Measurement of Beam Polarization through Tau Forward-Backward Polarization Asymmetry

Caleb Miller

University of Victoria

June 24, 2020

Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electro-weak parameters. Including A_{LR} for e,μ,τ,c,b

$$A_{\rm LR} = \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle \propto T_3^f - 2Q_f \sin^2 \theta_{\rm W}$$

Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electro-weak parameters. Including A_{LR} for e,μ,τ,c,b

$$A_{\rm LR} = \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle \propto T_3^f - 2Q_f \sin^2 \theta_{\rm W}$$

$$\sigma(s^2\theta_W) \approx 0.0002 \\ (40 \mathrm{ab}^{-1})$$

Measuring Beam Polarization with Tau Decays

• The τ decay, $\tau \rightarrow \pi \nu$, provides a powerful technique to measure polarization.

Pion Momentum Polarization Sensitivity

• Assuming a pure sample of $\tau \to \pi \nu$ events

Figure: Pion momentum distributions for a right handed tau(blue) or a lefted handed tau(red)

Pion Momentum Polarization Sensitivity

In reality it's not easy to determine the tau helicity state but most of the sensitivity still exists from just a polarized electron beam

Figure: Pion momentum distributions for a right handed electron(blue) or a lefted handed electron(red)

Pion Angular Polarization Sensitivity

Left Polarization

No Polarization

Right Polarization

Event Selection

Using BaBar data to develop technique

- ▶ Full BaBar data set is 513.7 fb⁻¹
- Using Run 3 as unblinded sample (34.72 fb^{-1})
- Studied multiple tagging options
 - (pion tag) $\tau \tau \to \pi \nu + \pi \bar{\nu}$ large backgrounds from $e^+e^- \to \mu^+\mu^-$
 - (3 pion tag) $\tau \tau \rightarrow \pi \pi \pi \nu + \pi \bar{\nu}$ still needs work
 - (electron tag) $\tau \tau \to e \nu + \pi \bar{\nu}$ large backgrounds from $e^+e^- \to e^+e^-$
 - (rho tag) $\tau \tau \rightarrow \pi \pi^0 \nu + \pi \bar{\nu}$ very pure
- The rho tag has proven to be largely free of non-tau backgrounds and has high statistics

Event Selection

- 1. All events that pass the Tau BGF flag and NTrks>0 are written to ntuples
- 2. Selection cuts for one $\tau \to \rho \nu$ and one $\tau \to \pi \nu$ are applied
 - 2.1 NTrks = 2
 - 2.2 Sum of charge = 0
 - 2.3 Tracks are separated by $>90^\circ$
 - 2.4 The event $\mathsf{P}_{\mathcal{T}}$ is ${>}1.2~\text{GeV}$
 - 2.5 One track, signal track, has no neutrals in it's hemisphere
 - 2.6 One track, tag track, has 1 or 2 neutrals in it's hemisphere
 - 2.7 The tag track has a π^0 in its hemisphere
 - 2.7.1 If one neutral cluster, π^0 likelihood in the event >40
 - 2.7.2~ If two neutral clusters, π^0 mass between 115 and 150 MeV
 - 2.8 The signal track fails a loose electron and loose muon PID selector
- 3. Events that pass have the signal track momentum and $\cos\theta$ passed to the fit

Fitting

- The fit is done with a Barlow template method
- In order to be sensitive to polarization Tau MC was produced for a left and right polarized electron beam
- The unpolarized Tau MC into 3 statistically independent samples and then merged with non-Tau MC to produce data-like samples
- The 3 Tau samples contain 42.7 fb⁻¹ equivalent events and are scaled to 34.7 fb⁻¹
- The data (or equivalent MC) is then fit as a linear combination of the templates

$$D = a_l L + a_r R + a_b B + a_m M + a_u U + a_c C$$
(1)

$$\sum_{i} a_{i} \equiv 1 \tag{2}$$

$$\langle Pol \rangle \equiv a_l - a_r$$
 (3)

L=Left Polarized Tau MC, R=Right Polarized Tau MC, B=Bhabha, M= $\mu\mu$, U=uds, C= $c\overline{c}$

Template Examples

Example distributions for $\tau \to \pi \nu$

Left Polarization

No Polarization

Right Polarization

Fit Result

Fit Results

Data

Positive Charge Tau MC 1 -0.0302 ± 0.0260 Tau MC 2 -0.0380 ± 0.0261 Tau MC 3 -0.0347+0.0261 -0.0376 ± 0.0284

Negative Charge 0.0121 ± 0.0252 -0.0346 ± 0.0252 0.0053 ± 0.0252

 0.0393 ± 0.0270

Combined Average -0.0084 ± 0.0181 -0.0362 ± 0.0181 -0.0140 ± 0.0181 0.0029 ± 0.0196

Figure: Run 3 Fit, 34.7 fb⁻¹

Polarization Sensitivity

- To test the total polarization sensitivity, the polarized Tau MC was split into 2 sets
- One set for measuring polarization, one set for mixing known polarization states

Systematic Study List

- Bins in Fit
- Background ratio in Fit
- Cuts in Selection
- PID Selector
- Boost Vector
- Tau Decay Branching Fraction
- Neutral Cluster Variables

- Shifts in P
- Momentum resolution
- Shifts in $\cos \theta$
- Shifts in ϕ
- Charged Track List
- Neutral List
- BGF tag
- Total Polarization Sensitivity

Systematics Approach

Method 1: Change in MC-Data agreement

- In the case where Data and MC are in good agreement, the variable is changed and the relative shift between the Data and MC is taken as the systematic
- Method 2: Change in Data fit
 - In the case where the MC differs significantly from the Data, the MC is corrected and the shift it causes in the Data fit is taken as the systematic

In some cases both methods are used iteratively until the systematic is understood at an acceptable level

PID systematics

PID 1	Positive Charge	Negative Charge	Combined Averag
MC Data	${}^{1}P^{+}_{MC}$ ${}^{1}P^{+}_{Data}$	${}^{1}P_{MC}^{-}$ ${}^{1}P_{Data}^{-}$	${}^{1}P^{A}_{MC}$ ${}^{1}P^{A}_{Data}$
PID 2	Positive Charge	Negative Charge	Combined Average
MC Data	$^{2}P^{+}_{MC}$ $^{2}P^{+}_{Data}$	${}^2P^{MC}$ ${}^2P^{Data}$	${}^2P^A_{MC}$ ${}^2P^A_{Data}$
Differences	Positive Charge	Negative Charge	Combined Averag
MC Diff Data Diff	${}^{1}P^{+}_{MC} - {}^{2}P^{+}_{MC} = {}^{D}P^{+}_{MC}$ ${}^{1}P^{+}_{Data} - {}^{2}P^{+}_{Data} = {}^{D}P^{+}_{Data}$	$^{D}P_{MC}^{-}$ $^{D}P_{Data}^{-}$	^D P ^A _{MC} ^D P ^A _{Data}
Total Diff	$^{D}P^{+}_{MC}-^{D}P^{+}_{Data}= ilde{P}^{+}$	\tilde{P}^-	$ ilde{P}^A$

PID systematics

Е, М	16	20	21
1	0.0000	-0.0065	-0.0039
7	0.0004	-0.0060	-0.0035
8	0.0006	-0.0059	-0.0034
E, M	16	20	21
1	0.0000 ± 0.0000	-0.0066 ± 0.0011	-0.0039 ± 0.0013
7	0.0002 ± 0.0002	-0.0062 ± 0.0011	-0.0037 ± 0.0014
8	0.0004 ± 0.0001	-0.0061 ± 0.0010	-0.0035 ± 0.0013

- Taking the average standard deviation of the rows gives the muon systematic uncertainty
- Taking the average standard deviation of the columns gives the electron systematic uncertainty
- $\sigma_{sys}^{\mu PID} = 0.00328 \pm 0.0005$ $\sigma_{sys}^{ePID} = 0.00021 \pm 0.00045$

Boost Correction

 Used muon pairs to look at the boost through the muon pair acollinearity

Figure: a collinearity in ϕ

Boost Correction

After correction

Figure: acollinearity in θ

Figure: a collinearity in ϕ

Correction to MC causes the Data fit to shift by 0.0005

Systematic Study List

- ► Bins in Fit √
- \blacktriangleright Background ratio in Fit \checkmark
- ► P_T Cut \checkmark
- ▶ PID Selector \checkmark
- ► Boost Vector 🗸
- ► Tau Decay Branching Fraction √
- Neutral Cluster Variables

- ► Shifts in P √
- Momentum resolution \checkmark
- ▶ Shifts in $\cos \theta \checkmark$
- ▶ Shifts in $\phi \checkmark$
- ► Charged Track List 🗸
- ► Neutral List 🗸
- BGF tag
- ► Total Polarization Sensitivity√

Systematic summary

Study	Systematic	
Р	0.0015	
heta	0.0002	
ϕ	0	
Boost	0.0005	
π^0	0.0005	
E_{γ}	0.0006	
non- $ au$ Backgrounds	0.0002	
PID_μ	0.0033	
PID_e	0.0002	
au-BF	0.0001	
Neutrals*	0.0011	
BGFTau*	$\mathcal{O}(0.001)?$	
Quad Sum	0.0038	

Current Data Fit for Run 3 P=-0.0023 \pm 0.0212_{stat} \pm 0.0040_{sys}

BaBar Next Steps

- Wrapping up final systematic study
- BaBar review committee is formed and ready to review analysis
- Start unblinding in December hopefully
- ▶ So far only Run 3 used, ~7.5% of total
- Expect full measurement uncertainty will be: $\sigma_P = 0.0058_{stat} \pm 0.0040_{sys}$

Polarization at Belle II

- Swagato Banerjee has setup KKMC in basf2
- Michel Hernandez Villanueva produced a sample of $\tau \tau \rightarrow \pi \nu + \pi \nu$ with polarized electron beams
- Currently analyzing the results
- Initial peeks at the pion momentum distributions suggest a bug somewhere
 - Initial tests suggest mdst needs to be scrubbed of mcPDG==0 particles first
- Will verify results and put in a request for full polarized tau MC soon