

Dark sector physics at Belle II

March 25, 2021

Jan Strube

PNNL is operated by Battelle for the U.S. Department of Energy

Introduction – Dark matter at Belle II

- Belle II will accumulate a unique data sample over the next decade
 - Clean environment of e⁺e⁻ collisions
 - Unique collision energy (among the currently running colliders)
- The Belle II detector is well designed to search for dark matter
 - Upgraded particle ID Improved constraints from recoil
 - Better hermeticity than BaBar
 - Special triggers for one- and three-photon signatures (under design)
 - Improved event reconstruction to increase the sensitivity to missing energy signatures
- Searches for dark matter in
 - B decays
 - LFV decays
 - Direct production

- Electron positron collision at Y(4S) resonance produces two B mesons
- Created in an L=1 coherent state

- $\sigma(e^+e^- \rightarrow b\overline{b}) = 1.1 \text{ nb}$
- $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$
- $\sigma(e^+e^- \rightarrow s\overline{s}) = 0.4 \text{ nb}$

- $\sigma(e^+e^- \rightarrow u\overline{u}) = 1.6 \text{ nb}$
- $\sigma(e^+e^- \rightarrow d\overline{d}) = 0.4 \text{ nb}$
- $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.9 \text{ nb}$

Invisible Dark Photon Search at Belle II

Detector signature: single photon + missing energy Background from $e^+e^- \rightarrow \gamma\gamma$

bible $(m_{A'} > 2 \ m_{\chi})$

Pacific

Northwest

Unlike dark matter, mediators from portal interactions can have sizable SM couplings.

See also SIMPs (Hochberg, Y., Kuflik, E.&Murayama, H. J. High Energ. Phys. (2016) 2016: 90.)

Belle II data sample

SuperKEKB performance

Instantaneous Luminosity world record broken on June 15, 2020: 2.22 x 10³⁴ cm⁻²s⁻¹

Data recorded: > 100 fb⁻¹

Updated on 2021/03/25 21:56 JST

Background sources

Touschek scattering

- Intra-bunch scattering
- rate \propto (beam size)⁻¹, (Ebeam)⁻³
- Most dangerous background at SuperKEKB
- Photons upstream hit nuclei and produce ~10¹¹/cm²/year neutrons (1 MeV equivalent)

2-photon process

- Generated electron-positron pair might enter the detector
- 0.2% occupancy on PXD

Radiative Bhabha

- Rate \propto Luminosity (KEKB x 40)
- EM showers from outgoing beam
- Neutrons from photon

 $\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell \quad \text{Could be related to: dark} \\ \text{matter, g-2, R(K) and R(K^*)}$

arXiv:1403.2727

 $\ell = \mu, \tau, \nu_{\mu,L}, \nu_{\tau,L}$

Search for a peak in the recoil mass, using 2018 pilot run data

8

Outlook: Updated triggers Sensitivity to $(g-2)_{\mu}$ band with data sample on tape

Tag

SL B^+

SL B^0

Hadronic B^+

Hadronic B^0

Full event Reconstruction in Belle II arXiv:1807.08680

- Y(4S) decays to a pair of B mesons
- The detector covers nearly 4 π \rightarrow use the well-known collision energy and reconstruct one B meson to apply constraints on invisible decays of the other B meson $B \rightarrow \mu \nu, B \rightarrow \tau \nu, B \rightarrow K(*) \nu \nu$

π^+ $\overline{D^0}$ 7	B_{tag}^{-} $(4S)$ B_{tag}^{-}
Belle II	u u
6%	
5%	×
8%	

		Belle W/ FEI	Belle
	0.66%	0.76%	0.28%
×	1.45%	1.80%	0.67%
	0.38%	0.46%	0.18%
	1.94%	2.04%	0.63%
J			

Tagging ϵ on MC

Incl. Belle II background

Search for Axion-like particles

Belle II is sensitive to new propagators coupling to photons $\mathcal{L} \supset -\frac{g_{a\gamma\gamma}}{\Lambda} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

We convert the cross section to a coupling using

$$\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24}\right) \left(1 - \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{$$

 e^+

 $\mathbf{14}$

iency	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	Statistica	Total $=$	λ] τ		٦.7	λτ	λ.Τ	λτ	<u>O + + • + • 1</u>	
)	$711 \ {\rm fb}^{-1}$	711 fb ⁻¹	$50 ~ ab^{-1}$	50 ab ⁻¹	error	Error	΄] Ľ	Efficiency	N _{Backg} .	$N_{\rm Sig-exp.}$	$N_{\rm Backg.}$	$N_{\rm Sig-exp.}$	Statistical	Total
⁴]	Belle	Belle	Belle II	Belle II	50 ab^{-1}		Ē	Belle	711 fb^{-1}	711 fb ⁻¹	$50 ~ ab^{-1}$	50 ab ⁻¹	error	Error
	21	3.5	2960	245	20%	22%			D 11					
	4	0.24	560	22	94%	94%	Į-	10^{-4}]	Belle	Belle	Belle II	Belle II	50 ab^{-1}	
	7	2.2	985	158	21%	22%	5	69	01	25	2060	915	2007	<u> </u>
	5	2.0	704	143	20%	22%	0	0.00	$\angle 1$	5.0	2900	Z40	2070	ZZ/0
					15%	17%	0	0.84	4	0.24	560	22	94%	94%
	[BELLE2-MEMO-2016-007]				1	.47	7	2.2	985	158	21%	22%		
							1	.44	5	2.0	704	143	20%	22%
)16-00	7 HINT2	016				31							15%	17%
Niehoff and D. M. Straub, JHEP 1502, 184 (2015) [arXiv:1409.4557														

enoff and D. M. Straub, JHEP **1502**, 184 (2015) [arXiv:1409.4557

n], Phys. Rev. D 87, no. 11, 111103 (2013) [arXiv:1303.3719 [hep-ex]].

March 25, 2021 12

Current status of K⁺*vv*

- New idea: inclusive tagging
 - Select the highest track with the highest p_T
- Signal efficiency increases to ~4%
- We apply a multivariate classifier on the rest of the event to reduce background
- Competitive measurement with a fraction of the data $Br(B^+ \rightarrow K^+ \nu \bar{\nu}) < 4.1 \times 10^{-5} (90\% \text{ CL})$

 $n+ \nu + -$

13

"Baryogenesis and Dark Matter from B Mesons" Gilly Elor, Miguel Escudero, Ann E. Nelson *Phys. Rev. D* 99, 035031 (2019)

Search for $B_d^0 \to \Lambda^0 \psi_{\rm DM}$

- Generic backgrounds from:
 - B^0/B^+ events: $e^+e^- \to Y(4S) \to B\overline{B}$
 - Continuum: $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$
- Rare B^0/B^+ decays MC samples
- $\mathcal{B}(B_d^0 \to \Lambda^0 \psi_{\rm DM} + \text{mesons}) \in [2 \times 10^{-4}, 0.1]$
 - Upper limit: Inclusive *B* decays
 - Lower limit: A^q_{SL} world averages
- Signal side: $B_d^0 \to \Lambda^0 \psi_{\rm DM}$
 - Reconstruct: $\Lambda^0 \rightarrow p\pi^-$
 - Benchmark $M(\psi_{\rm DM}) = 3.3 \text{ GeV}$
 - 1.5 GeV $< M(\psi_{\rm DM}) \lesssim 4.2$ GeV
- Tag side: $B_d^0 \rightarrow$ hadronic decays B_d^0
 - Full Event Interpretation (FEI)
 - Multivariate classifiers (MVCs)

- Dark sector searches are increasingly moving to lower energies.
- Belle II will make important contributions to the search(es) for a dark sector.
 - The accelerator will accumulate a unique data sample
 - The detector has unique capabilities compared to previous experiments
 - \checkmark Improved triggers and reconstruction compared to Belle
 - ✓ Improved hermeticity compared to BaBar
- The collaboration is starting to exploit the data and first physics analysis related to dark sector searches have been published.
 - Axion-like particles
 - Invisible Z'
- We have lots more in the pipeline, but we're always looking for new ideas. If you have a model that you think Belle II might be sensitive to, please get in touch.

Thank you

