Polarized Source Development Activities at Hiroshima

Zachary Liptak*

*: with significant material from M. Kuriki

Cathode Development

- HU Accelerator group (M. Kuriki + grad students, now myself) working on developing backup polarized source for ILC.
- Current focus is on GaAs cathode with a thin Negative Electron Affinity (NEA) surface.

Generating a polarized beam

- Electrons are excited with a laser
- Using a circularly polarized laser produces polarized excited electrons

Polarization and Q_eff

 Polarization up to 92% has been achieved with a QE of 1.6% from GaAs.

Negative Electron Affinity

- Electrons excited to conduction band in GaAs bulk have very little momentum.
- NEA surface with a lower CB bottom can be applied to the cathode surface to make it easier to extract and accelerate electrons.

Electron Extraction

- RF Gun has a high gradient (up to 100 MV/m) ^{#-トロッド} but vacuum is insufficent and GaAs + NEA lifetime is too short
- Use DC bias instead
 - Limited field: ~ 10 MV/m max
- Beam density is limited → need buncher to achieve high bunch density

Improving lifetimes of NEA surfaces

- Current NEA surfaces made of Cs-O
 - Require UHV ($< 10^{-9}$ Pa)
 - Limited bunch intensity, long bunches and large emittance
- Working on developing more robust NEA surface: Cs-K-Te

1/e lifetime 3.0 – 4.0 x 10⁻⁴ Pa.sec

C. Shonaka, Master thesis, Hiroshima U. (2009)

Improving lifetimes of NEA surfaces

Improving robustness of cathode would:

- Ease the vacuum requirements
- Possibly allow for use of RF electron gun
- Improve intensity, bunch length, emittance

HU working on a better NEA surface to produce the above improvements: Cs-K-Te shows promise as a candidate cathode.

NEA Production Apparatus

Evaporation head

- Chemically polished SUS chamber with NEA and ion pumps
 - Vacuum pressure ~1.5 x 10⁻⁸ Pa
- Quartz thickness monitor
- QE measurement taken with Xe lamp

Optimal NEA Thickness Evaluation

- Evaporate Te onto GaAs substrate to desired thickness
- Evaporate K and Cs repeatedly
- Measure QE spectrum after each K/Cs evaporation
- Optimum thickness is defined at that which has the maximum QE at 4.9 eV.

Optimal NEA Thickness Evaluation

- QE at 4.96 eV is saturated with Te thickness
- QE at 1.43 eV peaks at ~15-20 Å
- Consistent with electron emission with 4.96 and
 1.43 photons from Cs-K-Te and GaAs, respectively.

Electron Damping Ring Considerations

- If an e⁻ damping ring were installed, development of e⁻ source would be eased significantly
 - Possibility exists due to emittance concerns in the HER
- With the relaxation of emittance requirements, DC source becomes a possibility
 - \circ Vacuum is much better \rightarrow longer lifetime for cathode sources
 - Would require a buncher as beam density and E field are limited (50 pC/10 MeV respectively)
- Current bunch charge/emittance requirements show in the table below

	e ⁺	e
Bunch charge	4 nC x 2	4 nC x 2
γε (mm mrad)	< 6	< 20

Source: <u>http://accwww2.kek.jp/oho/oho19/OHO19_txt/05_Zhou_Xiangyu.pdf</u>

Questions for Development

- How much setup at KEK would need to be changed/added/implemented to use a polarized source?
- Is there an existing usable DC source?
 - If so, would the activation laser, buncher, &c. work with it or would they need to be added?
- What other technical considerations/challenges need to be considered?

Conclusion

- HU working on producing polarized electron sources
 - GaAs source can provide > 90% polarized electrons with
- Utilizing NEA film to improve emitted beam
- Cs-K-Te surface on a GaAs substrate looks like a promising candidate
 - Longer lifetime then previous Cs-O film
 - May be able to use RF gun (although this may require significant work)
- Optimal Te thickness is around 15-20 Å
 - \circ $\,$ QE found to be 2.0 3.0 x 10^{-4} at this level
 - More Te reduces QE, while GaAs emission is saturated.