

Branching fractions and CP asymmetries of $D_s^+ \to h^+ h^0$ at Belle

$$D_s^+ \to K^+ \pi^0,$$

$$\to \pi^+ \pi^0,$$

$$\to K^+ \eta,$$

$$\to \pi^+ \eta$$

Based on *Phys.Rev.D* 103 (2021) 112005

Yinghui Guan

University of Cincinnati

Introduction

- Standard Model CP violation (CPV) in charm is expected to be $\sim 10^{-4} \sim 10^{-3}$.
- Largest effect in singly Cabibbosuppressed (SCS) decays, contribution from penguin diagrams.
- Cabibbo-favored (CF) decays proceed via tree-level diagrams, nonzero CPV would be a clear sign of new physics.
- We measure direct CPV in D_s^+ decays:

$$A_{CP} = \frac{\Gamma(D_s^+ \to f) - \Gamma(D_s^- \to \bar{f})}{\Gamma(D_s^+ \to f) + \Gamma(D_s^- \to \bar{f})},$$

- The $D_s^+ \to \pi^+ \, \pi^0$ proceeds via annihilation, thus is highly suppressed.
- Improvements on the Branching fractions (BF) plays a key role for theoretical predictions on CPV. PRL 115, 251802.

Analysis strategy

- Data set: $E_{CM} \sim 10.5$ -10.9 GeV (Y(4S), Y(5S), off-resonance), 921 fb⁻¹, ~10⁸ D_s mesons.
- Branching fraction normalization mode: $D_s^+ \to \phi (\to K^+K^-)\pi^+$.
- Reconstruct D_s^+ from $D_s^{*+} \to D_s^+ \gamma$: "tagged" D_s^+ sample.
- D_s^+ candidates that can not form D_s^{*+} : "untagged" D_s^+ sample.
- Reconstruct $\eta \to \gamma \gamma (\eta_{\gamma \gamma})$ and $\eta \to \pi^+ \pi^- \pi^0 (\eta_{3\pi})$
- Neural Network (NN) is utilized to suppress backgrounds as much as possible.

• NN is trained using one stream generic MC; expertise is then applied to the rest of generic MC samples and data. NN outputs a single variable O_{NN} in ranges [-1, 1].

Neural Network (NN)

 $D_s^+ \to K^+ \pi^0$, $K^+ \eta_- \gamma \gamma$, $\pi^+ \pi^0$, $\pi^+ \eta_- \gamma \gamma$ (one charged track)

 $D_s^+ \rightarrow K^+ \eta_3 \pi$, $\pi^+ \eta_3 \pi$, $D_s \rightarrow \phi \pi^+$ (three charged tracks)

K,Ks

Input variables:

- 1) $p_{D_s}^*$: momentum of D_s^+ in the e^+e^- center-of-mass frame.
- 2)|dr|: impact parameter in x-y plane of the charged track. Or |dl_{xy}|: Distance between the decay and production vertex of D_s⁺ in x-y plane.
- 3) $cos(\theta)$: θ is the angle between momentum of the charged track (direct daughter of D_s^+) in the D_s^+ rest frame and momentum of D_s^+ in the lab frame.
 - 4) nKKs: number of K/K_s in the opposite side against the D_s^+ candiate.
- 5) ϕ : angle between the momentum of D_s^+ and Thrust axis direction in the center-of-mass frame.
- 6) $\Delta\psi_{xy}$: "collinearity angle", angle between the D_s momentum vector and vector joining its decay and production vertices in x-y plane.

ROOT Class "RooStats::SPlot"

sPlot technique

Distributions of reference mode $D_s^+ \to \phi (\to K^+K^-)\pi^+$ signals:

- MC/data consistency is important for detection efficiency estimation.
- sPlot: a statistical tool to unfold data distributions. Discriminating variable used in sPlot: D_s^+ invariant mass.
- Data/MC deviations are seen on the momentum of D_s^+ ($p_{D_s}^*$) distributions.
- Solution: weight MC sample to match data distributions.
- NN is trained with the weighted MC.
 NN output of data and weighted MC agree well.

Background study

- Check background using MC sample after final event selection. Main backgrounds are uds continuum process. Charged D^+ peak backgrounds are seen.
- $D^+ \to \pi^+ \pi^0(\eta)$ produce backgrounds in D_S^+ signal region if π^+ is mis-identified as K^+ . Need to be considered carefully in the fits.

Data fits (signal yield extraction)

Signal: a Crystal Ball function and a Gaussian function, sharing same mean value.

- - · combinatorial background:
 a second-order Chebyshev
 polynomial, parameters are floated

 $-\cdot - D^+$ peak: a Gaussian function

 $-\cdot - D^+$ under D_s^+ peak (π^{\pm} is misidentified as K^{\pm}): MC shape, the amount is calibrated and fixed.

The plots beneath the distributions show the residuals.

Data fits

- Unbinned maximum likelihood simultaneous fit to tagged and untagged samples.
- D_S^+ and D_S^- samples are separated for CPV measurement but are also fitted simultaneously.

• No signal observed in $D_s^+ \to \pi^+ \pi^0$

Data fits ($D_S^+ \rightarrow \phi \pi^+; \phi \rightarrow K^+ K^-$)

Signal: a bifurcated Student's t-distribution and a Gaussian function.

- - · combinatoral background:
 a second-order Chebyshev
 polynomial, parameters are floated.

There is a small peaking background $D_s^+ \rightarrow K^+ K^- \pi^+$, can not separated in the fitting, the amount (1.73 \pm 0.03%) will be corrected for to get final signal yield.

CP asymmetry extraction $(D_S^+ \to \pi^+ \eta)$

$$A_{\text{raw}} = \frac{N_{D_s^+} - N_{D_s^-}}{N_{D_s^+} + N_{D_s^-}}.$$
 $A_{\text{raw}} = A_{CP} + A_{FB} + A_{\epsilon}$

- A_{FB} , forward-backward asymmetry. It is an odd function of the cosine of the D_S^+ polar angle in the CM frame $(cos\theta_{D_S}^{CM})$, same for signal mode and reference mode.
- A_{ε} , detection efficiency asymmetry, is a function of the momentum and polar angle of the charged tracks.

$$\Delta A_{\mathrm{raw}} \equiv A_{\mathrm{raw}}^{\pi\eta} - A_{\mathrm{raw}}^{\phi\pi} = A_{CP}^{\pi\eta} - A_{CP}^{\phi\pi}.$$

$$A_{CP}^{\pi\eta} = \Delta A_{\mathrm{raw}} + A_{CP}^{\phi\pi}$$

signal $D_S^+ \to \pi^+ \eta$ vs. reference mode $D_S^+ \to \phi \pi^+$

• Charged Pion detection charge asymmetry can be canceled by the reference mode ($D_s^+ \rightarrow \phi \pi^+$).

CP asymmetry extraction $(D_s^+ \to K^+ \pi^0, K^+ \eta)$

• Charged Kaon detection asymmetry can not be canceled by the reference mode, its detection asymmetries is measured at Belle and corrected for, then we obtain A_{corr} .

Kaon detection asymmetry $A_{\epsilon}^K = \frac{\epsilon_{K^+} - \epsilon_{K^-}}{\epsilon_{K^+} + \epsilon_{K^-}}$: map of values (left) and errors (right).

• Since A_{FB} is an odd function of $cos\theta_{D_s}^{CM}$, we can extract A_{CP} and A_{FB} by calculating:

$$\begin{split} A_{CP}(\cos\theta_{D_s}^{\text{CM}}) &= \frac{A_{\text{corr}}(\cos\theta_{D_s}^{\text{CM}}) + A_{\text{corr}}(-\cos\theta_{D_s}^{\text{CM}})}{2} \\ A_{\text{FB}}(\cos\theta_{D_s}^{\text{CM}}) &= \frac{A_{\text{corr}}(\cos\theta_{D_s}^{\text{CM}}) - A_{\text{corr}}(-\cos\theta_{D_s}^{\text{CM}})}{2} \end{split}$$

Results

BF:

D 1	(04)	T2:44 1 : 11	n (10-3)	2 (10-3) DEGIII
Decay mode	ε (%)	Fitted yield	$\mathcal{B} (10^{-3})$	\mathcal{B} (10 ⁻³) BESIII
$D_s^+ \to K^+ \pi^0$	8.10 ± 0.04	11978 ± 846	$0.735 \pm 0.052 \pm 0.030 \pm 0.026$	$0.748 \pm 0.049 \pm 0.018 \pm 0.023$
$D_s^+ \to K^+ \eta_{\gamma\gamma}$	7.42 ± 0.05	10716 ± 429	$1.80 \pm 0.07 \pm 0.08 \pm 0.06$	
$D_s^+ \to K^+ \eta_{3\pi}$	4.04 ± 0.02	3175 ± 121	$1.71 \pm 0.07 \pm 0.08 \pm 0.06$	
$D_s^+ \to K^+ \eta$	_	_	$1.75 \pm 0.05 \pm 0.05 \pm 0.06$	$1.62 \pm 0.10 \pm 0.03 \pm 0.05$
$D_s^+ \to \pi^+ \pi^0$	6.63 ± 0.04	491 ± 734	$0.037 \pm 0.055 \pm 0.021 \pm 0.001$	_
$D_s^+ \to \pi^+ \eta_{\gamma\gamma}$	10.84 ± 0.02	166696 ± 1173	$19.16 \pm 0.14 \pm 0.74 \pm 0.68$	
$D_s^+ \to \pi^+ \eta_{3\pi}$	6.50 ± 0.03	56132 ± 407	$18.72 \pm 0.14 \pm 0.98 \pm 0.67$	
$D_s^+ \to \pi^+ \eta$	_	_	$19.00 \pm 0.10 \pm 0.59 \pm 0.68$	$17.46 \pm 0.18 \pm 0.27 \pm 0.54$
$D_s^+ \to \phi \pi^+$	22.05 ± 0.13	1005688 ± 2527	_	_
	·	·		

Belle: *Phys.Rev.D* 103 (2021) 112005

BESIII BF: <u>JHEP 08 (2020) 146</u> LHCb CPV: <u>JHEP 06 (2021) 019</u>

• BF: Belle results for $D_s^+ \to K^+ \eta$ and $D_s^+ \to \pi^+ \pi^0$ are the most precise to date. For $D_s^+ \to K^+ \pi^0$ we have slightly worse precision than BESIII. For the $D_s^+ \to \pi^+ \eta$, which is systematic uncertainties dominated, BESIII result is better.

A_{CP} :

Decay mode	A_{raw}	A_{CP}	$A_{CP}(LHCb)$
$D_s^+ \to K^+ \pi^0$	0.115 ± 0.045	$0.064\pm0.044\pm0.011$	$-0.008\pm0.039\pm0.012$
$D_s^+ \to K^+ \eta_{\gamma\gamma}$	0.046 ± 0.027	$0.040\pm0.027\pm0.005$	
$D_s^+ \to K^+ \eta_{3\pi}$	-0.011 ± 0.033	$-0.008 \pm 0.034 \pm 0.008$	_
$D_s^+ \to K^+ \eta$	_	$0.021\pm0.021\pm0.004$	$0.009 \pm 0.037 \pm 0.011$
$D_s^+ \to \pi^+ \eta_{\gamma\gamma}$	0.007 ± 0.004	$0.002 \pm 0.004 \pm 0.003$	
$D_s^+ \to \pi^+ \eta_{3\pi}$	0.008 ± 0.006	$0.002 \pm 0.006 \pm 0.003$	7
$D_s^+ \to \pi^+ \eta$	_	$0.002 \pm 0.003 \pm 0.003$	$0.008\pm0.007\pm0.005$
$D_s^+ \to \phi \pi^+$	0.002 ± 0.001	_	_

• A_{CP} : showing no hint for CP violation. Belle achieved better precisions in $D_s^+ \to K^+/\pi^+\eta$ and similar precision in $D_s^+ \to K^+\pi^0$ comparing to LHCb.

Summary

 Using full Belle data sample, measurement of branching fractions and CP asymmetries is performed for:

$$D_{s}^{+} \rightarrow K^{+} \pi^{0},$$

$$\rightarrow \pi^{+} \pi^{0},$$

$$\rightarrow K^{+} \eta,$$

$$\rightarrow \pi^{+} \eta$$

- These branching fractions and A_{CP} values can be used in sum rules to provide constraints on the predictions for CPV in charm. PRL 115, 251802
- In charm analyses, we face competitions from BESIII and LHCb.
 - For BF measurements, systematics uncertainties at BESIII is much smaller, Belle(II)
 has advantages in statistical uncertainties dominated (charged) CS modes.
 - For CPV measurements, Belle(II) has advantages in modes with neutral particles (π^0/η) , especially multiple neutral particles in the final state.

backup

$D_{(s)}^+ \rightarrow K^+ \pi^0(\eta)$, $\pi^+ \pi^0(\eta)$ at belle and LHCb

• LHCb is using $h^0 \rightarrow e^+e^-\gamma$ or $h^0 \rightarrow \gamma\gamma$ followed by a photon conversion.

Employ Dalitz $h^0 \rightarrow e^+e^-\gamma$ decays and converted photons;

• lower BR balanced by larger $D_{(s)}^+$ production w.r.t. e^+e^- colliders.

Decay	BF
$\pi^0 { ightarrow} \gamma \gamma$	98.8%
π ⁰ → e+ e- γ	1.2%
η→γγ	39.41%
η→ e+ e- γ	0.69%

Belle results: <u>Phys.Rev.D</u> 103 (2021) 112005 Phys.Rev.D 97 (2018) 1, 011101

Phys.Rev.Lett. 107 (2011) 221801

LHCb results: *JHEP* 06 (2021) 019

	CPV Belle (%)	CPV LHCb (%)
Ds+ -> K+ pi0	6.4 +- 4.4 +- 1.1	-0.8 +- 3.9 +- 1.2
Ds+ -> K+ eta	2.1 +- 2.1 +- 0.4	0.9 +- 3.7 +- 1.1
Ds+ -> pi+ eta	0.2 +- 0.3 +- 0.3	0.8 +- 0.7 +- 0.5
D+ -> K+ pi0	-	-3.2 +- 4.7 +- 2.1
D+ -> K+ eta	-	-6 +- 10 +- 4
D+ -> pi+ pi0	2.31 +- 1.24 +- 0.23	-1.3 +- 0.9 +- 0.6
D+ -> pi+ eta	1.74 +- 1.13 +- 0.19 (791 fb ⁻¹)	-0.2 +- 0.8 +- 0.4

Event selection

- Reconstruct D_s^+ from $D_s^{*+} \to D_s^+ \gamma$: "tagged" signal. D_s^+ candidates that can not form D_s^{*+} : "untagged" D_s^+ .
- η is reconstructed from $\eta \to \gamma \gamma (\eta_{\gamma \gamma})$ and $\eta \to \pi^+ \pi^- \pi^0 (\eta_{3\pi})$
- Neural Network (NN) is utilized to suppress backgrounds as much as possible.

Charged tracks	$r < 1 cm, z < 4 cm, p_t > 0.1 \text{GeV}$
Kaon PID	$\mathcal{L}(K)/(\mathcal{L}(K)+\mathcal{L}(\pi)) > 0.6$
pion PID	$\mathcal{L}(K)/(\mathcal{L}(K)+\mathcal{L}(\pi)) < 0.6$
γ	$E_{\gamma} > 50 \mathrm{MeV}$ (barrel), $E_{\gamma} > 100 \mathrm{MeV}$ (endcaps)
π^0	$0.12~{ m GeV/c^2} < M_{\gamma\gamma} < 0.15~{ m GeV/c^2},$ mass-vertex constraint fit
$\eta o \gamma \gamma$	$0.5 { m GeV/c^2} < M_{\gamma\gamma} < 0.58 { m ~GeV/c^2},$ mass-vertex constraint fit, π^0 veto
$\eta \to \pi^+\pi^-\pi^0$	$0.53 \text{GeV/c}^2 < M_{\gamma\gamma} < 0.56 \text{ GeV/c}^2$, mass-vertex constraint fit
$\phi \to K^+K^-$	$1.01~{\rm GeV}/c^2 < M_{K^+K^-} < 1.03~{\rm GeV/c^2}$
D_S^+	$p_{D_S}^* > 2.3 \text{ GeV (CMS)}$, vertex constraint fit
$\gamma \text{ from } D_S^{*+} \to D_S^+ \gamma$	$E_{\gamma} > 150 \text{ MeV}, \pi^0 \text{ veto}$
ΔM	$0.10 { m GeV/c^2} < \Delta M < 0.18 \ { m GeV/c^2}$

- $p_{D_s}^*$: momentum of D_s^+ in the e^+e^- center-of-mass frame, to exclude D_s^+ from B decays and supress backgrounds.
- π^0 veto: if γ can form a good π^0 candidate with any other γ , it will not be used to form η or D_s^{*+} .

NN output requirement (Figure Of Merit)

arXiv:physics/0308063v2

merit (FOM): $N_{\rm sig}/\sqrt{N_{\rm sig}+N_{\rm bkg}}$

• While for rare signal search, FOM is defined as $\varepsilon_{
m sig}/\sqrt{N_{
m bkg}},$

Best candidate selection (BCS)

- For D_s^+ , step(1): choose the best π^0/η candidate which has the smallest χ^2 from the mass constraint fit.
- step(2): if there are still multiple Ds⁺ candidates, choose the one with the best NN output.
- For Ds*+ \rightarrow D_s+ γ , if there are multiple γ , choose the one with the maximum energy.

Table 3: Efficiency of Best Candidate Selection (BCS).

mode	Fraction of Ncan>1	Nsig	Nsig (select best $\chi^2_{\pi^0/\eta}$)	Nsig (Ncan>1)	Nsig (select best NB)	BCS efficiency
$D_s^+ \to K^+ \pi^0$	9.2%	238	172 (72.3%)	20	14 (70.0%)	69.7%
$D_s^+ \to K^+ \eta_{\gamma\gamma}$	3.1%	954	756 (79.2%)	238	151 (63.4%)	70.1%
$D_s^+ \to K^+ \eta_{3\pi}$	5.0%	647	$482 \ (74.5\%)$	25	17 (68.0%)	73.3%
$D_s^+ \to \pi^+ \pi^0$	1.0%	161	110 (68.3%)	7	4 (57.1%)	66.5%
$D_s^+ \to \pi^+ \eta_{\gamma\gamma}$	3.1%	1531	1167 (76.2%)	193	146 (75.6%)	73.2%
$D_s^+ \to \pi^+ \eta_{3\pi}$	5.5%	1539	1161 (75.4%)	60	43 (71.7%)	74.1%
reference modes:						
$D_s^+ \to \phi(K^+K^-)\pi^+$	2.2%	1361	-	-	877 (64.4%)	64.4%

Systematics uncertainties

- Tracking, PID, π^0/η reconstruction
- Fitting (signal shape, fitting range, fitting bias)
- Ratio of untagged and tagged samples
- Neural Network
 - Remove the NN output requirement for the large statistics reference mode and CF signal mode $D_s^+ \to \pi^+ \eta$
 - Use sPlot to extract the distribution of NN output
 - Differences between data and MC efficiencies are assigned as systematic uncertainties.
 - Low statistics signal modes $D_s^+ \to K^+\pi^0$, $K^+\eta$ can reuse these NN output distributions.
- $cos\theta_{D_S}^{CM}$ binning
- uncertainties from the reference mode

Systematic uncertainties

• systematic uncertainties for BF measurements:

Source	$rac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(\phi\pi^+)}$	$rac{\mathcal{B}(K^+\eta_{\gamma\gamma})}{\mathcal{B}(\phi\pi^+)}$	$rac{\mathcal{B}(K^+\eta_{3\pi})}{\mathcal{B}(\phi\pi^+)}$	$rac{\mathcal{B}(\pi^+\pi^0)}{\mathcal{B}(\phi\pi^+)}$	$rac{\mathcal{B}(\pi^+\eta_{\gamma\gamma})}{\mathcal{B}(\phi\pi^+)}$	$rac{\mathcal{B}(\pi^+\eta_{3\pi})}{\mathcal{B}(\phi\pi^+)}$
Tracking	0.7	0.7		0.7	0.7	
Particle identification	1.8	1.8	1.9	1.9	1.9	4.0
$\pi^0/\eta o \gamma\gamma$	2.4	2.4	2.4	2.4	2.4	2.4
$O_{\rm NN}$ requirement	1.1	1.3	1.2	1.3	1.3	1.3
D_s^{*+} fraction in ε	0.7	0.7	0.7	0.7	0.7	0.7
MC statistics	0.8	0.8	0.8	0.8	0.7	0.7
Fitting	2.2	2.6	2.4	56.2	1.5	1.2
$\mathcal{B}(\eta o \gamma \gamma)$		0.5			0.5	
$\mathcal{B}(\eta o \pi^+\pi^-\pi^0)$			1.2	• • •	• • •	1.2
Overall uncertainty	4.1	4.4	4.4	56.3	3.9	5.2

• systematic uncertainties for A_{CP} measurements:

Source	$K^+\pi^0$	$K^+\eta_{\gamma\gamma}$	$K^+\eta_{3\pi}$	$\pi^+\eta_{\gamma\gamma}$	$\pi^+\eta_{3\pi}$	$\phi\pi^+$
Fitting	0.0056	0.0035	0.0020	0.0005	0.0005	0.0002
$D^+ \to \pi^+(\pi^0/\eta)$ background	0.0062	0.0022	0.0031			
$\cos \theta_{D_s}^{\rm CM}$ binning	0.0068	0.0028	0.0068			
$A_{CP} \text{ in } D_s^+ o \phi \pi^+$				0.0027	0.0027	
Overall uncertainty	0.0108	0.0050	0.0077	0.0027	0.0027	0.0002

Splot $D_s^+ \rightarrow \phi \pi^+$

untagged Ds Entries 358440 0.07 Mean 2.383 -data RMS 0.8844 0.06 -MC0.05 0.04 0.03 0.02 0.01 p_{Ds} (GeV)

- data/MC differences are seen on the momentum of Ds distributions (CMS frame).
- Low momentum of Ds coming from B decays, excluded by P*_{Ds}>2.3 GeV/c.

tagged Ds, and Egam > 0.15GeV

