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. AT'h}}ef}Weak Mixing Angle

* The Dark Z Boson model

. Oﬁtﬁé}ﬁ,models that could be tested



- Te rminol ogy:
E NS [Ref. 1]

* (Spin) Polarlzatlon — the degree to which the spin of elementary
partlcles is aligned in a given direction

. Parlty operatlon — take the space from (x,.y, z) -> (=X, -y, -2)

. Helluty Projection of Spin onto Momentum
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- Terminology:

LE AT

* The Weak I\/lemg angle: Itisa parameter of the
Standard Model that pertains to the Weak -
Interactlon '

« It affects the vector couplings of the Z boson.
“Itis typically measured by measuring parity V|olat10ns
It s value changes with energy scale Q, due to runnmg

It s:running can be theoretically predicted — but |t
*must* be measured at (at least) one Q QO
experlmentally T

i ES been best measured at the Z pole (| e. Q \V



[Ref. 1, 3]

* The Weak I\/lemg angle: Itis a parameter of the
Standard Model that pertains to the Weak -
Interactlon

io :
sz " ((fjv - 6“2)/ ’) (Z° vertex factor)

EEEERE Table 9.1 Neutral vector and axial vector couplings in the GWS model
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. Forwakd -Backward Asymmetry: Agg B [Ref. 2]

This formula is specifi¢
to our experiment

It relates to the weak mixing angle by:

. , 6scosa s(1+2v?) — M?
A('):f—] — (12 ¢ ¢ ¢ ¢ [ ¢ = ¢ ¢ ¢ —I_ A '
BB '3+ cos?a(s— M2)? 4 2sv3(s — M2) + s2(vf + a?) K



112rrrﬂf1c>k3gpy:

. Left-Rig ht Asymmetry: A i Rt

Particle C

Particle A )
L-handed vs. R-handed No. of Particles (C or D)
that are produced when

Particle A is polarized:

Another Particle
(Unpolarized)

L-handed R-handed

Voo

Particle D W T

S, + Sp

This formula is specifi¢

It relates to the weak mixing angle by: fo.ouf experiment

AV s 1—52 2cosacosb+ 6(cosa+ cosb) + cos2a + cos 2b + 8

‘ A
8M2 s2 2 cos acosb + cos2a + cos 2b + 8 TOLR




Termmology (caveats)

Tree level f> lloop correct|on L

Asymmetries: C = E o,1,0+1%

[Ref. 2]
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Assumptions made when calculating projected
sensitivities of SuperKEKB/Belle Il

e the electron beam polarization is pp = 0.7000 4= 0.0035, the positron beam is unpolarized.

e pp can measured with 0.5% precision, and this dominates the systematic error on Apg.
e Arp can be measured with an absolute systematic uncertainty of 0.005.

e Belle II collects 20 ab™! of data with the electron beam polarization and selects e”e™ —
p () events with 50% efficiency.

e The average /s, which has a root-mean-square (RMS) spread of 5 MeV [1], is known to
+1.2 MeV of the peak of the T(4S5) resonance’.



\t the SuperKEKB:
- Pre-Upgrade =

Figure 8: Forward-backward asymmetry [for a = 10° & b = 170°] as a function of effective Weinberg
mixing angle at /s = 10.58 GeV. Horizontal band shows the central value of A% = 0.01283 determined
with the cut on hard-photons at 2.0 GeV. Width of the band corresponds to the uncertainty on the

central value of 4'1'+,1 Yields an uncertainty of 19.8% on sin® 6,,(Q2? = 10.58 GeV). (See Pg. 16-18, [2])




At the SuperKEKB:
PO St- Upgrade (Proj e(:t'e'}di).
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Figure 9: (Projected) Dependence of the integrated left-right asymmetry on the effective Weinberg mixing
angle at /s = 10.58 GeV. Horizontal bands show the central value of A9%' = -0.00063597 determined with
the cut on soft-photons at 2.0 GeV. The width of the band corresponds to the +0.0000097 uncertainty
on the central value of A%, Yields an uncertainty of 0.21% on sin® 8,,(Q? = 10.58 GeV) [All figures for
proposed electron beam polarization of ~ 70%). (See Pg. 16-18, [2])
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The: Weak Mixing An gle

RGE Running
o Particle Threshold
W EERNGEIERS

s p Experi
= roposed xperlments SLAC-E158 NuTeV

e- Polarized

N, SuperKEKB

eDIS \

Tevatron
Moller

Mainz-P2

LL [GeV]

Figure adapted from [Ref. 10]
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- The Weak Mixing Angle

Running of the Weak Mixing Angle via mod. MS scheme
with theoretical uncertainty

—— Weak mixing angle
Numerical uncertainty
I Theoretical uncertainty due to Z pole measurement
Il Theoretical uncertainty due to 2-loop diagrams (order of magnitude)

sin?(6_w)(Q?)

100
Q (GeV)




| The Weak I\/Iixing An gle

— Weak mixing angle
0.23405 Numerical uncertainty
I Theoretical uncertainty due to Z pole measurement
Il Theoretical uncertainty due to 2-loop diagrams (order of magnitude)

0.23400

0.23395

0.23385

0.23380

0.23375
1.1 x 10! 12x10' 1.3x10' 1.4x10' 1.5x10' 1.6 x 10!

Q (GeV)
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Possible departure from SM pred|ct|on due to
presence of Dark Z Boson

Dark Z'

boson
At Q = 10.58GeV related

@iﬁerent ’y

.-—-/
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Dark Photh vs. Dark Z-.boson model

1 I [Ref. 12]

_; pr L ]
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Dark Photh vs. Dark Z-.boson model

1 R [Ref. 12]
Bpl/Z(f]”/_

1
. LV il
Lgange = _ZB’ w B+ 2 cos Oy 9W ZZdWZd N

B | B,Lu/ — au, Bz/ — az/ B L dy,l/ — 8;.4 Z dv — 81/ Zd 14

) DarkPhoton - | Dark Z Boson:

Lint = —|ceJ? +e5(g/2cos W)J]’“\L,C] Z,
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Dark Photh vs. Dark Z-.boson model

1 L o [Ref. 12]
Egmlge — ——BH‘,,/B'L“/ 4+ —

B 11/ZHV T
4 2 cos Q{V f d 4

my
_Zd;u/ Zd SR
N B pur — 9, L B 2 0 v B L d v 8;.4 Z dv — 81/ Z dp

) DarkPhoton - | Dark Z Boson:

Lint = —|ceJ? +e5(g/2cos W)J]’“\L,C] Z,

1 —&Z
2 2
ez my,/my
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Possible departure from SM pred|ct|on due to

presence of Dark Z Boson
- [Ref. 12]

SinQ 0’1L)<Q2)‘,f dark Z ewists 7 ’”(1(@2) 5111 u’(Qz)

ka(Q?) =1 —€d Z cot 0 (Q7 )SA[—
1

M 7,

Current (future) bound on §
Low Energy Parity Violation| |4 < 0.08 —0.01 (0.001) Fairly independent of mz,. Depends on ¢.
Rare K Decays |0] < 0.01 —0.001 (0.0003) m2 < m%d < m%. Depends on BR(Z,).
Rare B Decays |6] < 0.02 —0.001 (0.0003) [m2 < mQZd < m%. Depends on BR(Z4). Some mass gap ~ 3 GeV.
H— ZZ, |6] < (0.003 — 0.001) m% ., < (mg —mz)?. Depends on BR(Z4) and background.

TABLE II: Rough ranges of current (future) constraints on § from various processes examined along with commentary on
applicability of the bounds. These processes have negligible sensitivity to pure kinetic mixing effects.
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Possible departure from SM. prediction due to
presence of Dark Z Boson

L, Essw et al.
_____________________

Max suppression
BR(Z;—missing) = 1 BR(Z;—-missing) = 1

1 1 L — 1 L

50 100 500 1000 e 50 100 500 1000
Z; mass [MeV] Z; mass [MeV]

(a) (b)

FIG. 4: Constraints from BNL E787+E949 experiments (K — 7 + nothing), at 95% C.L., on the dark photon parameter
space (orange area) for BR(Z4s — missing) = 1 for (a) dark photon and (b) dark Z with maximum suppression. Also illustrated
there are constraints from ete™ — v + ‘invisible’ based on BaBar data as given in Ref. [41] by Izaguirre et al. and Ref. [53]
by Essig et al.




Possible de_parture from SM prediction due to
- presence of Dark Z Boson -
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Possible de_parture from SM prediction due to
- presence of Dark Z Boson -
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Possible departure from SM prediction due to
~presence of Dark Z Boson
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Possible departure from SM pred|ct|on due to
presence of Da rk Z Boson

10.582GeV?) value from predicted SM values

(White bars depict =30, =40, £50 in order of thickness)
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Possible departure from SM . prediction due to

presence of Dark Z BQSQ;”

A
A

L

XXX

Constraints from [R. 11]

10.582GeV?) value from predicted SM values

(White bars depict =30, 40, £50 in order of thickness)

Difference in sin?(6_w)(Q?
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LDM, another possibility?

[Ref. 13]
| 1
B L — Loy — ZZA/WZ/W QZ;/WB‘“/ + iy, 0"

XV 9y + 97" IXZy, + I (9 + 9i9°) 07, .

1
—1My XX + §m2Z,Z/;Z’“‘,

. Leptophlllc Dark Matter
. Couples only to leptons

. does n@t requwe a reconstructed tau+ tau |nvar|ant
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;'ACondUSKNM

Upgradlng the SuperKEKB by adding poIarlzatlon to the

electron beams will increase our odds of detecting a dark Z

boson (and maybe other effects)!

"~ ThankYou!
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Terminology (caveats);

LEASE

. Chlrallty (of a Dirac fermlon) Sign of elgenvalue
of %

. Chl\rallty vs. Helicity vs. Handedness:

Chir .1l|t\ Hclmt\

Related to hamledncxs thumb in
velocity direction, fingers in
spin direction. No direct
relation to weak charge.

L Zp

Physical description Related to weak charge

Operator form

p|

Projection operator form

Plus vs minus L+ = same as at lefl

. 2 Onlv a label. not rg Physical handedness via right
Interpretation of RH/LH T I AR - : ;
handedness hand rule

Refers to'l“and R handed representations of Poincare group. This is a math thing, which is
what Griffiths'considers "real-handedness". In most scientific literature, it is used 30
interchangeably =.see caveat 4 in the next slide




Terminology (caveats):

LE AT

Chlrallty vs HeI|C|ty vs. Handedness:

1. Chlral fermions are eigenvectors
: _;j:of the weak interaction.

2. 'By Dirac equation, a chiral fermion (L or
R).evolves over time to become a superp05|t|on ef
: j_both L- and R-chiral fermions o

3. If you make a left-handed fermion by polarlzmg |t
it WI|| stay left-handed i.e. it's helicity will not"
change (prowded your frame of reference does not
change) - S

4. WhenE >> mc2 (or as m -> 0), chlrallty heI|C|ty
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The GWS I\/Iodel

Create a fleld Lagranglan that has Iocal SU(Z)LxU(l)
symmetry

To do thls need to introduce 2 gauge fields (W )
and 2. new quantum numbers — Hypercharge Y and
Isospin I.- ———————

Table of weak hypercharge Y

Table of isospin quantum [REf 3]
32
numbers I3 and [




The GWS I\/Iodel

Then spontaneously break (hide) the symmetry by
mtroducmg the Higgs field (this adds mass to your
massless gauge fields)

Mix everythlng up (IlteraIIy) and you get a masswe
W+ W and Z, and a massless photon.

[Ref. 1, 3] 4



~ The GWS Mod el

Fig. 47.4 The electroweak interaction

vertices p

Salam theo

edicted by the Weinberg—

V.

8e
sin @, cos 6,

MZ COS Ow

(W= vertex factor)

(2° vertex factor)

Table 9.1 Neutral vector and axial vector couplings in the GWS model

f cy CA

Ve, Vi, Ve %
—% +2sin% 4, -
% — 45in? Oy
1
2

3
2
3

.2
+ %£sin“6,

Nl RN N N

[Ref. 1, 3] 3%



~Numerica | Uncerta inty

Running of Weak Mixing Angle via mod. MS scheme
[Effective quark masses]

—— Kb(Q?) -> Boson loop contribution
—— Kf(Q?) -> Fermion loop contribution
— K(Q?)

-=-- k(Q? p=m_z)

sin*(6_w)(Q?)

100 101
Q (GeV)




. - Z (TSQQ(] -

26%) I M;
§7) I3

2
q

Z

Numerica | Un certainty

— —6.88 =0.06

Also see [Ref. 9, 10]

AJ(QZ)—l—r)—AZ 3 Z [Tanf—()S)

Mi 5 (- 2y
]\[2)_§+ “f+( - “’f)pf n

pr+1

(In g 1)]

2
M7

~

K2

[Ref. 6,5] rr=

2752

€ 1
— 42)é* 4 =
DT 428 4

1 ar
i T+ 2(2 — 2)In?
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~Numerica | Uncerta inty

Running of Weak Mixing Angle via mod. MS scheme
different methods of calculation

== 1. [No quark mass correction]...
—_— |

[No quark mass correction], scaled..

[Quark sum fit]...
=]

[Quark sum fit], scaled..

101
Q (GeV)




~Numerica | Un certainty

1le—7+2.38082e—1 Error in effective quark mass expression

=== k(Q? p=m_2)
— K(Q?)
Theoretical uncertainty

9.99998 x 1072 9.99999 x 102
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