Carnegie Mellon University

Preliminary analysis of $D^{*+} \rightarrow D^0 (\pi^+ \pi^- \pi^0) \pi^+_s$ in early *Belle II* data

Emma Oxford Advisor: Dr. Roy Briere Department of Physics Carnegie Mellon University

July 14, 2021

The Belle II Experiment

- SuperKEKB *B*-factory in Tsukuba, Japan
- Asymmetric e⁺e⁻ collider (to allow for time-dependent *B* analyses)
- Run at $\Upsilon(4S)$ resonance to produce $B\overline{B}$ pairs at threshold
- Cross section for $e^+e^- \rightarrow c\overline{c}$ is comparable to $B\overline{B}$ cross section
- Investigation of charge-parity violation (CPV) is one of main goals

Emma Oxford

Carnegie Mellon University

Planned analysis

- Ultimately, want to do a time-averaged analysis of D⁰ → π⁺ π⁻ π⁰ Dalitz plot using D*-tagged D⁰/D⁰ mesons
 - $\circ \quad D^{**} \to D^{\circ} \pi^{*}_{s}, \text{ and charge conjugate }$
 - π_s^* = "slow pion"; charge of slow pion "tags" the flavor of the D meson
- Possible types of Dalitz analyses:
 - Amplitude analysis: perform an amplitude model fit and look for asymmetries between D^o and anti-D^o amplitudes
 - Binned analysis: look directly for asymmetries in bins of Dalitz plot and define a per bin asymmetry, A_{CP} = (difference between bins in D^o and anti-D^o plots)/(sum of bins)
 - Energy test: new method used to analyze this mode at LHCb
- Cabibbo-suppressed mode ⇒ need relatively large amount of data to get good result, BUT a good place to look for CPV from New Physics

Preliminary analysis

- Perform yield fit to $\Delta M = M(D^{*+}) M(D^0)$
- Dalitz plot for signal region and sidebands
- No separation of D^0 and \overline{D}^0 candidates
- Currently studying 72 fb⁻¹ of early *Belle II* data and 100 fb⁻¹ equivalent of Monte Carlo (MC)
 - Belle II currently has 213 fb⁻¹ of data

What is a Dalitz plot?

Why does this work? If $M \rightarrow m_1 m_2 m_3$, then: $M^2 + m_1^2 + m_2^2 + m_3^2 = m_{12}^2 + m_{13}^2 + m_{23}^2$, i.e., squares of invariant pair masses sum to a constant

What does this show?

Phase space is proportional to the area of the Dalitz plot.

Structure in the Dalitz plot reveals resonances and their angular dependence.

A flat Dalitz plot (such as this one) indicates no resonances in the decay.

$D^{\star_{\scriptscriptstyle +}} \to D^{\scriptscriptstyle 0} \left(\pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle 0} \left(\gamma \, \gamma \right) \right) \pi^{\scriptscriptstyle +}_{\,\, s} \, cuts$

- Charged tracks must originate from the IP
- 100 MeV/c² photon energy cut to reduce noise from beam background
- $105 \text{ MeV/c}^2 < m(\gamma\gamma) < 150 \text{ MeV/c}^2$
- 1.70 GeV/c² < m($\pi^{+}\pi^{-}\pi^{0}$) < 2.10 GeV/c²
- $\Delta M < 160 \text{ MeV/c}^2$ (mass difference between D* and D° candidates)
- p*(D*+) > 2.8 GeV/c² (to remove combinatorial background; this also effectively removes all D* candidates coming from BB decays)
- Vertex fit all tracks and constrain the D^o mass to its nominal value (to enforce physical boundary of Dalitz plot)
- See backup slides for full list of cuts

Best Candidate Selection details

- Using the χ -probability of the vertex fit, select best candidate per event
- In MC, **19.2%** of all events have two or more candidates

Earlier version of analysis: Lower photon energy cut (50 MeV/c² in barrel) Lower p*(D*) cut (2.5 GeV/c²) Modified ranking algorithm

https://docs.belle2.org/ BELLE2-NOTE-PL-2021-003

FIG. 1: ΔM peak for the decay $D^{*+} \rightarrow D^0 (\pi^+ \pi^- \pi^0) \pi_s^+$ in 72 fb⁻¹ of early *Belle II* data. The yield fit and its signal (double Gaussian) and background (threshold function) components are overlaid. $\chi^2/\text{d.o.f.} = 1.27$, and the raw yield estimate is $N_{\text{sig},fit}/\text{fb}^{-1} = 326.5 \pm 4.2$. Estimating the effect from the peaking background using MC, the final yield is estimated to be $N_{\text{sig}}/\text{fb}^{-1} = 305 \pm 15$.

ΔM vs. M(D^o) plot for top-ranked candidates

Projections

Dalitz model in EvtGen is from BaBar data, Phys.Rev.Lett. 99 251801 (2007)

12

Dalitz plot - sidebands

Summary and next steps

- Preliminary analysis with yield fit to ΔM
- Updated analysis with lower background ready to be applied to data
- Next steps: study background using MC
 - Mis-identified kaon background, $K_{S}^{0} \pi^{0}$ contamination, π^{0} background from low-energy photons
- Stay tuned!

$D^{*+} \rightarrow D^{0} (\pi^{+} \pi^{-} \pi^{0}) \pi^{+}_{s}$ full cuts

γ reconstruction: E > 100 MeV; E9 to E21 ratio > 0.9; at most one photon found in endcap

 π° reconstruction: 105 MeV < m($\gamma\gamma$) < 150 MeV

 π^{\pm} reconstruction: dr < 0.5 cm and |dz| < 2.0 cm (impact params.); in CDC acceptance range with at least 20 hits; χ -probability of the track > 0.001; global pion ID > 0.1; pion pair ID > 0.3 (i.e., pion vs. kaon ID)

 π_s reconstruction: dr < 0.5 cm and |dz| < 2.0 cm (impact params.); in CDC acceptance range with at least 20 hits; χ -probability of the track > 0.001

D° reconstruction: 1.70 GeV < $m(\pi^{+}\pi^{-}\pi^{0})$ < 2.10 GeV

D* reconstruction: $\Delta M < 160 \text{ MeV}$; p*(D*) > 2.8 GeV

Vertex fits: 1) vertex fit on entire decay chain, fit tracks to IP and constraint π° mass (for yield fit); 2) repeat vertex fit with same constraints plus additional D^o mass constraint (to enforce physical boundary of Dalitz plot)

Event cuts: at least 3 tracks that are consistent with originating from the IP and have at least 20 CDC hits

Projections with tagged signal and background

 $0.1445 \text{ GeV/c}^2 < \Delta M < 0.1462 \text{ GeV/c}^2$

 $1.83 \text{ GeV/c}^2 < M(\pi^+\pi^-\pi^0) < 1.89 \text{ GeV/c}^2$

ΔM projection - lines indicate sideband regions

 $1.83 \text{ GeV/c}^2 < M(\pi^+\pi^-\pi^0) < 1.89 \text{ GeV/c}^2$