Simulations of A_{LR} and A_{FB} to NLO with ReneSANCe

Caleb Miller

University of Victoria

November 10, 2020

Asymmetries

- \blacksquare Due to $\gamma\text{-}{\rm Z}$ interference there are two major asymmetries present in $e^+e^-\to f\bar{f}$
- First, a left-right asymmetry, A_{LR} , caused by a difference in the cross-sections for left and right handed initial state electrons

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \tag{1}$$

Secondly, a forward-backward asymmetry, A_{FB}, caused by a preference for the final state fermion being in the forward hemisphere vs the backward hemisphere.

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

Asymmetries

- Two recent theory papers calculate the asymmetries at fully NLO
- In Muons: Aleksandrs Aleksejevs, et al. DOI: 10.1103/PhysRevLett.124.141801
 - \blacksquare I provided a comparison to $\mathcal{K}\mathcal{K}MC$ in the paper
 - Results were presented in the 2019 fall B2GM
- In Bhabhas: A. G. Aleksejevs, et al. DOI:10.1134/S1063778820030035
- The bhabha paper has no simulation so I am working on a comparison
- In order to produce bhabha pairs for study I am using the new ReneSANCe generator (DOI: 10.1016/j.cpc.2020.107445)
- ReneSANCe is the only generator I found capable of using polarized beams for bhabha generation

A_{LR} in muons

- Points are integrated between 10° and b
- Experimental uncertainty is expected to be on the order of a pixel with 20 ab⁻¹ of data

A_{LR} in bhabhas

In Muons A_{LR} at the born level takes the form of:

$$A_{LR}^{0} = -\frac{2s}{m_Z^2} \left[a_e v_\mu + a_f v_\mu \frac{(1-2y)}{2(y-1)y+1} \right] \quad (y = -t/s)$$
(3)

In Bhabhas the structure is quite different

$$A_{LR}^0 = \frac{8v^Z a^Z stu^3}{m_Z^2 (s^4 + t^4 + u^4)}$$

• This manifests in a different A_{LR} sign

(4)

A_{LR} in bhabhas

Results from theory paper

- \blacksquare electrons are integrated from -a to a
- **positrons must have** $|\cos \theta| < 0.94$
- large cos θ are excluded as the cross sections become large

ReneSANCe

- Used the ReneSANCe generator to generate 10 billion bhabha events for each electron beam polarization
- Generator is setup to do studies on a variety of variables
- \blacksquare Currently working on getting born level numbers as well as studying $sin^2\theta_W$ sensitivity
- A_{LR} and A_{FB} from ReneSANCe has been calculated at NLO

ALR in ReneSANCe

electrons are integrated from -a to a
positrons have | cos θ | < 0.93 $\sqrt{s} = 10.577$ GeV

ALR in ReneSANCe

AFB in ReneSANCe

Conclusions

- ReneSANCe is showing relatively good agreement with the theory results
- Comparisons at the Born level almost ready
- Sensitivity to $\sin^2 \theta_W$ to follow