Simulations of A_{LR} and A_{FB} to NLO with ReneSANCe

Caleb Miller

University of Victoria

Feb 10, 2021

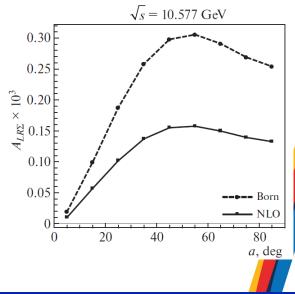
Asymmetries

- \blacksquare Due to $\gamma\text{-}{\rm Z}$ interference there are two major asymmetries present in $e^+e^-\to f\bar{f}$
- First, a left-right asymmetry, A_{LR} , caused by a difference in the cross-sections for left and right handed initial state electrons

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \tag{1}$$

Secondly, a forward-backward asymmetry, A_{FB}, caused by a preference for the final state fermion being in the forward hemisphere vs the backward hemisphere.

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

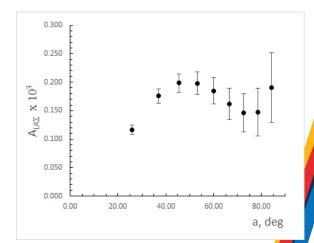

Asymmetries

- Two recent theory papers calculate the asymmetries at fully NLO
- In Muons: Aleksandrs Aleksejevs, et al. DOI: 10.1103/PhysRevLett.124.141801
 - \blacksquare I provided a comparison to $\mathcal{K}\mathcal{K}MC$ in the paper
 - Results were presented in the 2019 fall B2GM
- In Bhabhas: A. G. Aleksejevs, et al. DOI:10.1134/S1063778820030035
- The bhabha paper has no simulation so I am working on a comparison
- In order to produce bhabha pairs for study I am using the new ReneSANCe generator (DOI: 10.1016/j.cpc.2020.107445)
- ReneSANCe is the only generator I found capable of using polarized beams for bhabha generation

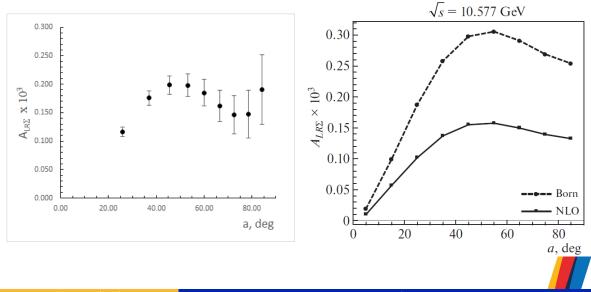
A_{LR} in bhabhas

Results from theory paper

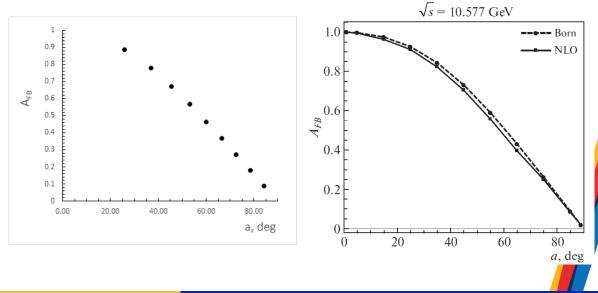
- \blacksquare electrons are between a and 180-a
- **positrons must have** $|\cos \theta| < 0.94$
- large cos θ are excluded as the cross sections become large



ReneSANCe


- Used the ReneSANCe generator to generate 10 billion bhabha events for each electron beam polarization
- Generator is setup to do studies on a variety of variables
- \blacksquare Currently working on getting born level numbers as well as studying $sin^2\theta_W$ sensitivity
- A_{LR} and A_{FB} from ReneSANCe has been calculated at NLO

ALR in ReneSANCe


electrons are between a and 180 − a
positrons have | cos θ| < 0.93
√s = 10.577 GeV

ALR in ReneSANCe

AFB in ReneSANCe

Conclusions

- ReneSANCe is showing relatively good agreement with the theory results
- Working on code framework to submit larger scale jobs
- Sensitivity to $\sin^2 \theta_W$ to follow
- ReneSANCe does not allow the user to set $\sin^2 \theta_W$ directly so we will do it by setting the mass of the W boson
- Also working on adding ReneSANCe to basf2
- Since Generator session is in conflict with the next polarization session I've included some of that talk as well

Generation Process

- read/validate preferences
- calculate and store derived parameters
- calculate matrix element
- grid construction & phase-space sampling
- 5 write events

ReneSANCe and basf2

- Currently have a standalone version of the generator running on kekcc
- Working through understanding how best to mesh with basf2
- Swagato suggested two possible approaches:
 - External, which I assume means standalone
 - Integrated, need to overwrite initialize(), event(), finalize(), etc...
- Current design of the generator is setup for standalone but shouldn't require a huge effort to change
- Current design drawbacks:
 - output file locations are hardcoded
 - Best performance occurs with 1 million events generated per random seed

Conclusions

- Generator can be run relatively simply in current form
- Will edit the main function to allow for user input on path and filename
- If standalone is preferable, what format should the output files have?