a place of mind

Selecting e⁺e⁻ $\rightarrow \mu^+\mu^-$ events for an A_{LR} measurement

Christopher Hearty U. British Columbia / IPP November 10, 2020

Outline

- Starting point for the selection
- Backgrounds / purity
- Efficiency
 - tracking
 - muonID
 - level 1 trigger

Data sets / Event / basic muon selection

- Muon pair selection:
 - p_{cms}>3.5 GeV/c, abs(d0)<0.5 cm, abs(z0)<4 cm
 - sum θ_{cms} between [175°,185°]
 - delta $\phi_{cms} > 175^{\circ}$
 - invariant mass $> 9 \text{ GeV/c}^2$
 - neither track has clusterE >1 GeV
- Experiment 10 proc 11 hlt_mumu_2trk skim, 4 fb⁻¹, 2.4M "muon" pairs.
- mc13b proc 11 for exp 10, mode 3500420000, ~6.8 fb⁻¹,
 4.1M muon pairs. (No run dependent mc for exp 12).

Theta (lab) distribution of selected "muons"

Figure 1.2: Side view of the Belle II experiment.

Theta distribution after requiring at least one track have muonID>0.9

Backgrounds / purity

- Bhabhas ~70 nb with both tracks in acceptance
 - muon pairs 0.83 nb
 - suppress with angular cuts, muon ID
- Two photon fusion production $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ 19 nb - invariant mass cut is enough to reject?
- tau pairs (probably negligible)
- cosmics (probably negligible)

Tracking efficiency

- The data/mc discrepancy that I see before applying muonID could reflect a difference between data and MC in tracking efficiency at low angles.
- To study this, I selected Bhabhas using the ECL only. The curvature provides a clean separation from $\gamma\gamma$ events.

 Note: this is a 2-year old study. Big improvements since then. And I need to add in SVD-only tracks. But it illustrates the type of study that can be done.

Muon ID

- Clearly an issue with muon ID in barrel / endcap gaps.
- Even in the barrel, efficiency modelling is not perfect. Understanding this at the fraction of a percent level takes a bit of care. Because the two tracks are almost back to back in phi, the KLM efficiency is somewhat correlated.

 Require one track have muonID>0.5, then check the fraction of other tracks that also have muonID>0.5

Efficiency for muonID>0.5 vs ECL location, mu-, exp 10 proc 11 Efficiency for muonID>0.5 vs ECL location, mu-, mc13b Clind Clind Clind Ulind 1 0.9 0.9 120 120 0.8 0.8 0.7 0.7 100 100 0.6 0.6 80 80 0.5 0.5 60 60 0.4 0.4 0.3 0.3 40 40 0.2 0.2 20 20 0.1 0.1 0 0 0 0 20 15 25 30 35 45 50 55 15 20 25 30 35 40 45 50 55 thetalD thetalD and also in octant boundaries inefficiency in forward gap is worse in data than in mc

exp 10 data

mc13b

 Ratio of data efficiency / mc efficiency for each bin (1 bin = 1 ECL crystal)

KLM matching efficiency ratio, muID>0.5, data/MC exp 10, negative

Level 1 trigger

- Basically two muon pair triggers for exp 10:
 - ffo: two wide-angle tracks, roughly back to back in phi
 - eclmumu / Iml10: ECL clusters back-to-back in φ_{cms} and θ_{cms} .
- Mid-way through exp 12, we added new lines requiring one or two tracks matched to barrel KLM clusters. In exp 14, this will be extended to the endcap KLM.

Measuring the L1 trigger efficiency

- In the barrel, especially as of exp 12, we can compare the different triggers lines to get the overall efficiency.
- ECL gap region: ecl triggers are inefficient, L1 tracking efficiency is unknown. Endcap KLM triggers will be needed to perform the studies.
- ECL endcaps: ecl trigger is the primary one. It is the only trigger at low angles. Needs some thought. May need to introduce a highly prescaled single cluster trigger.

Summary

- In terms of selecting a pure sample, kinematics and muonID should give us the tools we need. But I have not yet quantified this.
- Understanding the efficiency will take work in three areas:
 - tracking
 - muon ID
 - level 1 trigger.
- I do not understand the optimization between purity and efficiency.