Belle II prospect for hadron spectroscopy

Y. Kato (KMI, Nagoya)

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

2021/3-8-10

HIN2020

Paradigm shift in the hadron spectroscopy

Homeworks from B-factory experiments (= Belle, BaBar):

- Nature of XYZ particles not understood.
- Missing "conventional" quarkonium. How well quark model works?

B-factory = hadron factory!

"New hadrons" from B-factories

	Charmonium (-like)	Bottomonium (-like)	D _, D _(s)	Charmed baryon	Hyperon
B-decay	η _c (2S) ψ ₂ (3823) X(3872) X(3915) Z _c (4050) Z _c (4250) Z _c (4430) Z _c (4200)		D* ₀ (2400) D ₁ (2430)	∃ _c (2930)	Belle BaBar
Initial State Radiation	Y(4260) Z(3900) Y(4008) Y(4360) Y(4660)	~40 new hadrons discovered!			
Double charmonium	X(3860) ≒ χ _{c0} (2P) X(3940) X(4160)				
Two-photon	χ _{c2} (2P)				
e⁺e⁻→cc ^{bar}			$D_{s0}^{*}(2317) D_{0}(2550)$ $D_{J}^{*}(2600) D_{J}(2740)$ $D_{3}^{*}(2750) D_{s1}^{*}(2700)$ $D_{s1}^{*}(2860) D_{sJ}(3040)$	$Σ_c(2800) Λ_c(2940)$ $Ξ_c(2980) Ξ_c(3080)$ $Ω_c(2770) Ξ_c(3055)$	
Y(nS) decay		Z _b (10610) Z _b (10650) η _b (2S) <mark>h_b(1P)</mark> h _b (2P)			Ω(2012)
Charm baryon decay					Ξ(1620)

Today: Prospect for Charmonium (-like) and charmed baryons

HIN2020

Hadron Type

SuperKEKB/Belle II experiment

- Upgrade of KEKB/Belle experiment
- Target Luminosity:
 - 30 times higher peak luminosity compared to KEKB (= 6x10³⁵ /cm²/s)
 - 50 times higher integrated luminosity (= 50 ab⁻¹)
- Detector upgrade for better performance and to cope with higher beam BG
- Grid computing to handle O(100 PB) data.
- Many physics programs: <u>The Belle II Physics Book</u>

Schedule

- Physics run started from 2019 Apr.
- Accumulated around 90 fb-1 so far.
- 50 ab⁻¹ coms on ~2030

Recent highlights

Luminosity record by SuperKEKB with a factor 2-3 lower current

https://www.kek.jp/ja/newsroom/2020/06/26/1400/

Physics results for dark matter candidate searches

 $e^+e^- \rightarrow \mu^+\mu^- Z'$

 $e^+e^- \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$ (Axion Like Particle)

Phys. Rev. Lett. 124, 141801

Phys. Rev. Lett. 125, 161806

X(3872): The poster boy

- Firstly observed by Belle in $B^+ \rightarrow K^+$ (J/ $\psi \pi^+ \pi^-$). - J^{PC} = 1⁺⁺
 - Decay into both of J/ $\psi\rho$ (I=1) and J/ $\psi\omega$ (I=0): isospin breaking
 - Mass consistent with DD* with O(0.1) MeV presicion.
 - Differential cross section for prompt production cross section at LHC consistent with $\chi_{c1}(2P)$

Dynamical information is essential to understand X(3872)

DD*

molecule?

X(3872) coupling to the DD*

- LHCb performed shape analysis of X(3872) \rightarrow J/ $\psi \pi^+\pi^-$ with Flatte parameterization
 - Compatible with quasibound DD*, but quasivirtual state is allowed in 2sigma
- Due to the "Scaling law", no sensitivity to determine coupling and mass with J/ $\psi\pi\pi$ mode only

• In the B-factory, it is possible to study the $J/\psi\pi\pi$ and DD* simultaneously, to determine the coupling.

2021/3-8-10

Belle full statistics result

- With invariant mass reconstruction of X(3872), only the product of branching fraction: Br(B⁺→X(3872) K⁺) x Br(X(3872) -> f) can be measured.
- Br ($B^+ \rightarrow X(3872) K^+$) \rightarrow Do not look for X(3872) decay

 $Br(B^+ \rightarrow K^+X(3872))$

- Reconstruct X from Missing mass: $M_x^2 = (P_{beam} - P_{BTag} - P_{K+})^2$

- Measurement only possible at B-factory with only two B meson in final state
- 7σ measurement is possible at Belle II (naïve extrapolation)
- Measurement for X(3915) is also important to determine $Br(X(3915) \rightarrow J/\psi\omega)$
- Better B meson reconstruction should improve sensitivity.

Search for partner states of X(3872)

Molecule/tetra-quark scenarios predict existence of X(3872) partner states.

C-odd partner:

- No structure observed in J/ $\psi\eta$ by Belle. The upper limit is around half of X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}$
- X(3872) $\rightarrow \eta_c \gamma$ is another candidate

Spin partner:

- $B \rightarrow K DD$ and $K D^*D^*$ not studied in detail yet.
- Sensitivity of 10(-4) is possible at early stage of Belle II

Br(Z_) (x10⁻³)

0.8

0.2

0.4

$M(J/\psi\eta)$

11

 3σ

11

B decays: States need confirmation

HIN2020

12

Initial State Radiation

- One of the best probes to study 1⁻⁻ quarkonium states.
- Many "Y" states are reported from B-factories and BES III.
- Also many "Z" states from "Y" decay.
- 50 ab⁻¹ data corresponds to 2000-2300 pb⁻¹/10 MeV at 4-5 GeV.
 → Compatible with BES III
- Belle II has advantage to access energy higher than 4.6 GeV, and take data simultaneously.

Initial State Radiation golden modes

States needs confirmation

- Y(4008): inconsistent between Belle/BaBar

- Many states observed by BES III only.

State needs further studies

Z(3900): Resonance or cusp?
 Need Argan diagram with amplitude analysis

New States?

- J/ ψ K⁺K⁻ for Z_{cs} search.
- ISR events are observed, but no structure.
- Need more statistics.

· And many more..

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error $(\%)$	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5(3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	Y(4260), Y(4360), Y(4660),
			$Z_{c}(4050)$
K^+K^-J/ψ	4.53	15(6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15(6.5)	$Y(4220), Y(4390), Z_c(4020),$
			$Z_{c}(4025)$
$\omega \chi_{c0}$	4.23	35 (15)	Y(4220)

Double charmonium production

Phys. Rev. Lett. 100, 20200

Interpretation of X(3940/4160) and beyond 16

- All the known states observed in missing mass are J=0.
 X(3940/4160) should be J=0?
- If J=0, C-parity = +1 and decay into DD* indicate they are η_c family.
- However, the mass of X(3940) is ~100 MeV lower than quark model prediction.
- Also, the predicted mass of $\eta_c(4S)$ is 4400 MeV/c².
- Could be a exotic candidate?
- Full amplitude analysis at Belle II is awaited for J^P determination.
- Recoiling against other charmonium (η_c , χ_c ...) is also very interesting.

Physics of charmed baryons

- Charm quark is heavy: $(1500 \text{ MeV/c}^2) > u,d,s \text{ quarks} (300-500 \text{ MeV/c}^2)$
- spin-spin interaction $\propto 1/m_1m_2$
- Di-quark correlation in light quarks
 - New degree of freedom with color (what is the mass?)
 - More simple to understand baryon

Every pair can not be distinguished.

Charmed baryon

Light di-quark and charm quark.

Excitation modes in di-quark picture

- There are two kind of excitation modes.
 - λ mode: excitation between c quark and u-d di-quark.

8

- p mode: excitation in the di-quarks.

Observed charmed baryons

GeV/c² LHCb 3.2 -[Ω_c(3188)?[?]] [Ξ_c(3123)?[?]] Belle $[\Omega_{c}(3119)]^{?}$ **BaBar** ≡_c(3080)?[?] Ω_c(3090) ?; Ω_c(3066) ?; Ω_c(3050) ?; **CLEO** $\Xi_{c}(3055)$? 3.0 ·Ω_(3000) ?⁴ $\Xi_{c}(2970)$? ∧_c(2940) ?[?] ∧_c(2880) 5/2[?] [A_c(2860) 3/2⁺] Ξ_(2815)(3/2) 2.8 Σ_c(2800)?[?] ^_c(2765) ?[?] Ξ_(2790)(1/2) •Ω_c(2770)(3/2⁺) $\Omega_{c}(1/2^{+})$ ∧_c(2625)(3/2⁻) Ξ_c(2645)(3/2⁺) 2.6 •Ξ΄ _c(1/2⁺) A_c(2595)(1/2) Σ_c(2520)(3/2⁺) $- \equiv (1/2^{+})$ Σ_(2455)1/2+ 2.4 - State with [] observed in single exp. - J^P with () is QM prediction Λ_c(1/2⁺) 2.2 Λ_{c} (udc) Σ_{c} (udc,uuc,ddc) Ω_{c} (ssc) Ξ_{c} (usc.dsc)

10.1016/j.ppnp.2019.01.001

- Achievements and missing things
- All the ground states and many excited states observed.
- J^P for a few states determined.
- Many decay modes observed.
 Important for identification of λ ρ mode.
- Very precise mass determinations.
 Isospin splitting depends on baryons.

However...

- Nature of
- Still two 1/2⁻ states not observed!
 - Even for λ mode, it is from QM.

Spin determination at Belle II

- B-meson two body decay constrains the helicity to be ½ as B meson has spin zero and proton has spin ½. This largely reduce uncertainty
- Statistics at current B-factory is not good enough for higher excited states.

Eur. Phys. J. C (2018) 78: 252.

21

- SuperKEKB/Belle II provides a unique opportunity for the hadron spectroscopy
- Belle II started physics run in 2019 Apr.
- Many results for Charmonium(-like) and charmed baryons are expected.

Stay tuned for coming results from Belle II !

Backup