Belle II KLM
Muon and K_L
Particle Identification

Leo Piilonen, Virginia Tech

Belle II Summer Workshop July 2021
The KLM ("K_L–Muon detector") consists of large-area thin planar detectors interleaved with the iron plates of the 1.5T solenoid’s flux return yoke.
Installing Barrel KLM Detector Module (2013)
Installing Barrel KLM Detector Module (2013)
Installing Endcap KLM Detector Module (2014)
Installing Endcap KLM Detector Module (2014)
• KLM detects K_L mesons and muons (≈ 1 per event)

For example: $B^0 \rightarrow J/\psi K_L$ event
In the barrel KLM ...

- Continue to use the Belle-era glass-electrode RPCs in the outer 13 layers
- Install scintillators in the 2 innermost barrel layers
Our Resistive Plate Counter contains ...

Float-glass electrodes
\[\rho \approx 10^{12} \, \Omega \cdot \text{cm} \]

Non-flammable gas:
- 62% HFC-134a
- 30% argon
- 8% butane-silver

“active volume”
“sensitive volume”

+4.7 kV +HV

Gas gap

-3.5 kV -HV

3.00 mm

2.00 mm

3.00 mm
One panel has two independent RPCs
A discharge ★ (=streamer) from dE/dx in *either* gas gap induces an image charge on *both* readout planes ⇒ xy hit.
Cathode-plane strips are transmission lines ... collect signal at end of strip

Ground plane

Dielectric foam

Cathode plane

+HV

Gas gap

-HV

Insulator

+HV

Gas gap

-HV

Cathode plane

Dielectric foam

Ground plane

0.25 mm Mylar
0.035 mm Copper

7 mm

0.035 mm Copper
0.25 mm Mylar

3.00 mm

0.5 mm Mylar

3.00 mm

0.25 mm Mylar
0.035 mm Copper

7 mm

0.035 mm Copper
0.25 mm Mylar

≈ 50 Ω

~32 mm
Endcap scintillator panel

- 75 x- and y-strips in each module
- 16,800 strips total (1400 m2)
- Readout via WLS fibre and attached SiPM sensor at outer radius (mirrored at inner radius)
Scintillator (with TiO$_2$ reflective coating) delivers **blue light** to central-bore WLS fibre

Blue light from dE/dx in scintillator is captured by wavelength-shifting fibre and re-emitted as **green**
Photosensor detects the fibre’s green light \(\Rightarrow x \) or \(y \) hit

- SiPM (“Silicon photomultiplier”) or MPPC (“multipixel photon counter”) is a Geiger-mode avalanche photodiode
- Hamamatsu S10362 attached to one end of the scintillator strip
- fibre is mirrored at other end

- 1.3 x 1.3 mm\(^2\) 667 pixels
- \(\checkmark \) operates in 1.5 T magnetic field
- \(\checkmark \) 8-pixel threshold gives \(\varepsilon > 99\% \)
Muons, unlike other charged particles, pass thru lots of material (dE/dx only!)

ECL, magnet, yoke, …
Muons, unlike other charged particles, pass thru lot of material \((dE/dx\) only!\)

- \(\mu\) hits in CDC
- \(\mu\) hits in ECL
- \(\mu\) hits in KLM
- Cherenkov light in TOP
- Escaping muon + stray photons
- Side view of same muon
Electrons suffer EM interactions with ECL nuclei \Rightarrow electromagnetic shower
Pions suffer strong interaction with ECL nuclei \(\Rightarrow \) hadronic shower
... or pions suffer strong interaction with KLM iron nuclei \Rightarrow hadronic shower
For muon identification, each CDC/VXD track is extrapolated outward by Geant4 using μ hypothesis

- **swim each track** through KLM with Kalman fitting to matching hits and track adjustment
- compare measured vs extrapolated range and amount of transverse scattering to distinguish muon from any other hypothesis
KLM μ Identification Performance

From Alberto Martini:

✓ Already better than Belle, due to algorithm improvements
✓ More performance improvements in progress

![Graph showing efficiency-fake rate vs momentum and angle](image)

Belle II 2019 data: $\int L dt = 2 \text{ fb}^{-1}$

Performances for proc10 (new)
- Efficiency: $\sim 93.5\%$ overall
- Fake rate: $\sim 11\%$ overall

Performances for proc9 (old)
- Efficiency: $\sim 92.0\%$ overall
- Fake rate: $\sim 12\%$ overall
Muon Identification Efficiency

- φ [deg]
- θ [deg]

- Forward endcap
- Backward endcap
- Barrel

Solenoid’s liquid-helium chimney
K-long leaves no hits along its path in VXD, CDC, TOP, ...
K-longes suffer strong interaction with ECL nuclei \Rightarrow hadronic shower without a matching CDC track
... or K-longos suffer strong interaction with KLM iron nuclei \Rightarrow hadronic shower

without a matching CDC track

K_L hadronic shower in KLM

NO K_L hits in CDC
... or K-longs suffer strong interaction with KLM iron nuclei \(\Rightarrow \) hadronic shower without a matching CDC track
The **klongID** BDT
(from Giuseppe Finocchiaro)

- The **klongID** is calculated by a fast BDT from the basf2 MVA package, presently using input from KLM and ECL (only in conjunction with KLM)

- Produce official list of KL

KLM Inputs:
- ✓ # of KLM layers in cluster
- ✓ layer # of first layer in cluster
- ✓ angular position w.r.t. IP of cluster centroid
- ✓ 3D distance of nearest track to cluster centroid
- ✓ (+ other less useful measures)

Caution: BDT must be trained with similar-topology sample (particularly considering # of tracks in event)
KLM K_L identification Status

From G. Finocchiaro:

➢ Use a trained Boosted Decision Tree to distinguish K_L meson from background

➢ BDT output depends on the event topology.

➢ No universal training sample.

➢ BDT can be done only with run-dependent MC that can be produced only after reprocessing

❖ KLID is still a work in progress. For example, ...
❖ Define K_L clusters at reconstruction stage but defer BDT to analysis stage
Summary

✓ Belle II’s KLM (K_L–Muon detector) identifies muons and K-long mesons based on their unique signatures in the KLM combined with info from inner detectors.

✓ Muons leave long clean tracks in KLM that match with extrapolation of CDC/VXD tracks

✓ K-long mesons deposit a cluster of hits in KLM (and perhaps ECL first) without a matching CDC/VXD track