Statistics (for "daily" data analysis in physics)

Sara Bolognesi (IRFU, CEA)

Significance

Number of events

S+B

В

Significance

Resolution

Back to histograms: **observed distribution = true distribution smeared, typically can be described by convolving with a Gaussian.**

 $N_{j}^{reco} = N_{i}^{true} \cdot M_{ij}^{simu}$ where M_{ji} is a matrix which gives the probability for an event in true bin i to be reconstructed in bin j

Such matrix can be evaluated from MC (typically with cross-check, tuning from control samples)

- How to correct back from observed to "true" \rightarrow deconvolving detector effects With histograms is basically an algebric problem

Forward fitting

Yesterday we considered the unfolding (inverting the matrix) The other possibility is **forward folding**, i.e. describe the true distribution as a function of unknown (to be measured) parameters and performing a fit to find the best values of the parameters which describe the observed data

 $N_i^{true} = N_j^{reco} \cdot M_{ij}^{simu} r_j$

r_j = renormalize each bin with a semi-free term with prior value and uncertainty from MC (typically with Gaussian distribution) but to be tuned to data

Forward fitting

The other possibility is **forward folding**, i.e. describe the true distribution as a function of unknown (to be measured) parameters and performing a fit to find the best values of the parameters which describe the observed data

$$N_i^{true} = N_j^{reco} \cdot M_{ij}^{simu} r_j$$

r_j = renormalize each bin with a semi-free term **with prior value** and uncertainty from MC (typically with Gaussian distribution) but to be tuned to data

- The fit is an algorithm that change the MC expectations varying the parameters r_j until it find the 'best match' of MC expectation to data ('best match' = minimum of the likelihood)

Forward fitting

The other possibility is **forward folding**, i.e. describe the true distribution as a function of unknown (to be measured) parameters and performing a fit to find the best values of the parameters which describe the observed data

 $N_i^{true} = N_j^{reco} \cdot M_{ij}^{simu} r_j$

r_j = renormalize each bin with a semi-free term **with prior value** and uncertainty from MC (typically with Gaussian distribution) but to be tuned to data

- **The fit** is an algorithm that change the MC expectations varying the parameters r_j until it find the 'best match' of MC expectation to data ('best match' = minimum of the likelihood)

- Likelihood ~ function which described how well the data match with my model/expectations. Actually in frequentist terms: how probable is to observe my data, given the model

$I(N^{data} \cdot N^{simu} \cdot f(\alpha))$		$u \cdot f(\alpha)$	built in such a way to be
$L(1)_j$, ⊥ v j	$(\alpha_k))$	minimal when

 $N_{i}^{data} \sim N_{i}^{simu} \cdot f(\alpha_{k})$

- α_{k} are parameters describing 'freedom' in the expectation:
 - parameters you want to measure (aka parameters of interest)

- systematic uncertainties on the model, both the physics model and the detector model (aka nuisances parameters)

 likelihood function written in a statistically correct way to consider statistical uncertainty in data and prior knowledge/uncertainty on nuisances

Systematic uncertainties (aka nuisance parameters)

• The expectations and their dependence on nuisances $N_i^{simu} f(\alpha_k)$ typically can be

- in form of a **full analytical description** (typically unpractical since it is difficult to encode in a single analytical function all the detector effects and their possible variations)

- in form of a **simulated histogram** which is reproduced with full simulation at each variation of all the parameters (typically unpractical since it is computationally expensive to perform a full simulation for each fit iteration)

- in form of a simulated histogram with **parametrization of uncertainties in** form of reweigthing of the histogram

Systematic uncertainties (aka nuisance parameters)

• The expectations and their dependence on nuisances $N_i^{simu} f(\alpha_k)$ typically are

- in form of a **full analytical description** (typically unpractical since it is difficult to encode in a single analytical function all the detector effects and their possible variations)

- in form of a **simulated histogram** which is reproduced with full simulation at each variation of all the parameters (typically unpractical since it is computationally expensive to perform a full simulation for each fit iteration)

- in form of a simulated histogram with **parametrization of uncertainties in** form of reweigthing of the histogram

• Typically α_k are not completely free: they are known with a certain precision from control samples or from simulation

 \rightarrow included in the likelihood with a 'penalty term' which makes the likelihood large (i.e. makes bad data-MC match) if the nuisance parameters value move away from the 'prior' estimated value

 \rightarrow you need to decide how well you know this prior value and what is the distribution of its uncertainty

Systematic uncertainties (aka nuisance parameters)

• The expectations and their dependence on nuisances $N_i^{simu} f(\alpha_k)$ typically are

- in form of a **full analytical description** (typically unpractical since it is difficult to encode in a single analytical function all the detector effects and their possible variations)

- in form of a **simulated histogram** which is reproduced with full simulation at each variation of all the parameters (typically unpractical since it is computationally expensive to perform a full simulation for each fit iteration)

- in form of a simulated histogram with **parametrization of uncertainties in** form of reweigthing of the histogram

• Typically α_k are not completely free: they are known with a certain precision from control samples or from simulation

 \rightarrow included in the likelihood with a 'penalty term' which makes the likelihood large (i.e. makes bad data-MC match) if the nuisance parameters value move away from the 'prior' estimated value

 \rightarrow you need to decide how well you know this prior value and what is the distribution of its uncertainty

• Typically α_k prior knoweldge/uncertainty is assumed Gaussian but not always obvious. For instance theoretical uncertainty \rightarrow you can use other distributions (eg flat)

Likelihood

Likelihood ~ function which described how well the data match with my model/expectations. Actually in frequentist terms: how probable is to observe my data, given the model

$$\begin{split} L\left(N_{j}^{data}; N_{j}^{simu}\right) &= \\ \sum_{j}^{recobins} 2\left(N_{j}^{simu} - N_{j}^{data} + N_{j}^{data} \ln\left(\frac{N_{j}^{data}}{N_{j}^{simu}}\right)\right) &+ \dots \end{split}$$

Statistical term: minimum when data ~ simu and written in a statistical correct way for Gaussian (Poisson) uncertainties

All derivations here (*)

Likelihood

Likelihood ~ function which described how well the data match with my model/expectations. Actually in frequentist terms: how probable is to observe my data, given the model

$$L(N_{j}^{\textit{data}};N_{j}^{\textit{simu}}\cdot f(\alpha_{k})) =$$

$$\sum_{j}^{recobins} 2\left(N_{j}^{simu} \cdot f(\alpha) - N_{j}^{data} + N_{j}^{data} \ln\left(\frac{N_{j}^{data}}{N_{j}^{simu} \cdot f(\alpha)}\right)\right) + \sum_{k,i} \left(\alpha_{k} - \alpha_{k}^{prior}\right) M_{ki} \left(\alpha_{i} - \alpha_{i}^{prior}\right)$$

"Chi square" multidimensional term considering possible correlations in prior knowledge of nuisances. Large if value of α away from prior (some freedom with σ_{α})

^{1D:}
$$\chi^2 = \frac{(\alpha - \alpha^{prior})}{\sigma_{\alpha}}$$

The minimization algorithm will change α value until finding the value which make data ~ MC at smallest possible expense of deviation from α prior

Toys and Asimov

You exercise/tune/develop your fit on Monte Carlo samples:

- you produce a sample of simulated events which is your reference MC sample to evaluate $N_i^{simu} f(\alpha_k)$

- you produce many other samples of simulated events with small variations: eg, statistical fluctuations as expected in data, small change of systematic value (eg slightly larger detector efficiency, resolution...)

 \rightarrow You analyse these samples as they were many examples of actual data

Asimov fit = fit of the reference MC sample to itself: both $N_i^{simu} f(\alpha_{\nu})$ and $N_i^{simu} f(\alpha_{\nu})$ from

the same MC reference sample

→ the fit must converge to your expectation by definition (basic closure test) → you can use it to estimate the **expected sensitivity** (i.e. postfit precision on parameter of interest)

Toys = fit of the reference MC sample to the 'varied' samples of MC

 \rightarrow all the fits **should** converge

 \rightarrow you can use it to look how your data may look like: in principle data should look like one of those sample \rightarrow how data fit is similar to them? (**P-value, Confidence level...**)

MINUIT (or any other algorithm) will find the minimum for you

MINUIT (or any other algorithm) will find the minimum for you

How to define "1 sigma" error on α ?

If the likelihood is a χ^2 , ie all your uncertainties have a Gaussian distribution then you have the simple χ^2 rules

$$L_{min}$$
 + 1 $\rightarrow \alpha_{min}$ +/- $\delta \alpha$

MINUIT (or any other algorithm) will find the minimum for you

Typically real world is never perfectly Gaussian

→ toys: run many fits on MC by changing the prior values of your parameters around true values \rightarrow look at distribution of L_{min}-L_{true}

How to define "1 sigma" error on α ?

If the likelihood is a χ^2 , ie all your uncertainties have a Gaussian distribution then you have the simple χ^2 rules

$$L_{min}$$
 + 1 $\rightarrow \alpha_{min}$ +/- $\delta \alpha$

MINUIT (or any other algorithm) will find the minimum for you

Typically real world is never perfectly Gaussian

→ toys: run many fits on MC by changing the prior values of your parameters around true values → look at distribution of L_{min} - L_{true} e.g. integrate over 68% of your results to know the ΔL ~'1 σ ' error

How to define "1 sigma" error on α ?

If the likelihood is a χ^2 , ie all your uncertainties have a Gaussian distribution then you have the simple χ^2 rules

$$L_{min}$$
 + 1 $\rightarrow \alpha_{min}$ +/- $\delta \alpha$

Many dimensions

Typically the likelihood is multidimensional (since you have many unknown parameters α_{i})

In general if **correlations** are present between parmeters \rightarrow non-circular projection (eg ellipses)

18

Linear correlations

Imagine repeating the measurement of two variables (x,y) many times

- if the two measurement are independent \rightarrow uncorrelated

- if the two measurement are positively correlated: $y \sim \rho x$

(e.g. two xsec measurement at same experiment share same uncertainty on L: luminosity)

- if the two measurement are negatively correlated $y \sim -\rho x$

 $\langle cov(x,y) \rangle < 0$ (e.g. rate of $v_{e} \rightarrow e$ and $v_{\mu} \rightarrow \mu$ are linked by μ -e mis-identification)

0.4

-ż

<u>ک</u> 0.2

p(X)

Relations

Typically the likelihood is multidimensional and you (almost certainly) have relations between various free parameters

The projection of "1 sigma" contour on a set of measured variables may not be circular Eg here relation such that $\alpha_2 \sim \alpha_1^2$

(By the way: if $x \sim y^2$ then mathematically their correlation = 0 !)

Multiple minima

The likelihood may have multiple minima which appears as 'islands' in the projected contours

 \rightarrow careful to explore the likelihood in all the domain where minima could be present (otherwise you may overestimate the power of your experimental data)

Practical example 1

Neutrino oscillation:

fit to likelihood of near and far detector data to extract best value and uncertainty of parameters of interest which dictate the oscillation probability

Practical example: v oscillation

Oscillation probability estimated by comparing v_{μ} and v_{e} rate between near and far detectors:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \frac{\sin^{2}(2\theta)}{\exp^{2}\left(1.27 \frac{\Delta m_{ji}^{-}[ev^{-}]L[Km]}{E_{\nu}[GeV]}\right)}$$
(simplified 2-flavors approximation amplitude frequency)

Parameters of interest: mixing angle θ , mass difference Δm^2 between neutrino mass-eigenstates

Practical example: v oscillation

The **oscillation probability** $\nu_{\alpha} \rightarrow \nu_{\alpha'}$ which you want to estimate: it depends on the parameters you want to measure (mixing angle θ , mass difference Δm^2)

ν oscillation: near detector

Predictions depend on number of produced neutrinos and their probability to interact.

 $N_{\nu_{\alpha}}^{ND}(E_{\nu}) = \phi(E_{\nu}) \times \sigma(E_{\nu}) dE_{\nu}$

flux= number of neutrinos produced by the accelerator

cross-section = probability of interaction of the neutrinos in the material of the detector

ν oscillation: near detector

Predictions depend on number of produced neutrinos and their probability to interact.

$$N_{\nu_{\alpha}}^{ND}(E_{\nu}) = \phi(E_{\nu}) \times \sigma(E_{\nu}) dE_{\nu}$$

flux= number of neutrinos produced by the accelerator

cross-section = probability of interaction of the neutrinos in the material of the detector

Detector effects:

ν oscillation: near detector fit

$$N_{\nu_{\alpha}}^{ND}(E_{\nu}) \approx \phi_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \sigma_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \frac{1}{\epsilon^{ND}} \times p^{ND}$$

Model implemented in **MC simulation predicts expectations for flux and cross-section and detector effects:** uncertainties described by nuisance parameters constrained in a fit to near detector data

Likelihood fit to find nuisance values which best $N_i^{data} \sim N_i^{simu} \cdot f(b_k, x_i, d_j)$ Likelinood iit to match the data: $-2\log L_{ND} = 2\sum_{i=0}^{N_{bins}} \left(N_i^{pred}(\vec{b}, \vec{x}, \vec{d}) - N_i^{obs} + N_i^{obs} \log \frac{N_i^{obs}}{N_i^{pred}(\vec{b}, \vec{x}, \vec{d})} \right)$ $\sum \Delta \vec{b}_i \left(V_b^{-1} \right)_{ij} \Delta \vec{b}_j^T$ flux (b) Nuisances (b, x, d) $+\sum \sum \Delta \vec{x}_i \left(V_x^{-1} \right)_{ii} \Delta \vec{x}_j^T$ are not completely cross-section free: prior knowledge (X) from simulation and $+\sum_{a}^{N_{d}}\sum_{a}^{N_{a}}\Delta\vec{d_{i}}\left(V_{d}^{-1}\right)_{ij}\Delta\vec{d_{j}}^{T}$ control-samples in detector (d) "penalty terms"

ν oscillation: near detector fit

$$N_{\nu_{\alpha}}^{ND}(E_{\nu}) \approx \phi_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \sigma_{\nu_{\alpha}}^{ND}(E_{\nu}) \times \frac{1}{\epsilon^{ND}} \times p^{ND}$$

Model implemented in **MC simulation predicts expectations for flux and cross-section and detector effects:** uncertainties described by nuisance parameters constrained in a fit to near detector data

 $N_{j}^{data} \sim N_{i}^{simu} \cdot f(\alpha_{k}) \qquad \Longrightarrow \qquad \alpha_{k} \pm \delta \alpha_{k} \twoheadrightarrow \alpha_{k} M_{ik} \alpha_{i}$

Actually the flux and xsec uncertainties are strongly anticorrelated

Number of events in data ~ flux times xsec \rightarrow if you increase xsec then you need to decrease xsec and viceversa...

v oscillation: far detector fit

$$N_{\nu_{\alpha'}}^{FD}(E_{\nu}) \approx P_{\nu_{\alpha} \rightarrow \nu_{\alpha'}}(E_{\nu}) \times \phi_{\nu_{\alpha'}}^{FD}(E_{\nu}) \times \sigma_{\nu_{\alpha'}}^{FD}(E_{\nu}) \times \frac{1}{\epsilon^{FD}} \times p^{FD}$$

 $N_{j}^{data} \sim N_{i}^{simu} \cdot f(\alpha_{k}, \beta)$

where α are nuisances of flux and xsec strongly constrained by ND + nuisances on detector systematics (efficiency and purity)

 β = oscillation parameters. Described by standard oscillation formulas (PMNS)

2D likelihood over 2 parameters of interest

v oscillation: far detector fit

$$N_{\nu_{\alpha'}}^{FD}(E_{\nu}) \approx P_{\nu_{\alpha} \rightarrow \nu_{\alpha'}}(E_{\nu}) \times \phi_{\nu_{\alpha'}}^{FD}(E_{\nu}) \times \sigma_{\nu_{\alpha'}}^{FD}(E_{\nu}) \times \frac{1}{\epsilon^{FD}} \times p^{FD}$$

 $N_{j}^{data} \sim N_{i}^{simu} \cdot f(\alpha_{k},\beta)$

where α are nuisances of flux and xsec strongly constrained by ND + nuisances on detector systematics (efficiency and purity)

 β = oscillation parameters. Described by standard oscillation formulas (PMNS)

Where did the nuisances α go?

The likelihood depends both on the parameters of interest you want to measure (PMNS parameters: β) and the nuisances parameters describing just systematics effects (flux, xsec, detector: α)

How to "project" the likelihood on β ? Profiling or marginalizing on nuisance α

- When we minimize a likelihood, we can just add our nuisance parameters to the list of things to minimize

- Find a global minimum across all parameters

- Look at the variation of the parameter of interest at the best estimate of the nuisance parameters

$$L(\beta) \cdot d \alpha \sim L(\alpha_{\min}, \beta)$$

Alternatively (Bayesian) we integrate (or marginalize) over the nuisance parameters

$$L(\beta) = \int L(\alpha, \beta) d\alpha$$

Profiling vs marginalization?

Profiling ~ marginalization, if error on β ~ constant over α nuisances

If error on POI β changes with α values and/or non linear correlation then results can be widely different!

Practical example 2

Higgs spin-parity:

fit to likelihood of newly discovered "Higgs-like" resonance decay kinematics to do hypothesis testing on spin/parity of the resonance

Collapse all the information on the kinematics of the final state Higgs decay in a single discriminant (you do not need to know how is built, consider it as an observable)

Collapse all the information on the kinematics of the final state Higgs decay in a single discriminant (you do not need to know how is built, consider it as an observable)

P(x|H1, H0) = probability of observing data given alternative hypothesis 1 (alternative = 0-) or given hypothesis 0 (baseline = Standard Model)

$$\begin{array}{ll} = \text{these are the likelihood !} & L^{SM}(N_{j}^{data}\,;N_{j}^{simuSM}\!\cdot\!f(\,\alpha_{k})) \\ & L^{alt}(N_{j}^{data}\,;N_{j}^{simualt}\!\cdot\!f(\,\alpha_{k})) \end{array} \end{array}$$

Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic uncertainties (nuisances)

Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic uncertainties (nuisances)

$$q = -2\ln(L^{alt}/L^{SM})$$

Value of test statistics from a likelihood fit to data is SM-like. By how much?

Expected distribution of test statistics q over many toys in Monte Carlo varying the systematic uncertainties (nuisances)

$$q = -2\ln\left(L^{alt}/L^{SM}\right)$$

Value of test statistics from a likelihood fit to data is SM-like. By how much?

$$\frac{P(q \ge q_{obs}; H_{alt})}{P(q \ge q_{obs}; H_{SM})} < \alpha$$

alternative signal hypotheses is excluded or not with a given confidence level $(1 - \alpha)$. \rightarrow alternative H: 0- excluded at 99.9%

Hypothesis testing

Type I error: reject baseline (null) hypothesis when it is true (α)

Type II error: fail to reject baseline (null) hypothesis when the alternative hypothesis is actually true (β)

Hypothesis testing

Type I error: reject baseline (null) hypothesis when it is true (α)

Type II error: fail to reject baseline (null) hypothesis when the alternative hypothesis is actually true (β)

P-value: probability, assuming H, to observe data with equal or lesser compatibility with H relative to the data we got.

Hypothesis testing

 $\mu - \sigma$

 $\mu + \sigma$

Type I error: reject baseline (null) hypothesis when it is true (α)

Type II error: fail to reject baseline (null) hypothesis when the alternative hypothesis is actually true (β)

P-value: probability, assuming H, to observe data with equal or lesser compatibility with H relative to the data we got.

We often use the Gaussian distribution as an intuitive "metric"

Even if our test statistics does not have a Gaussian distribution,

often we translate the "confidence level" or a "pvalue" as the number of standard deviation that a Gaussian variable would fluctuate in one direction to give the same p-value 42 (5 σ discovery ~ 3x10⁻⁷ probability)

Frequentist vs Bayesian

The likelihood is the probability of observing data, given a certain hypothesis

$$L(N_{data}; N_{simu} \cdot f(\alpha)) = P(data|H(\alpha))$$

often used as probability of hypothesis given data but it is not correct. What we would like is the posterior PDF of $H(\alpha)$ = probability of H (or a value) given the data

Frequentist vs Bayesian

The likelihood is the probability of observing data, given a certain hypothesis

$$L(N_{data}; N_{simu} \cdot f(\alpha)) = P(data|H(\alpha))$$

often used as probability of hypothesis given data but it is not correct. What we would like is the posterior PDF of $H(\alpha)$ = probability of H (or a value) given the data

$$P(H(\alpha)|data) = \frac{P(data|H(\alpha)) \cdot P(H(\alpha))}{P(data)}$$

This is our *f*requentist likelihood

prior probability of the data: since this doesn t depend on α it is essentially a normalisation constant

prior probability of α , i.e. encompassing our knowledge of α before the measurement

Frequentist vs Bayesian

The likelihood is the probability of observing data, given a certain hypothesis

$$L(N_{data}; N_{simu} \cdot f(\alpha)) = P(data|H(\alpha))$$

often used as probability of hypothesis given data but it is not correct. What we would like is the posterior PDF of $H(\alpha)$ = probability of H (or a value) given the data

$$P(H(\alpha)|data) = \frac{P(data|H(\alpha)) \cdot P(H(\alpha))}{P(data)}$$
This is our frequentist prior probability of the data: since this doesn't depend on prior probability of α , i.e. encompassing our knowledge of the data is the maximum of the data is the data is the maximum of the data is the

 α before the measurement

There is some arbitrariness on how to chose the functional form the prior $P(H(\alpha))$

normalisation constant

 α it is essentially a

A good experiment (with large sensitivity to H(α)) does not depend on the choice of the prior ... but then it means that you can choose a flat prior P(H(α))~constant so: $P(H(\alpha)|data) \propto P(data|H(\alpha))$