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This course

I’m not an expert in statistics, still I use it daily since many years to perform data 
analysis in CMS (Higgs search) and then in T2K (neutrino oscillations)

You can find beautiful courses on-line on the theory and technical usage of statistics 
(and very good, high-level, dedicated book)

One of my favorite on-line resource, very good as “entry” point:
Lent Term 2015 by Prof. Mark Thomson (*)

Here I will focus on how we (mis! -)use the statistics in daily data-analysis work in 
“real life”:
- histograms handling
- efficiency (→ purity and significance ) 
- resolution
- how to correct for such detector effects: unfolding (or ‘forward fitting’)
- likelihood fit
- practical use cases: neutrino oscillations, Higgs spin/parity determination
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An ‘event’ → histograms
Each event has many observables (eg: many 
outgoing particle and each particle has its 4-
momenta) 
… And we have many events

→ How to organize all this information?
Make histogram for each observable

1 event = e.g. 
one neutrino 
interaction in 
your detector
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An ‘event’ → histograms

Entry in each bin = how many times the value of 
your observable x falls inside that range

Used to represent ‘in principle’ continuous 
distribution of observable “x”, where bins are 
range of possible x values 
 

In practice in physics you never have an infinite 
number of events (e.g. finite amount data or 
Monte Carlo statistics) so histograms represent 
useful numerical approximation to analytical 
continuous function  

Typically, assuming you know the theoretical distribution x, you can recover the continuous 
analytical distribution which best describe your histogram → fit

Each event has many observables (eg: many 
outgoing particle and each particle has its 4-
momenta) 
… And we have many events

→ How to organize all this information?
Make histogram for each observable

Your observable (x) in 
given units

Muon momentum (GeV)
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1 event = e.g. 
one neutrino 
interaction in 
your detector
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Histogram “normalization”

Normally the integral of the histogram (= sum of entries in each bin) gives the total 
number of events

Muon momentum (GeV)
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bins

N i=N events
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You may be interested only to the shape 
of your distribution (eg to compare two 
experiments with different number of 
events measuring the same observable)
→ “normalize” both to an arbitrary number 
(typically 1)

Muon momentum (GeV)
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Histogram “normalization”

Experiment 1 Experiment 2
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You may want to renormalize with respect to 
some given factor: eg number of events is 
proportional to cross-section 
→ renormalize to single factor to show on the y 
axis the xsec instead of the number of events

L ~ “luminosity” i.e. how many pp collisions, 
“flux”, i.e. how many n produced

Muon momentum (GeV)
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Muon momentum (GeV)

N∼L⋅σ⋅A

A ~ detector term (efficiency, mass for 
neutrino interactions, ...)

σ ~ cross-section, i.e. fundamental physics you 
want to measure

experiment 
dependent

Muon momentum (GeV)

d
σ

/d
p m

 (
fb

)

∑
i

bins N i
L⋅A

=σ

Histogram “normalization”
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Histograms with variable bin width

Variable bin: 
Each bin can have different width.
This is useful when the histogram has bins with much different population (eg 
tails with low number of events → large statistical uncertainty)

Bin with larger width will have “by construction” larger number of entries 
→ to have the correct shape you need to divide by the bin width

Muon momentum (GeV) Muon momentum (GeV)
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Multidimensional histograms

Multidimensional histogram

We considered 1D histograms but you may 
have 2D or … N-dimensional.
You will not be able anymore to visualize 
but conceptually histograms are just 
“tables” of numbers and can have as 
many axes as you want

The number of bins grows fast:
1D 10 bins → 2D 100 bins → 3D 1000 bins 
….
Typically limited by available data statistics 
(you need many events to populate all the 
histogram with sufficient statistics)
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Sufficient statistics?
If the probability for your observable to fall inside a given bin is small,  then you will have small 
number of entries in that bin → large uncertainty
Quantify: what is the uncertainty on the number of events observed in one bin?

Assuming the number of expected entries (events) in one bin (dx) is m, the probability of 
N observed entries (event) in that bin is

POISSONIAN DISTIRIBUTION

General description of 
discrete counts at fixed rate

Why? All derivations here (*)

● m is the average number of expected events in the bin → our best approximation to 
m (for one single experiment) is just the observed number of entries N

i
 

● the uncertainty (the variance of the distribution) is sqrt(m) ~ sqrt(N
i
)

● for (relatively) large statistics (N~10 or more) the Gaussian 
distribution is a very good approximation

N events 
in one bin

Uncertainty 
(%)

1 100%

5 45%

10 32%

100 10%

1000 3%

10000 1%
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Correcting for detector effects
Go from observed distribution to “true” 
distribution

Two methods: Unfolding (from observed to true), Forward folding (from true to observed)

efficiency

resolution
- Efficiency: your detector is not able 
to register all events. 
Typically efficiency is kinematics 
dependent: low momentum particles 
may be below the threshold of the 
detector and/or detector has limited 
angular coverage

- Resolution: your detector induce smearing. Also typically kinematics-dependent

Need true estimation: from Monte Carlo simulation.
“Physics” simulation of particle interactions with “generators” (a.k.a “true” or 
“generate”) → passed through simulation of detector (GEANT4) (a.k.a “simulated”)
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Muon momentum (GeV)
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BREAK !
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Efficiency
Back to histograms: efficiency = ratio reco with detector effects / true without detector 
effects
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Efficiency

Uncertainty on the efficiency?
Take sqrt(N) of each histogram bin and propagate? You may end-up with error bars going 
above 100% (efficiency above 1) 

Having an event entering or not in your detector efficiency it is the same probabilistic event 
as tossing a coin → BINOMIAL DISTRIBUTION

● p = probability of k events passing the efficiency over n total events 
● efficiency best estimate = k/n 

● uncertainty on the efficiency (variance of the distribution) 
(error bars can never go to beyond 1 or below 0)

Why? All derivations (and even a 
more correct formula) here (*)
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Efficiency: from simulation?
Efficiency = ratio true (without detector simulation) / detector simulated

Real experiment: you never trust your simulation! 
Use “control samples” to estimate efficiency and 
resolution (and background)
Control samples = sample of events which you 
know very well and which does not contain the 
signal events you are interested to measure 
(since, by the definition, you do not know the 
characteristics of the signal you look for)
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Efficiency: from simulation?
Efficiency = ratio true (without detector simulation) / detector simulated

Real experiment: you never trust your simulation! 
Use “control samples” to estimate efficiency and 
resolution (and background)
Control samples = sample of events which you 
know very well and which does not contain the 
signal events you are interested to measure 
(since, by the definition, you do not know the 
characteristics of the signal you look for)

Example: “tag and probe”

- Repeat the same exercise in simulated Monte Carlo

You want to know the efficiency of your algorithm of 
muon selection

- Take a sample of 1 muon selected + look for other 
tracks with loose selection and reconstruct their 
invariant mass.
Under the Z peak you are sure that the other track is 
a muon (Z → mm). 
How many times the track is also selected as a 
muon? = Efficiency of muon selection
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Histogram “reweighting”

“Reweighting” = take your simulated events and reweigth each of them by the 
difference between data and MC as a function of a given observable

The previous “renormalization” examples were “reweighting” all the entries of your 
histogram with same weight → often you may have events which have different weights

Once you measured the efficiency from data you typically want to correct your MC 
simulated distribution to better match reality

ϵdata( y )

ϵMC( y )
=w( y )

∑
i

N i(x)w ( y )=N events

ϵdata
ϵMC
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Search for a signal
When you have your data collected, typically you need to search for your signal  
(e.g. resonance peak into the continuum background)

You use what you know of your signal kinematics to select signal-enriched sample:
selection with cuts on observables 
→ you reject (most of) background and you keep (most of signal) 

How do you optimize your 
selection to have best 
signal “significance”?

Many possible metrics, 
we will consider only the 
most simple ones(optimized?) 

selection
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Efficiency vs purity
Balancing between signal efficiency (loose cuts to avoid loosing signal) and sample purity 
(strong cuts to reject as much as possible the background)

ϵ=
N signal
selected

N signal

p=
N signal
selected

N selected
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Significance
Given a number of signal events S and a number of background event B and assuming 
Poissonian uncertainty on background sqrt(B)

The significance of your expected signal over background is

If your background has large uncertainty beyond just statistical 
(dB) then the significance of your signal signal is  

Why? Derivation and more complex (correct!) formulas here: 
https://www.pp.rhul.ac.uk/~cowan/stat/cowan_munich16.pdf

S

√B

S

√dB2+B
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Resolution

Back to histograms: observed distribution = true distribution smeared, typically can be 
described by convolving with a Gaussian. 

true
reco
data
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Resolution: Gaussian smearing

Observed distribution = true distribution smeared, typically can be described by 
convolving with a Gaussian. Why?

- Gaussian distribution describe the distribution of the sum of many *random* observables, 
whatever distribution of those observables is. (CENTRAL LIMIT THEOREM)

The detector smearing is fundamentally a probabilistic way to describe our limited knowledge 
of many detector effects so, for large enough number of events, should follow a Gaussian 
distribution

● mean m (eg m !=0 bias in momentum scale)

● variance σ = resolution on momentum
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Gaussian and chi-square

Why?
All derivations here (*)
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Resolution: unfolding

- How to correct back from observed to “true” → deconvolving detector effects
With histograms is basically an algebric problem

where M
ji
 is a matrix which gives the probability for an event in true 

bin i to be reconstructed in bin j

Such matrix can be evaluated from MC (typically with 
cross-check, tuning from control samples)

- Unfolding consists in inverting such matrix

N j
reco=N i

true⋅M ij
simu

N i
true=N j

reco⋅M ij
−1

Eg: Z → mm mass peak width can be used to tune the 
MC resolution to match with data 
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See you Tomorrow
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