DAQ! TRG! PHYSICS! OMG!

O. Hartbrich (University of Hawaii at Manoa)

> B2SS 20201 07/16/2021

Belle II DAQ Components

- The components of the DAQ system:
 - Trigger and Timing Distribution
 - Data Readout and Event Builder
 - Slow Control
- What you need to know about triggers
- This talk heavily relies on materials an input I got (and took) from others, especially
 - Chris Hearty
 - Ewan Hill
 - Michel Hernandez Villanueva

DAQ Is Fun!

• We have all the cables. And all the complicated diagrams.

DAQ Is Fur

• We have a diagrams.

Data Transfer

Copper + ROPC

- COPPER (Common Pipelined Platform for Electronics Readout)
 - Receives up to four fibers from front-ends (up to 2.54Gbps each)
 - Integrated Atom CPU board for data packaging, checksums etc.
 - ~200 COPPERs serving
 ~650 Belle2links
- ROPC (Readout PCs)
 - Receive GbE data from 2-9 COPPERS, forward to event builder via GbE
 - Acts as network boot host for COPPERs
 - ~45 ROPCs for whole Belle II

COPPER board

Belle II DAQ Upgrade Project

- COPPER system will be difficult to maintain over the lifetime of Belle II
 - Relatively old Atom CPUs, number of discontinued parts increasing
 - Data rate capabilities are marginal for full luminosity
- Upgrade: "plug-in" replacement for COPPER + ROPCs
 - No changes to front-end links, trigger distribution, HLTs etc.
 - Significant increase in link density, reduction in rack space
- Several technology contenders, selected PCIe40
 - 48 links per PCIe40 card \rightarrow 19 cards for whole Belle II
 - Whole data readout infrastructure will fit into one rack!
- After some COVID delays and extensive testing, TOP and KLM will be converted to full PCIe40 this summer

Slow Control

- Non-event process variables (PVs): run control, detector status, machine parameters, etc.
 - If you click "START", a lot of systems have to react in some way
- Hybrid system for PV distribution: nsm2 and EPICS
- Tens of thousands of Pvs distributed over hundreds of inhomogenous nodes
 - not all of them on the same network
- Introduced continuous integration and (almost) continuous deployment of slow control software

Trigger and Timing Distribution

- Custom Fast Timing Switch (FTSW) infrastructure
 - Distributes global clock, trigger information, injection signals, JTAG
 - Gathers FEE readout/busy status
- Cascaded tree distribution
 - Up to four levels deep, up to 30m cat7, 20m multimode fiber, 620ns latency
 - ≤25ps clock distribution jitter (clock routed through FPGAs)
- Some operational instabilities with individual front-ends investigated this summer

Luminosity & Event rates

Event Rates

- 1278 bunches cross IP every 10us (~3000m ring circumference): ~130MHz collision rate
 - We cannot possibly collect all of these
- BB production cross section ~1nb, instantaneous luminosity ~30nb/s
 → only 30Hz of BB events
- Goal of trigger system: out of 13MHz collision rate, pick out the interesting events.
- Uninteresting events are not empty:
 - Bhabha scattering diverges at low angles! e+e- \rightarrow e+e- with both tracks > 0.5deg is ~122,000 nb (=5MHz)
 - Beam backgrounds, ...

We Can Only Keep So Much...!

- Two main limitations:
 - Trigger/data rate from detectors to DAQ system (design limits, \$\$\$)
 - Amount of data written to disk (\$\$\$)
- Current goal: store not more than 20nb: 130MHz $\,\rightarrow\,$ 600Hz
 - Should be enough for all interesting physics
 + calibration channels etc

Physics process	Cross section [nb]	Cuts		Mode	Γ
$\Upsilon(4S)$	1.05 ± 0.10	-		widde	Ļ
$uar{u}(\gamma)$	1.61	5		BB	
$dar{d}(\gamma)$	0.40	-			+
$sar{s}(\gamma)$	0.38	-		CC	
$car{c}(\gamma)$	1.30				t
$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^\circ < \theta^*_{e's} < 170^\circ,$	Ν	qq	
		$E^*_{e's} > 0.15 \text{ GeV}$		тт	Ι
$e^+e^-(\gamma)$	74.4	e's $(p > 0.5 GeV)$ in ECL		ιι	+
$\gamma\gamma(\gamma)$	$4.99\pm0.05~(\mathrm{MC}$ stat.)	$10^\circ < \theta^*_{\gamma's} < 170^\circ,$		пп	
		$E^*_{\gamma's} > 0.15~{ m GeV}$			+
$\gamma\gamma(\gamma)$	3.30	$\gamma {\rm 's}~(p>\!0.5 {\rm GeV})$ in ECL	•	γγ	
$\mu^+\mu^-(\gamma)$	1.148	-			t
$\mu^+\mu^-(\gamma)$	0.831	μ 's ($p > 0.5 \text{GeV}$) in CDC		bnabna	
$\mu^+\mu^-\gamma(\gamma)$	0.242	$\mu \mbox{'s}~(p > 0.5 \mbox{GeV})$ in CDC,		0000	Î
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in ECL		6666	
$ au^+ au^-(\gamma)$	0.919			00111	
$ uar{ u}(\gamma)$	$0.25 imes 10^{-3}$	8		σομμ	1
$e^+e^-e^+e^-$	$39.7\pm0.1~(\mathrm{MC}~\mathrm{stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$		TOTAL	
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 { m GeV}$			1

The Belle II Trigger System

- Belle II Trigger system ultimately decides which collision events are written to disk.
 - If something misbehaves and we only realise afterwards, important data is simply lost! There is no second try with triggering!
- Two stage process: Level 1 (L1) and "High Level Trigger" (HLT)
- Level 1 trigger:
 - Primarily based on CDC and ECL energy/clusters
 - Receives a stream of raw, coarse detector data (not the readout data!)
 - L1 correlates streamed information based on various "conditions" and issues an event trigger.
 - Processing in advanced FPGA logic
 - Individual processes might be prescaled (only every Nth occurrence of trigger X is let through)
 - This is what defines "an event" in Belle II
- High Level Trigger: Server Farm next to Belle II
 - Receives event readout data for each issued, decides based on running "full" basf2 reconstruction on the fly
 - ~5000 CPU cores, can only cope with a limited input rate (~20kHz max)

The Level 1 Trigger Menu

- L1 has a multitude of trigger conditions with exotic names
- New FTDL with 3D tracks are under preparation • 1 trk : f (2D), s (GRL short), z (3D), y (Neuro) 2 trk (w/ bilabilia veto) · 11, 15, 55, 12, 22, 19, 99
 2 trk with 90 degree opening (0)/ back-to-back (b) : ffo, ffb, fso, fsb, ... • 2 trk (w/ Bhabha veto) : ff, fs, ss, fz, zz, fy, yy Itrk : 1 (22) / Bhabha veto) : 11, 23 / back-to-back
 2 trk (w/ Bhabha veto) : 11, 23 / back-to-back
 2 trk with 90 degree opening (0) / back-to-back by 2D and cluster)
 2 trk with 90 degree opening (0) / back-to-back by 2D and cluster)
 3 trk : fff, ffs, fss, sss, ffz, fzz, zzz, ffy, fyy, yyy
 3 trk : fff, ffs, fss, sss, ffz, fzz, zzz, ffy, fyy, yy (p:back-to-back by 2D and cluster)
 Find details, prescales and their changes over
 - runs/experiments on confluence: https://confluence.desy.de/display/BI/TriggerBitTable
 - Prepare for the worst

trigger bit PSNM								run number prescale; 0 means												
exp1 Outp	2 Physics ru ut Bits	ins	trig	ger	name			/	trigger is not used											
	797-	psv	1660-	psv	1743-	psv	1908-	psv	2134-	psv	2309-	psv	2335-	psv	2720-	psv	5888-	psv	6373-	psv
0	fff	1	fff	1	fff	1	fff	1	THE	1	fff	1								
1	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100	ffs	100
2	fss	0	fss	0	fss	0	fss	0	fss	0	fss	0	fss	0	fss	0	fss	0	fss	0
3	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100	SSS	100
4	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0	ffz	0
5	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0	fzz	0
6	zzz	0	ZZZ	0	ZZZ	0	ZZZ	0	ZZZ	0	ZZZ	0	zzz	0	ZZZ	0	ZZZ	0	ZZZ	0
7	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1	ffy	1
8	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0	fyy	0
9	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0	ууу	0
10	ff	20	ff	20	ff	20	ff	20	ff	20	ff	20	ff	20	ff	20	ff	20	ff	20
11	fs	0	fs	0	fs	0	fs	0	fs	0	fs	0	fs	0	fs	0	fs	0	fs	0
12	SS	400	SS	400	SS	400	SS	400	SS	400	SS	400	SS	400	SS	400	SS	400	SS	400
13	fz	0	fz	0	fz	0	fz	0	fz	0	fz	0	fz	0	fz	0	fz	0	fz	0
14	ZZ	0	zz	0	zz	0	ZZ	0	zz	0	ZZ	0	zz	0	ZZ	0	zz	0	zz	0
15	fy	0	fy	0	fy	0	fy	0	fy	0	fy	0	fy	0	fy	0	fy	0	fy	0
16	уу	0	уу	0	уу	0	уу	0	уу	0	уу	0	уу	0	уу	0	уу	0	уу	0
17	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1	ffo	1
19	fen	0	fen	0	fen	1	fen	1	fen	1	fen	1	fen	1	fen	1	fen	1	fen	1

Rules of Thumb

- If your analysis is based on BB or cc processes, the trigger efficiency for your events is most likely excellent
- If you are interested in low-multiplicity final states, you need to be careful.
 - Especially if they tend to look anything like Bhabhas

Example 1: Mono Photon Searches

- Look for nothing but a single photon
- Dedicated single photon L1 triggers:
 - Iml6: exactly one cluster with E* > 1 GeV in the ECL barrel and no other cluster with E > 300 MeV anywhere
 - **Iml13**: exactly one cluster with $E^* > 0.5$ GeV with $44.2^\circ < \theta < 94.8^\circ$ and no other cluster > 300 MeV.
 - There are also triggers for events that have a cluster with E*>2 GeV (and any number of other clusters), and "hie", which requires 1 GeV in the barrel or part of the forward endcap.

Mono Photon L1 Trigger: 1GeV

- Efficiency evaluation: find orthogonal trigger that acts as reference
 - Caveat: even fundamentally unrelated triggers might be correlated
- L1 calibration and resolution are not perfect

Mono Photon HLT Trigger: 1GeV

- HLT Trigger decision almost perfect
 - HLT uses "online" calibration, which might lag behind "latest greatest"

Example 2: Taus

- B factories are tau factories!
- Tau events are low multiplicity with "random" momentum tracks

Low Multiplicity Track Triggering

- The "standard" CDC tracking trigger does not know about the Z-coordinate
 - Harder to distinguish backgrounds from interesting events

Neuro-Z Trigger

- Use Neural Networks in trigger FPGAs to reconstruct Z-origin of track in L1 trigger
- Still a little bit experimental, but default now (I believe)

Single Track Neuro Trigger for Taus

• Triggering on single neuro track

Summary

- More examples and instructions how to access trigger information and how to perform trigger efficiency analyses in Chris Hearty's talk at B2SS 2020: https://indico.belle2.org/event/1501/contributions/11211/attachme nts/6418/9962/Trigger_8-Jul-2020.pdf
- Trigger reduces the ~130 MHz collision rate to ~few hundred Hz to disk.
 - Especially if you are working with a low multiplicity final state: make sure your events are kept by the trigger system!
- Interact with your local trigger specialists. They can help you find what you need.

Summary

 More examples and instructions how to access trigger information and how to perform trigger efficiency analyses: Chris Hearty's talk at B2SS 2020: