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What is an Operator Product Expansion (OPE) ?

An Operator Product Expansion (OPE) is defined as an expansion of a
product of operator-valued (quantum) fields evaluated at two closely
placed spacetime points in terms of “local” operators :

O1(x)O2(0) =
∑
i

Ci (x)Oi (0) .

The expansion coefficients Ci (x) are called the Wilson coefficients.
(Named after Kenneth G. Wilson (1936-2013), Nobel Prize in Physics
1982.)

The behavior of the operator product as x is varied is encapsulated in the
Wilson coefficients.

Why is this relevant for Belle II?
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What is an Operator Product Expansion (OPE) ?

Many OPE-type expressions appear in the Belle II Physics Book (PTEP
2019, 123C01).

Examples:

1 Eq. (62), the effective interaction Hamiltonian for b → cūd :

Hb→cūd =
4GF√

2
VcbV

∗
ud

∑
j=1,2

Cj Q
cūd
j ,

where

Qcūd
1 = (d

α
Lγµu

β
L )(cβLγ

µbαL ) , Qcūd
2 = (d

α
Lγµu

α
L )(cβLγ

µbβL ) .

Here, α and β are color indices. See also Eq. (344).
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What is an Operator Product Expansion (OPE) ?

2 Eq. (136), the effective interaction Hamiltonian for possible new
physics effects in b → cτν:

−Leff = 2
√

2GFVcb

[
(1 + CV1)OV1 + CV2OV2

+CS1OS1 + CS2OS2 + CTOT

]
where

OV1 = (cLγµbL)(τLγ
µνL) , OV2 = (cRγµbR)(τLγ

µνL) ,

OS1 = (cLbR)(τRνL) , OS2 = (cRbL)(τRνL) ,

OT = (cRσµνbL)(τRσ
µννL) .

(Note that Hint = −Lint in the absence of derivatives in Lint.)

3 Eq. (147) gives a similar expression for b → uτν, where c is replaced
by u everywhere.
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What is an Operator Product Expansion (OPE) ?

4 Eq. (417), the effective interaction Hamiltonian relevant for possible
new physics effects in c → u`+`− (D0 → `+`−) :

Hrare
NP =

10∑
i=1

C̃i (µ)

Λ2
Q̃i ,

where

Q̃1 = (`Lγµ`L)(uLγ
µcL) , Q̃2 = (`Lγµ`L)(uRγ

µcR) ,

Q̃3 = (`L`R)(uRcL) , Q̃4 = (`R`L)(uRcL) ,

Q̃5 = (`Rσµν`L)(uRσ
µνcL) .

Q̃6∼10 are obtained from Q̃1∼5 via the interchange L↔ R.

Tatsu Takeuchi (Virginia Tech) OPE in Belle II Analyses Belle II Summer Workshop, July 13, 2021 5 / 26



What is an Operator Product Expansion (OPE) ?

Wait!
The interaction Hamiltonian Hint = −Lint on the left-hand sides are
not products of operators evaluated at two different spacetime points,
or are they!?

Where are the x-dependences of the Wilson coefficients? Is the µ in
the Wilson coefficients C̃i (µ) of Eq. (417) the same thing as x?

What is the Fermi constant GF doing in Eqs. (62), (136), and (147)?
And what is Λ in Eq. (417)?

etc.

In order to understand what is going on, we need to introduce the
concepts of “renormalization scale µ,” and “effective QFT at µ”

We will begin by reviewing the basics of Quantum Field Theory
(QFT) so that we know what we mean when we say “operator”.
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Classical Harmonic Oscillator - Lagrangian

Consider the classical Lagrangian for a harmonic oscillator:

L =
1

2
mq̇2 − 1

2
kq2 .

The equation of motion and generic solution are

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
= mq̈ + kq

↓

q(t) = A e−iωt + A∗e iωt , ω =

√
k

m
.

Tatsu Takeuchi (Virginia Tech) OPE in Belle II Analyses Belle II Summer Workshop, July 13, 2021 7 / 26



Classical Harmonic Oscillator - Hamiltonian

Momentum conjugate to q is

p =
∂L

∂q̇
= mq̇ ,

and the Hamiltonian is

H = pq̇ − L =
p2

2m
+

1

2
kq2 .

The equations of motion and solution are

q̇ = {q,H} =
p

m
,

ṗ = {p,H} = −kq ,
↓

q(t) = A e−iωt + A∗e iωt , ω =

√
k

m
.
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Quantum Harmonic Oscillator

Quantization (Heisenberg picture) :

q → q̂ , p → p̂ , {q, p} = 1 → 1

i~
[q̂, p̂] = 1 .

The equations of motion and solution are

˙̂q =
1

i~
[q̂, Ĥ] =

p̂

m
,

˙̂p =
1

i~
[p̂, Ĥ] = −kq̂ ,

↓

q̂(t) =

√
~

2mω

(
â e−iωt + â†e iωt

)
, ω =

√
k

m
,

1

i~
[q̂, p̂] = 1 → [â, â†] = 1 .
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Quantum Harmonic Oscillator

â† and â are the creation and annihilation operators:

â†â|n〉 = n|n〉 , â|n〉 =
√
n|n − 1〉 , â†|n〉 =

√
n + 1|n + 1〉 ,

where n = 0, 1, 2, · · · .

Hamiltonian and energy eigenvalues:

Ĥ =
p̂2

2m
+

1

2
kq̂2 = ~ω

(
â†â +

1

2

)
↓

En = ~ω
(
n +

1

2

)
.
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1D Lattice Oscillations - Lagrangian

Consider N equal masses connected by N equal springs with periodic
boundary condition (qN = q0) :

The Lagrangian and equation of motion are

L =
1

2
m

N−1∑
j=0

q̇j
2 − 1

2
k

N−1∑
j=0

(qj+1 − qj)
2 ,

0 =
d

dt

∂L

∂q̇j
− ∂L

∂qj
= mq̈j + k

[
− qj−1 + 2qj − qj+1

]
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1D Lattice Oscillations - Lagrangian

The generic solution is

qj(t) =
1√
N

∑
n

{
Ane

−i(ωnt−jθn) + A∗ne
i(ωnt−jθn)

}
where

θn =
2nπ

N
, ωn = 2

√
k

m

∣∣∣∣sin
θn
2

∣∣∣∣ , n ∈ Z .

If we label qj with its equilibrium position xj = ja along the x-axis instead
of the integer j , then we can write

q(t, xj) =
1√
N

∑
n

{
Ane

−i(ωnt−knxj ) + A∗ne
i(ωnt−knxj )

}
where

kn =
θn
a

=
2nπ

Na
is the wave-number.
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1D Lattice Oscillations - Hamiltonian

The momentum conjugate to qj is

pj =
∂L

∂q̇j
= mq̇j ,

and the Hamiltonian is

H =
∑
j

pj q̇j − L =
1

2m

N−1∑
j=0

p2
j +

1

2
k

N−1∑
j=0

(qj+1 − qj)
2 .

The equations of motion are

q̇j = {qj ,H} =
pj
m
,

ṗj = {pj ,H} = k(qj+1 − 2qj + qj−1) ,

which are equivalent to the Euler-Lagrange equations.

Tatsu Takeuchi (Virginia Tech) OPE in Belle II Analyses Belle II Summer Workshop, July 13, 2021 13 / 26



1D Lattice Oscillations - Quantization

To quantize, we make the replacements

qj → q̂j pj → p̂j {qi , pj} = δij →
1

i~
[q̂i , p̂j ] = δij

The equations of motion are

˙̂qj =
1

i~
[q̂j , Ĥ] =

p̂j
m
,

˙̂pj =
1

i~
[p̂j , Ĥ] = k(q̂j+1 − 2q̂j + q̂j−1) ,

which are exactly the same as the classical equations.
The solution is

q̂j(t) =
1√
N

∑
n

√
~

2mωn

{
âne
−i(ωnt−jθn) + â†ne

i(ωnt−jθn)
}
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1D Lattice Oscillations - Quantization

or

q̂(t, xj) =
1√
N

∑
n

√
~

2mωn

{
âne
−i(ωnt−knxj ) + â†ne

i(ωnt−knxj )
}

where
1

i~
[q̂i , p̂j ] = δij → [âm, â

†
n] = δmn ,

with all other commutators zero.

The Hamiltonian in terms of the creation and annihilation operators are

Ĥ =
1

2m

N−1∑
j=0

p̂2
j +

1

2
k

N−1∑
j=0

(q̂j+1 − q̂j)
2 =

∑
n

~ωn

(
â†nân +

1

2

)
.
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1D Lattice Oscillations - Quantization

If we define
P̂ =

∑
n

~kn â†nân ,

then P̂ is the generator of translations in x-space since it is straightforward
to show that the operator

T̂ = e i P̂a

transforms qj to qj+1 :

T̂ q̂j T̂
−1 = q̂j+1 , or T̂ q̂(xj)T̂

−1 = q̂(xj+1) = q̂(xj + a) .

So we can identify P̂ with the momentum operator.
So the operator â†n and ân respectively increases and decreases the energy
and momentum of the system in units of ~ωn and ~kn.

We can use quantized fields to model particles!
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Particle Interpretation

At each lattice site, there exists a field operator given by

q̂(t, xj) =
1√
N

∑
n

√
~

2mωn

{
âne
−i(ωnt−knxj ) + â†ne

i(ωnt−knxj )
}

which can either create or annihilate a particle. This operator can also be
thought of as residing in a cell of width a centered at xj .

The potential energy includes terms that annihilates a particle at some
point xj on the lattice and then recreates it at a neighboring point xj±1,
describing propagation of the particle from one cell to the next.

For finite lattice spacing a, the momentum of the particle is limited to the
1st Brillouin Zone:

−π
a
< kn <

π

a
.

For particles with momenta well inside this zone, the lattice spacing a will
not be noticable. (Wavelengths are much longer than a.)
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Taking the Continuum Limit

We usually take the continuum (a→ 0) and infinite volume (Na→∞)
limits for the ease of imposing Lorentz covariance (at the expense of
introducing various infinities). The q̂j and p̂j operators are rescaled

q̂(xj)√
a
→ φ̂(t, x) ,

p̂(xj)√
a
→ π̂(t, x) ,

so that

[q̂(t, xi ), p̂(t, xj)] = i~δij → [φ̂(t, x), π̂(t, y)] = i~δ(x − y)

(for Bosons). Sums over xj = ja and kn are replaced by integrals:

N−1∑
j=0

f (xj) →
1

a

∫ Na

0
dx f (x) ,

[N/2]∑
n=−[N/2]

g(kn) → Na

∫ π/a

−π/a

dk

2π
g(k) .

Tatsu Takeuchi (Virginia Tech) OPE in Belle II Analyses Belle II Summer Workshop, July 13, 2021 18 / 26



Fields used in Particle Physics – Real Scalar

We work in 3 + 1 dimensions and use natural units in which ~ = c = 1.
We also omit hats on the operators.

Real Scalar Field – models chargeless spin-0 particle for which
antiparticle = particle.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 ,

0 = (∂2 + m2)φ ,

φ(x) =

∫
d3k

(2π)32ωk

(
a(k) e−ikx + a†(k) e ikx

)
,

[a(k), a†(k′)] = (2π)32ωkδ
3(k− k′) ,

where ωk =
√

k2 + m2. The normalization used here is relativistic.
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Fields used in Particle Physics – Complex Scalar

Complex Scalar Field – models spin-0 particle with charge
(antiparticle 6= particle).

L = ∂µφ
†∂µφ−m2φ†φ ,

0 = (∂2 + m2)φ

φ(x) =

∫
d3k

(2π)32ωk

(
a(k) e−ikx + c†(k) e ikx

)
,

[a(k), a†(k′)] = [c(k), c†(k′)] = (2π)32ωkδ
3(k− k′) .

The states created by a† and those created by c† have opposite
charge.
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Fields used in Particle Physics – Dirac Spinor

Dirac Spinor Field – models spin- 1
2 particle with charge (antiparticle

6= particle).

L =
i

2

{
ψγµ(∂µψ)− (∂µψ)γµψ

}
−mψψ

= ψ(i∂/−m)ψ + (total derivative) ,

0 = (i∂/−m)ψ ,

ψ(x) =

∫
d3k

(2π)32ωk

∑
s

[
b(k, s) u(k, s) e−ikx + d†(k, s) v(k, s) e ikx

]
The creation and annihilation operators satisfy anti-commutation
relations :

{b(k, s), b†(k′, s ′)} = {d(k, s), d†(k′, s ′)} = (2π)32ωkδ
3(k− k′)δss′ .

The states created by b† and those created by d†

have opposite charge.
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Fields used in Particle Physics – Majorana Spinor

Majorana Spinor Field – models chargeless spin- 1
2 particle for which

antiparticle = particle. We impose the condition

ψC
M = ψM

where C denotes charge conjugation. (Subscript M is for Majorana.)
The Lagrangian density and the equation of motion are

L =
1

2
ψM(i∂/−m)ψM , (i∂/−m)ψM = 0 .

Solution is

ψM(x) =

∫
d3k

(2π)32ωk

∑
s

[
b(k, s) u(k, s) e−ikx + b†(k, s) v(k, s) e ikx

]
where

{b(k, s), b†(k′, s ′)} = (2π)32ωkδ
3(k− k′)δss′ .
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Fields used in Particle Physics – Vector

The Lagrangian density for the massless case is

L = −1

4
FµνF

µν −ξ
2

(∂µAµ)2︸ ︷︷ ︸
gauge fixing term

where
Fµν = ∂µAν − ∂νAµ .

The equation of motion is simplest in Feynman gauge, ξ = 1 :

∂2Aµ = 0 .

The solution is

Aµ =

∫
d3k

(2π)32ωk

3∑
λ=0

[
a(k, λ) εµ(k, λ) e−ikx + a†(k, λ) εµ∗(k, λ) e ikx

]
where λ = 0, 1, 2, 3 is the polarization label, and

[a(k, λ), a†(k′, λ′)] = −gλλ′(2π)32ωkδ
3(k− k′) .
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Interactions

Without interactions, nothing happens!

An interaction that occurs at spacetime point x is described by field
operators multiplied together at x , e.g.

ψ(x)γµψ(x)Aµ(x)

Each field is a sum of a creation operator part and an annihilation
operator part:

ψ ∼ b + d† , ψ ∼ b† + d , Aµ ∼ a + a†

If ψ describes the electron and Aµ the photon, then the above
interaction can annihilate an electron with ψ, create an electron with
ψ, and either annihilate or create a photon with Aµ. So it can
describe either photon absorption or emission by an electron.
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Standard Model Interactions - Weak Interactions

See section 7, Theory Overview, of the Belle II Physics Book.
Eq. (49) gives the interaction of the quarks with the W -boson:

LqW =
g√
2

[
VjkuLjγ

µdLkW
+
µ + V ∗jkdLkγ

µuLjW
−
µ

]
Repeated indices (flavor indices j , k , and the Lorenz index µ) are
summed (Einstein convention).

Vjk are the elements of the Cabbibo-Kobayashi-Maskawa (CKM)
matrix that Prof. Schwartz discussed yesterday. (See also section 7.2)

The subscript L means that the fermion field is left-handed:

ψL =
1

2
(1− γ5)ψ , ψR =

1

2
(1 + γ5)ψ .

(u1, u2, u3) = (u, c, t), (d1, d2, d3) = (d , s, b).

Interactions of the quarks with the Z -boson are not shown.
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Standard Model Interactions - Strong Interactions

The coupling of quark q to the gluons G a
µ (a = 1, 2, · · · , 8) :

LQCD = gs q
αγµ(Ta)αβq

β G a
µ

α, β = R,G ,B are color indices.

Ta = λa/2 where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,
λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,
λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .
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