: Linearity check
 - Generate artificial dataset from MC “bootstrapping” with different signal strengths
 - Fit this
 - Expect to get back signal strength that we put in
- Can also look at p-value distribution (should be flat!)

![Graph showing p-value distribution](image-url)
| V_{cb} |

- $|V_{cb}|$ needed to test unitarity of CKM matrix
- $\text{BR}(B \rightarrow D^{(*)}\ell\bar{\nu}_\ell) = \text{stuff we know} \cdot \text{FF}^2(w) \cdot |V_{cb}|^2 \rightarrow \text{exclusive measurement}$
- Form factors $\text{FF}^2(w)$ make trouble
- Other method of extraction: Inclusive measurement; in tension with exclusive measurements

This analysis: $|V_{cb}|$ from hadronically tagged $B \rightarrow D^*\ell\bar{\nu}_\ell$ at Belle

- B_{tag} reconstructed by the FEI
- The FEI has different efficiencies on data and MC \rightarrow Calibration
- For calibration need something we trust: $B_{\text{sig}} \rightarrow X\ell\nu$
- Reconstruct $\Upsilon(4S) \rightarrow B_{\text{tag}}B_{\text{sig}}$; blame efficiency difference on FEI \rightarrow calibration factors
Backup
Cuts & best candidate selection

Electrons, Muons

\[
\begin{array}{c|c}
\text{e} & \mu \\
\hline
dr < 2 \text{ cm} & \\
|dz| < 4 \text{ cm} & \\
|p_T^*| > 0.1 \text{ GeV/c} & \\
p > 0.3 \text{ GeV/c} & p > 0.6 \text{ GeV/c} \\
eIDBelle > 0.6 & muIDBelle > 0.9 \\
\text{muIDBelleQuality} = 1 &
\end{array}
\]

Photon

goodBelleGamma = 1

Event

Number of tracks with \(dr < 2 \text{ cm} \) and
\(|dz| < 4 \text{ cm} \): \(\leq 17 \)
Number of FS photons: \(< 18 \)

\(B_{\text{tag}} \)

\(M_{bc} > 5.27 \text{ GeV/c}^2 \)
signal probability \(> 0.001 \)
CS output \(> 0.2 \) (CS via BDT)

Best Candidate Selection

- Pick \(B_{\text{tag}} \) with smallest \(\Delta E \)
- Pick lepton with highest \(|p_{\ell}^*| \)
- Still multiple candidates \(\rightarrow \) pick random
Fit strategies

- Decay channels vary significantly in number of events \implies number of bins in FEI classifier depends on decay channel (currently aiming for > 4500 events per bin)
- Perform a fit to extract yields for signal
- Calibration factor $= \frac{\text{fitted yield}}{\text{MC yield}}$
- Binned maximum likelihood fit (systematics included in likelihood \implies pull on the shape of the distributions \implies Backup)

Current strategy: 2 component fit

- Fake leptons + secondary leptons + continuum are fitted as one component (background) \implies Requires additional systematic uncertainty \implies todo
- Fitted with 2 components: Signal + background
- Number of bins fixed to 9 (will be made dynamic later)
Fitting and systematics

Maximize binned likelihood, allowing systematics to pull on the shapes:

\[
\mathcal{L} = \prod_i P(n_i; \nu_i) \times \prod_k G_k(\tilde{\theta}, \theta, \Sigma_k)
\]

\[
\nu_i = \sum_k \eta_k \prod_s (1 + \tilde{\theta}_{ks}) \frac{\eta_{ik}(1 + \theta_{ik})}{\sum_j \eta_{jk}(1 + \theta_{jk})},
\]

where

- \(\mathcal{P}\): Poisson distribution
- \(n_i\): Measured events in bin \(i\)
- \(\nu_i\): Expected events in bin \(i\)
- \(k\): Component of fit
- \(\eta_k\): Yield of fit template \(k\)
- \(\eta_{ik}\): Bin content of fit template \(k\), bin \(i\)
- \(\theta_{ik}\): Additive nuisance parameter bin \(i\), fit component \(k\)
- \(\tilde{\theta}_{is}\): Multiplicative nuisance parameter from source \(s\) for fit component \(k\)
- \(G\): Multivariate Gaussian with covariance matrix \(\Sigma_k\)

Fitted: \(\eta_k, \theta_{ik}, \tilde{\theta}_{ks}\)
Reconstruction signal side

π, K meson
Identification via PID likelihood ratio, impact parameters.
π^0: From γ candidates (clusters in calorimeter not matched to any track)

<table>
<thead>
<tr>
<th></th>
<th>arXiv</th>
<th>Signal</th>
<th>Tag</th>
<th>D^0 modes</th>
<th>D^+ modes</th>
<th>D^*- modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1010.5620]</td>
<td>D^*ℓν_ℓ</td>
<td>No</td>
<td>K^-π^+</td>
<td></td>
<td></td>
<td>D^-π^-</td>
</tr>
<tr>
<td>[1809.03290]</td>
<td>D^*ℓν_ℓ</td>
<td>Hadr.</td>
<td>K^-π^+(π)(π)</td>
<td>K^-π^+π^+</td>
<td></td>
<td>D^0π^-, D^-π^0</td>
</tr>
<tr>
<td>[1702.01521]</td>
<td>D^*ℓν_ℓ</td>
<td>Hadr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1510.03657]</td>
<td>Dℓν_ℓ</td>
<td>Hadr.</td>
<td>K^-π^+(π)(π), K^0π^+π^-(π^0), K^0π^0, K^+K^-, π^+π^-(π^0), K^0K^0, π^0π^0, K^0π^0, K^-π^+π^+π^-</td>
<td>K^-π^+π^+(π^0), K^0π^+π^+π^-, π^+π^+(π)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and Outlook @Belle

<table>
<thead>
<tr>
<th>Link</th>
<th>Channel</th>
<th>Tag</th>
<th>CLN</th>
<th>BGL</th>
<th>Unfold</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1010.5620]</td>
<td>$D^* \ell \bar{\nu}_\ell$</td>
<td>No</td>
<td>38.4 ± 0.9</td>
<td>42.5 ± 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1809.03290]</td>
<td>$D^* \ell \bar{\nu}_\ell$</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1702.01521]</td>
<td>$D^* \ell \bar{\nu}_\ell$</td>
<td>Had.</td>
<td>37.4 ± 1.3</td>
<td></td>
<td></td>
<td>Prelim. Soon: Separate results $\ell = e$ and $\ell = \mu$</td>
</tr>
<tr>
<td>[1510.03657]</td>
<td>$D \ell \bar{\nu}_\ell$</td>
<td>Had.</td>
<td>39.86 ± 1.33</td>
<td>40.83 ± 1.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HFLAV
Summer 2016
/dof = 30.2/23 (CL = 14.40 %)

HFLAV
Summer 2016
/dof = 4.7/8 (CL = 79.30 %)

Kilian Lieret
Ludwig-Maximilian University
Projection in bins of kinematic variable

\[B \rightarrow D\ell \bar{\nu}_\ell \]

10 equal-size bins in \(w \).
Good resolution (0.005) vs bin width (0.06) \(\Rightarrow \) Bin migration neglected

\[B \rightarrow D^*\ell\bar{\nu}_\ell \]

- 10 equal size bins in \(w, \chi, \cos \theta_\ell, \cos \theta_{D^*} \) (Projections)
- Correlation between the 4 distributions (\(\rightarrow \) toy experiments)
- Finite resolution \(\Rightarrow \) Migration!
 \(\rightarrow \) Mig. matrix from truth vs reco MC.
 \(\rightarrow \) Fold theory (easy) or unfold measurement (hard)
Fit variables

Tagged analyses

Fit variable: \(m_{\text{miss}}^2 := (p_B - p_{D(*)} - p_\ell)^2 \) with \(p_B = p_{\text{LER}} + p_{\text{HER}} - p_{\text{tag}} \)

Correct reco \(\Rightarrow \) Peak at 0; Missed particles \(\Rightarrow \) Peak > 0; Particles from tag side \(\Rightarrow \) Peak < 0

Untagged analyses

Fit variables:

\[
\cos \theta_{B,D^*\ell} := \frac{2E_B^*E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|p_B^*||p_{D^*\ell}^*|}
\]

Correct reco \(\Rightarrow \) \(-1 \leq \cos \theta_{B,D^*\ell} \leq 1\)

\(\Delta m = m_{D^*} - m_D \)

\(p_\ell \)
Fit strategies

Belle tagged $B \rightarrow D \ell \bar{\nu}_\ell$ [1510.03657]

$B = B^0$, $\ell = e$

Fit

Binned extended likelihood fit (Barlow, Beeston, 1993)

Fit variable

$m^2_{\text{miss}} := (p_B - p_D - p_\ell)^2$

Templates

From MC

Fixed Norm.

“other” background from MC

Float. Norm.

2: $B \rightarrow D \ell \bar{\nu}_\ell$ and $B \rightarrow D^* \ell \bar{\nu}_\ell$ normalization
Fit strategies

Belle tagged $B \rightarrow D^* \ell \bar{\nu}_\ell$ [1702.01521]

Fit
- Unbinned likelihood fit

Fit variable
- $m_{\text{miss}}^2 := (p_B - p_{D^*} - p_\ell)^2$

Templates
- From MC

Fixed Norm.
- Ratios of background normalizations from MC

Float. Norm.
- 2: Correctly reco. sig. + sig. with $D^{(*)}$ wrongly reco. norm.; total background normalization
Fit strategies

Belle untagged $B \rightarrow D^* \ell \bar{\nu}_\ell$ $[1010.5620]$

Fit
Binned likelihood fit

Fit variable
$\cos \theta_{B,D^*\ell}$, Δm, p_ℓ

Templates
Continuum from off-resonance, rest from MC\(^1\)

Fixed Norm.
Continuum from off-resonance (corrected for $1/s$ dependency)

Float. Norm.
6: Normalizations for signal and backgrounds

\(^1\)For $\ell = \mu$: Shape of fake ℓ corr. with data from $K_s^0 \rightarrow \pi^+ \pi^-$; ℓ PID eff. corr. with data from $2\gamma \rightarrow e^+ e^- / \mu^+ \mu^-$
Fit strategies

Belle untagged $B \rightarrow D^* \ell \bar{\nu}_\ell$ (new) $^{[1809.03290]}$

Fit
- Binned likelihood fit

Fit variable
- $\cos \theta_{B,D^*\ell}$, Δm, p_ℓ

Templates
- Continuum from off-resonance, rest from MC2

Fixed Norm.
- Continuum from off-resonance (corrected for $1/s$ dependency, kinematics)

Float. Norm.
- 6: Normalizations for signal and backgrounds

2Shape of fake ℓ corr. with data from $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K \pi$; lepton PID eff. corr. with data from $ee \rightarrow ee\gamma$, $ee \rightarrow \mu\mu(\gamma)$ and $J/\psi \rightarrow \ell^+\ell^-$; low momentum track reco. eff. corr. with control sample of $B \rightarrow D^* \ell \bar{\nu}_\ell$
V_{cb} and form factors fit

χ^2 fit

$$\chi^2 = \left(\bar{\nu}_{\text{sig}} - \bar{\nu}_{\text{sig}}^{\text{pred}} \right) C^{-1} \left(\bar{\nu}_{\text{sig}} - \bar{\nu}_{\text{sig}}^{\text{pred}} \right) + \chi^2_{\text{nuisance}},$$

where:

- $\bar{\nu}_{\text{sig}}$ yields in bins of kinematic variables $(D\ell\bar{\nu}_{\ell}: w, D^*\ell\bar{\nu}_{\ell}: w, \chi, \cos \theta_{\ell}, \cos \theta_{D^*})$
- $\bar{\nu}_{\text{sig}}^{\text{pred}} = (\epsilon_{\text{reco}}\epsilon_{\text{tag}}) M_{\text{mig}} \Delta \Gamma$
 $\Delta \Gamma_i$: theory expectation diff. CS in bin i
 (depends on FF param, $|V_{cb}|$),
 M_{mig}: migration matrix
- C: Covariance matrix
- χ^2_{nuisance}: Account for multiplicative factors degenerate with $|V_{cb}|$