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Significance

(Metric to optimize 
analysis cuts to select a 
subsample with enhanced 
signal)

How significant is the 
presence of signal?

pr
ob

ab
ili

ty

Number of eventsB S+B

How many s 
away?

Depend on how large is the (Gaussian) 
distribution →i.e. uncertainty on B

S

√B

S

√δB2+B

If only uncertainty on B is statistical 
(very small systematics on B)

If systematics on B sizable
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Significance

(Metric to optimize 
analysis cuts to select a 
subsample with enhanced 
signal)

How significant is the 
presence of signal?

pr
ob

ab
ili

ty

Number of eventsB S+B

How many s 
away?

Depend on how large is the (Gaussian) 
distribution →i.e. uncertainty on B

S

√B

S

√δB2+B

If only uncertainty on B is statistical 
(very small systematics on B)

If systematics on B sizable

But also signal has its statistical uncertainty
S

√S+B

Actual complete formulation at http://tid.uio.no/epf/seminar/slides/simpleopt.pdf

http://tid.uio.no/epf/seminar/slides/simpleopt.pdf
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Resolution
Back to histograms: observed distribution = true distribution smeared, typically can be 
described by convolving with a Gaussian. 

true
reco
data

- How to correct back from observed to “true” → deconvolving detector effects
With histograms is basically an algebric problem

where M
ji
 is a matrix which gives the probability for an event in true 

bin i to be reconstructed in bin j

Such matrix can be evaluated from MC (typically with cross-check, tuning from control samples)

N j
reco=N i

true⋅M ij
simu
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Forward fitting
Yesterday we considered the unfolding (inverting the matrix)
The other possibility is forward folding, i.e. describe the true distribution as a function of 
unknown (to be measured) parameters and performing a fit to find the best values of the 
parameters which describe the observed data

N i
true=N j

reco⋅M ij
simu r j

r
j
 = renormalize each bin with a semi-free term with prior value 

and uncertainty from MC (typically with Gaussian 
distribution) but to be tuned to data
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Forward fitting
The other possibility is forward folding, i.e. describe the true distribution as a function of 
unknown (to be measured) parameters and performing a fit to find the best values of the 
parameters which describe the observed data

- The fit is an algorithm that change the MC expectations varying the parameters r
j
 until it 

find the ‘best match’ of MC expectation to data
(‘best match’ = minimum of the likelihood)

N i
true=N j

reco⋅M ij
simu r j

r
j
 = renormalize each bin with a semi-free term with prior value 

and uncertainty from MC (typically with Gaussian 
distribution) but to be tuned to data
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Forward fitting
The other possibility is forward folding, i.e. describe the true distribution as a function of 
unknown (to be measured) parameters and performing a fit to find the best values of the 
parameters which describe the observed data

- The fit is an algorithm that change the MC expectations varying the parameters r
j
 until it 

find the ‘best match’ of MC expectation to data
(‘best match’ = minimum of the likelihood)

N i
true=N j

reco⋅M ij
simu r j

- Likelihood ~ function which described how well the data match with my model/expectations. 
Actually in frequentist terms: how probable is to observe my data, given the model

r
j
 = renormalize each bin with a semi-free term with prior value 

and uncertainty from MC (typically with Gaussian 
distribution) but to be tuned to data

built in such a way to be 
minimal when 

● likelihood function written in a statistically correct way to consider statistical 
uncertainty in data and prior knowledge/uncertainty on nuisances

L(N j
data ; N j

simu⋅f (αk ))

● α
k
 are parameters describing ‘freedom’ in the expectation: 

- parameters you want to measure (aka parameters of interest)

- systematic uncertainties on the model, both the physics model 
and the detector model (aka nuisances parameters) 

N j
data∼N i

simu⋅f (αk )
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Systematic uncertainties 
(aka nuisance parameters)

● The expectations and their dependence on nuisances N
i

simu f(α
k
) typically can be

- in form of a simulated histogram with parametrization of uncertainties in 
form of reweigthing of the histogram

- in form of a full analytical description (typically unpractical since it is difficult to 
encode in a single analytical function all the detector effects and their possible 
variations)
- in form of a simulated histogram which is reproduced with full simulation at 
each variation of all the parameters (typically unpractical since it is 
computationally expensive to perform a full simulation for each fit iteration)
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Systematic uncertainties 
(aka nuisance parameters)

● Typically α
k
 are not completely free: they are known with a certain precision from 

control samples or from simulation

● The expectations and their dependence on nuisances N
i

simu f(α
k
) typically are

- in form of a simulated histogram with parametrization of uncertainties in 
form of reweigthing of the histogram

- in form of a full analytical description (typically unpractical since it is difficult to 
encode in a single analytical function all the detector effects and their possible 
variations)
- in form of a simulated histogram which is reproduced with full simulation at 
each variation of all the parameters (typically unpractical since it is 
computationally expensive to perform a full simulation for each fit iteration)

→ included in the likelihood with a ‘penalty term’ which makes the likelihood large (i.e. 
makes bad data-MC match) if the nuisance parameters value move away from the ‘prior’ 
estimated value
→ you need to decide how well you know this prior value and what is the distribution of its 
uncertainty
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Systematic uncertainties 
(aka nuisance parameters)

● Typically α
k
 prior knoweldge/uncertainty is assumed Gaussian but not always obvious. 

For instance theoretical uncertainty → you can use other distributions (eg flat)

● Typically α
k
 are not completely free: they are known with a certain precision from 

control samples or from simulation

● The expectations and their dependence on nuisances N
i

simu f(α
k
) typically are

- in form of a simulated histogram with parametrization of uncertainties in 
form of reweigthing of the histogram

- in form of a full analytical description (typically unpractical since it is difficult to 
encode in a single analytical function all the detector effects and their possible 
variations)
- in form of a simulated histogram which is reproduced with full simulation at 
each variation of all the parameters (typically unpractical since it is 
computationally expensive to perform a full simulation for each fit iteration)

→ included in the likelihood with a ‘penalty term’ which makes the likelihood large (i.e. 
makes bad data-MC match) if the nuisance parameters value move away from the ‘prior’ 
estimated value
→ you need to decide how well you know this prior value and what is the distribution of its 
uncertainty
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Likelihood

Likelihood ~ function which described how well the data match with my model/expectations. 
Actually in frequentist terms: how probable is to observe my data, given the model

=

+ ...

L(N j
data ; N j

simu)

Statistical term: minimum when data ~ simu and written in a statistical correct way for 
Gaussian (Poisson) uncertainties

All derivations here (*)

∑
j

reco bins

2(N j
simu

−N j
data

+N j
data ln (

N j
data

N j
simu ))
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Likelihood

Likelihood ~ function which described how well the data match with my model/expectations. 
Actually in frequentist terms: how probable is to observe my data, given the model

∑
j

recobins

2(N j
simu

⋅f (α)−N j
data

+N j
data ln(

N j
data

N j
simu

⋅f (α)
))

∑
k ,i

(αk−αk
prior)M ki (α i−αi

prior)

=

+

L(N j
data ; N j

simu⋅f (αk ))

“Chi square” multidimensional term considering possible 
correlations in prior knowledge of nuisances. Large if value 
of α away from prior (some freedom with s

α
) 

1D:
χ
2
=
(α−α prior)

sα

The minimization algorithm will change α value until finding the value which 
make data ~ MC at smallest possible expense of deviation from α prior
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Toys and Asimov
You exercise/tune/develop your fit on Monte Carlo samples: 

- you produce a sample of simulated events which is your reference MC 
sample to evaluate N

i

simu f(α
k
)

- you produce many other samples of simulated events with small variations: eg, 
statistical fluctuations as expected in data, small change of systematic value (eg 
slightly larger detector efficiency, resolution…)
→ You analyse these samples as they were many examples of actual data

Asimov fit = fit of the reference MC sample to itself: both N
i

simu f(α
k
) and N

i

simu f(α
k
) from 

the same MC reference sample 
→ the fit must converge to your expectation by definition (basic closure test)
→ you can use it to estimate the expected sensitivity (i.e. postfit precision on 
parameter of interest) 
   
Toys = fit of the reference MC sample to the ‘varied’ samples of MC
→ all the fits should converge 
→you can use it to look how your data may look like: in principle data should look like 
one of those sample → how data fit is similar to them? (P-value, Confidence level...)
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How the fit works: 1D example

αα
min

L

L
min

MINUIT (or any other algorithm) will find the minimum for you
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How the fit works: 1D example

αα
min

L

L
min

MINUIT (or any other algorithm) will find the minimum for you

L
min 

+ 1

α
min
+δαα

min-
δα

How to define “1 sigma” error on α?

If the likelihood is a χ2, ie all your uncertainties 
have a Gaussian distribution then you have the 
simple χ2 rules

L
min

 + 1 → α
min

 +/- δα

Why?
All derivations here (*)
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How the fit works: 1D example

αα
min

L

L
min

MINUIT (or any other algorithm) will find the minimum for you

L
min 

+ 1

α
min
+δαα

min-
δα

Typically real world is never perfectly 
Gaussian 
→ toys: run many fits on MC by 
changing the prior values of your 
parameters around true values
→ look at distribution of L

min
-L

true
 

Theoretical χ2 
distribution

Actual distributions 
from your toysN

to
ys

How to define “1 sigma” error on α?

L
min

 + 1 → α
min

 +/- δα

L
min

-L
true

If the likelihood is a χ2, ie all your uncertainties 
have a Gaussian distribution then you have the 
simple χ2 rules
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How the fit works: 1D example

αα
min

L

L
min

MINUIT (or any other algorithm) will find the minimum for you

L
min 

+ 1

α
min
+δαα

min-
δα

Typically real world is never perfectly 
Gaussian 
→ toys: run many fits on MC by 
changing the prior values of your 
parameters around true values
→ look at distribution of L

min
-L

true
 

e.g. integrate over 68% of your results 
to know the DL~‘1s’ error

Theoretical χ2 
distribution

Actual distributions 
from your toysN

to
ys

How to define “1 sigma” error on α?

L
min

 + 1 → α
min

 +/- δα

L
min

-L
true

If the likelihood is a χ2, ie all your uncertainties 
have a Gaussian distribution then you have the 
simple χ2 rules

May be very 
different than 
what you 
expect for chi2

68%

1 L
min 

critical



18

Many dimensions
Typically the likelihood is multidimensional (since you have many 
unknown parameters α

k
)

α 2

α
1

a1α
1

α
2

L

68%

95%

99.7%

In general if correlations are 
present between parmeters → non-
circular projection (eg ellipses)
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Linear correlations
Imagine repeating the measurement of two variables (x,y) many times

- if the two measurement are independent → uncorrelated

- if the two measurement are positively correlated: y~rx 

- if the two measurement are negatively correlated y~-rx  

(e.g. two xsec measurement at 
same experiment share same 
uncertainty on L: luminosity)

(e.g. rate of n
e
→e and n

m
 → m are linked by 

m-e mis-identification)
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Relations
Typically the likelihood is multidimensional and you (almost certainly) 
have relations between various free parameters

The projection of “1 sigma” contour on a set of measured variables may not be circular
Eg here relation such that α

2
 ~ α

1

2 

α 2

α
1

α
1

α 2

L

(By the way: if x~y2 then mathematically their correlation = 0 !)

Nice example at 
http://www.statisticalengineering.com/correlation.htm
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Multiple minima
The likelihood may have multiple minima which appears as ‘islands’ in the 
projected contours
→ careful to explore the likelihood in all the domain where minima could be 
present (otherwise you may overestimate the power of your experimental data)

α
1

α 2

L
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BREAK !
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Practical example 1

Neutrino oscillation:

fit to likelihood of near and far detector data to extract best value and uncertainty of 
parameters of interest which dictate the oscillation probability
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Practical example: n oscillation

Oscillation probability estimated by comparing n
m
 and n

e
 rate between near and far 

detectors:

Near 
Detector Far

Detector

n
m
 / n

m baseline L~300-3000 km n
m
 n

e
/ n

m
 n

e

Neutrino beam 
from accelerator
(En~0.5-5 GeV)

(simplified 2-
flavors 
approximation)

amplitude
frequency

Parameters of interest: mixing angle q, mass difference Dm2 between neutrino 
mass-eigenstates
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Practical example: n oscillation

N nα '

FD
≈P nα→nα '

×N nα

ND

Number of neutrinos at the 
Far Detector (FD) of a given 
flavour α'  (α=e,m,t)

The oscillation probability n
α
 → n

α'
 which you want to 

estimate: it depends on the parameters you want to 
measure (mixing angle q, mass difference Dm2)

Number of neutrinos at the 
Near detector (ND) of a 
given flavour α'  (α=e,m,t)
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n oscillation: near detector

Predictions depend on number of produced neutrinos and their probability to interact.

N nα

ND
(E n)=ϕ (E n)×s(En)dE n

flux= number of neutrinos produced by the 
accelerator 

cross-section = probability of interaction of the 
neutrinos in the material of the detector
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Predictions depend on number of produced neutrinos and their probability to interact.

N nα

ND
(E n)=ϕ (E n)×s(En)dE n

flux= number of neutrinos produced by the 
accelerator 

cross-section = probability of interaction of the 
neutrinos in the material of the detector

ϵ=
N nα

signal−measured

N nα

signal

p=
N nα

measured
−N background

N nα

measured =
N nα

signal−measured

N nα

measured

purity corrects for background 
(events wrongly identified as n

α
)

efficiency corrects for events which escape the detection 
(threshold, acceptance, containment...)

Detector effects:

n oscillation: near detector
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n oscillation: near detector fit

N nα

ND
(En)≈ϕnα

ND
(En)×snα

ND
(En)×

1

ϵ
ND×pND

Model implemented in MC simulation predicts expectations for flux and cross-section 
and detector effects: uncertainties described by nuisance parameters constrained in a fit to 
near detector data

N j
data∼N i

simu⋅f (bk , x i , d j)

Nuisances (b, x, d) 
are not completely 
free: prior knowledge 
from simulation and 
control-samples in  
“penalty terms”

−2 log LND

flux (b)

cross-section 
(x)

detector (d)

Likelihood fit to find nuisance values which best 
match the data:
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N nα

ND
(En)≈ϕnα

ND
(En)×snα

ND
(En)×

1

ϵ
ND×pND

N j
data∼N i

simu⋅f (αk ) αk±δαk αk M ikα i

Actually the flux and xsec uncertainties are strongly anticorrelated

Number of events in data ~ flux times xsec → if 
you increase xsec then you need to decrease 
xsec and viceversa...

n oscillation: near detector fit

Model implemented in MC simulation predicts expectations for flux and cross-section 
and detector effects: uncertainties described by nuisance parameters constrained in a fit to 
near detector data



30

N nα'

FD
(En)≈Pnα→nα '

(En)×ϕnα '

FD
(En)×sn α '

FD
(En)×

1

ϵ
FD ×pFD

N j
data∼N i

simu⋅f (αk ,β)
where α are nuisances of flux and xsec strongly 
constrained by ND + nuisances on detector 
systematics (efficiency and purity)

β = oscillation parameters. Described by 
standard oscillation formulas (PMNS) 2D likelihood over 2 parameters of interest

β 2

β
1

L

n oscillation: far detector fit
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N nα'

FD
(En)≈Pnα→nα '

(En)×ϕnα '

FD
(En)×sn α '

FD
(En)×

1

ϵ
FD ×pFD

N j
data∼N i

simu⋅f (αk ,β)
where α are nuisances of flux and xsec strongly 
constrained by ND + nuisances on detector 
systematics (efficiency and purity)

β = oscillation parameters. Described by 
standard oscillation formulas (PMNS) Projection of 2D likelihood over 2 parameters of interest

n oscillation: far detector fit
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Where did the nuisances α go?
The likelihood depends both on the parameters of interest you want to measure 
(PMNS parameters: β) and the nuisances parameters describing just systematics effects 
(flux, xsec, detector: α)

How to “project” the likelihood on β? Profiling or marginalizing on nuisance α

- When we minimize a likelihood, we can just 
add our nuisance parameters to the list of 
things to minimize 

- Find a global minimum across all parameters 

- Look at the variation of the parameter of 
interest at the best estimate of the nuisance 
parameters

Alternatively (Bayesian) we integrate (or 
marginalize) over the nuisance parameters

L(β)=∫L(α ,β)d α

L(β)⋅d α∼L(αmin ,β)
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Profiling vs marginalization?

Profiling ~ marginalization, if error on 
β ~ constant over α nuisances

If error on POI β changes with α values 
and/or non linear correlation then 
results can be widely different!
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Practical example 2

Higgs spin-parity:

fit to likelihood of newly discovered “Higgs-like” resonance decay kinematics to 
do hypothesis testing on spin/parity of the resonance
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Practical example: Higgs spin-parity
Collapse all the information on the kinematics of the final state Higgs decay in a single 
discriminant (you do not need to know how is built, consider it as an observable)

Hypothesis testing: is your observed data indicating a 
scalar Higgs (as in Standard Model) or a pseudoscalar 
(negative parity)?

The best “test” statistics is given (Neyman-Person 
Lemma) by
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Practical example: Higgs spin-parity
Collapse all the information on the kinematics of the final state Higgs decay in a single 
discriminant (you do not need to know how is built, consider it as an observable)

Hypothesis testing: is your observed data indicating a 
scalar Higgs (as in Standard Model) or a pseudoscalar 
(negative parity)?

The best “test” statistics is given (Neyman-Person 
Lemma) by

P(x|H1, H0) = probability of observing data given alternative hypothesis 1 
(alternative = 0-) or given hypothesis 0 (baseline = Standard Model)

= these are the likelihood ! LSM (N j
data ; N j

simuSM⋅f (αk))

Lalt (N j
data ; N j

simualt⋅f (αk))

q=−2 ln (Lalt /LSM)
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Practical example: Higgs spin-parity
Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic 
uncertainties (nuisances)

q=−2 ln(Lalt /LSM)
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Practical example: Higgs spin-parity
Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic 
uncertainties (nuisances)

Region where 
data are SM-
like

Region 
where data 
are BSM-
like (0-)

Region 
where you 
cannot 
decide

Value of test statistics from a likelihood fit 
to data is SM-like. By how much?

q=−2 ln(Lalt /LSM)
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Practical example: Higgs spin-parity
Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic 
uncertainties (nuisances)

Region where 
data are SM-
like

Region 
where data 
are BSM-
like (0-)

Region 
where you 
cannot 
decide

Value of test statistics from a likelihood fit 
to data is SM-like. By how much?

 alternative signal hypotheses is excluded or 
not with a given confidence level (1 − α).
→ alternative H: 0- excluded at 99.9% 

q=−2 ln(Lalt /LSM)

P(q⩾qobs ; H alt)

P (q⩾qobs ; H SM )
<α
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Hypothesis testing
Type I error: reject baseline (null) 
hypothesis when it is true (α)

Type II error: fail to reject baseline (null) 
hypothesis when the alternative hypothesis is 
actually true (β)
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Hypothesis testing
Type I error: reject baseline (null) 
hypothesis when it is true (α)

Type II error: fail to reject baseline (null) 
hypothesis when the alternative hypothesis is 
actually true (β)

P-value: probability, assuming H, to observe data 
with equal or lesser compatibility with H relative 
to the data we got. 
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Hypothesis testing
Type I error: reject baseline (null) 
hypothesis when it is true (α)

Type II error: fail to reject baseline (null) 
hypothesis when the alternative hypothesis is 
actually true (β)

P-value: probability, assuming H, to observe data 
with equal or lesser compatibility with H relative 
to the data we got. 

We often use the Gaussian distribution as an 
intuitive “metric”

often we translate the “confidence level” or a “p-
value” as the number of standard deviation that a 
Gaussian variable would fluctuate in one direction 
to give the same p-value
(5s discovery ~ 3x10-7 probability)

Even if our test statistics does not 
have a Gaussian distribution,
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Frequentist vs Bayesian
The likelihood is the probability of observing data, given a certain hypothesis

L(N data ; N simu⋅f (α))=P(data∣H (α))

often used as probability of hypothesis given data but it is not correct. What we would 
like is the posterior PDF of H(α) = probability of H (or a value) given the data
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Frequentist vs Bayesian
The likelihood is the probability of observing data, given a certain hypothesis

L(N data ; N simu⋅f (α))=P(data∣H (α))

often used as probability of hypothesis given data but it is not correct. What we would 
like is the posterior PDF of H(α) = probability of H (or a value) given the data

P(H (α)∣data )=
P(data∣H (α))⋅P (H (α ))

P (data )

prior probability of the data: 
since this doesn t depend on
α it is essentially a 
normalisation constant

This is our 
frequentist 
likelihood

prior probability of α , i.e. 
encompassing our knowledge of
α before the measurement
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Frequentist vs Bayesian
The likelihood is the probability of observing data, given a certain hypothesis

L(N data ; N simu⋅f (α))=P(data∣H (α))

often used as probability of hypothesis given data but it is not correct. What we would 
like is the posterior PDF of H(α) = probability of H (or a value) given the data

P(H (α)∣data )=
P(data∣H (α))⋅P (H (α ))

P (data )

prior probability of the data: 
since this doesn’t depend on
α it is essentially a 
normalisation constant

This is our 
frequentist 
likelihood

prior probability of α , i.e. 
encompassing our knowledge of
α before the measurement

There is some arbitrariness on how to chose the functional form the prior P(H(α))

A good experiment (with large sensitivity to H(α)) does not depend on the choice of 
the prior … but then it means that you can choose a flat prior P(H(α))~constant so: 

P(H (α)∣data )∝P (data∣H (α))
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