
1

Neural Networks and Deep Learning: an
introduction

2021 JENNIFER2 SUMMER SCHOOL

23/07/2021

Sofia Vallecorsa

2

Introduction
Basic Concepts

Nodes
Feed-forward networks
Multi Layer Perceptrons

The learning process
Learning models
The training process
Loss functions
Adaptive SGD methods

Overfitting and regularization
Alternatives to ANN
Examples

Outline

Material:
• M. Kagan, Introduction to Machine Learning, CERN

openlab summer student lectures
• G. Louppe, Deep Learning,

https://github.com/glouppe/info8010-deep-learning
• François Fleuret, Deep Learning Course at UniGE:

https://fleuret.org/dlc/

3

Mathematical models learnt from data
• Characterizes patterns, regularities,

and relationships amongst variables
• Chosen according to task / available

data

Machine Learning

1957: IBM 704 system

Frank Rosenblatt working on the Mark I
perceptron (1956)

Rosenblatt
Perceptron could
solve linear
classification
problems

4

Endgame…

1997:
IBM DeepBlue wins Kasparov (Chess)

2017:
DeepMind AlphaGo wins Ke Jie (Go)

5

Today’s applications…

6

…at CERN
Hardware monitoring
and optimizationReconstruction

Jet
reconstruction

Anomaly
detection

Simulation

Classification

7

Artificial Neural Network

ANN are computational models inspired by biological neural networks.

8

Node

• Receives input from other nodes, or an external
source
• Each input has an associated weight

• Computes an output
• Applies an Activation Function to the weighted sum

of its inputs

• A node is characterized by its parameters

Sigmoid
Tanh

ReLu

9

Feed-forward networks
Multiple nodes arranged in layers.
Nodes from adjacent layers
have connections (with weights).

Ex. fully-connected layer

Multi Layer Perceptron (MLP) contains one
or more hidden layers

Npara = 3 + 2 (nodes)
= 3x3 + 2x2 (weights) + 3 + 2 (bias)
= 18 parameters

10

NN as universal approximators

NN with at least one hidden layer are universal approximators

http://neuralnetworksanddeeplearning.com/chap4.html
Or Approximation by Superpositions of Sigmoidal Function

Playing with the w, b parameters we can
modify the shape of the sigmoid

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

11

NN as universal approximator

We can add nodes and introduce “steps”

http://neuralnetworksanddeeplearning.com/chap4.html
Or Approximation by Superpositions of Sigmoidal Function

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

12

NN as universal approximators

NN with a single
hidden layer can be
used to approximate
any continuous
function to any
desired precision

http://neuralnetworksanddeeplearning.com/chap4.html
Or Approximation by Superpositions of Sigmoidal Function

Increasing complexity

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

13

Learning: estimate statistical model from data
A result of altering the network's weights, with some kind of algorithm.
Find a set of weights so that the NN can map input to the correct output.

Prediction and Inference: using statistical models to make
predictions on new data points and infer properties of systems

Giving computers the ability to learn without explicitly programming them
(A. Samuel, 1959)

(Machine) Learning

Training set : to fit the model
Validation set: to check performance on independent data and tune-hyper parameters
Test set: final performance evaluation

14

Supervised learning

The desired output (target) is known at training time.
calculate an error based on target output and NN output
use error to make corrections by updating the weights.

Given N examples with features {xi} and
targets {yi}, learn function mapping h(x)=y
• Regression:

Y = Real Numbers

• Classification:
Y is a finite set of labels (i.e. classes)

15

Unsupervised Learning

No target output is used at training time
NN finds pattern within the inputs (data mining)

Given some data D={xi}, but no labels, find
structure in the data
• Clustering:

partition the data into groups

• Dimensionality reduction:
find a low dimensional (less complex) representation of
the data with a mapping Z=h(X)

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

16

Reinforcement learning

Agent interacts with environment and receives reward after an
action

• Learns through trial-and-error
Agent follows certain policy 𝝅: 𝑆 → 𝐴

• Find optimal policy 𝝅∗ maximizing return: 𝐺" = ∑# 𝛾#𝑅"$#

Expected return can be estimated through value function Q(s, a)

• “What’s the best action to take in each state” => greedy
policy: take action that maximizes Q(s,a)

• Not a priori known, but can be learned iteratively

• Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)
16

RL book: Sutton & Barto

source

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/

17

The training process

Random NN initialisation
Design a Loss function

Differentiable with respect to model
parameters

Find best parameters which minimize
loss

Adjust parameters to reduce loss function
Calculate gradients wrt to weights
Weights update

Repeat until parameters stabilize

Learning as an optimization problem

Gradient evaluated over batch of data
Too small à very noisy and scattering
Too large à information dilution and slow convergence

18

Loss function

Typical Supervised Learning use case:
a term comparing prediction h with
target y and a regularizer, penalizing
certain values of w

Slide from M. Kagan

19

Gradient Descent

Convex loss
Single global minimum
Iterations toward minimum

Noisy estimates average out

Scales well with dataset and model size

Non convex loss
Stochastic behavior can allow “jumping” out of bad critical points
Get stuck in non-optimal minima
Convergence issue!

Compute gradient on one event at a time (stochastic) or a
mini-batch (batch)

20

SGD algorithms

Vanilla SGD
Momentum SGD
Annealing SGD (step, exponential or
1/t decay):

http://danielnouri.org/notes/category/deep-learning/

21

Some adaptive SGD

Adagrad: adapts updates to each parameter depending on their importance..
squared gradients accumulate in the denominator à learning rate quickly drops

RMSprop: divides learning rate by an exponentially decaying average of squared
gradients.

Adam: computes adaptive learning rates for each parameter. Similar to RMSprop
also keeps an exponentially decaying average of past gradients mt, similar to
momentum

22

Adaptive SGD methods

time evolution of different
optimization algorithms.
"overshooting" behavior of
momentum-based methods

comparison

23

A saddle point:
SGD has a very hard time breaking
symmetry.
Adaptive algorithms, see very low
gradients in the saddle direction. the
denominator increase the effective
learning rate along this direction,

comparison
Adaptive SGD methods

Learning rate is one of the major hyper-
parameters regulating training

24

Back-propagation: the problem

Taking into account that even easy classification examples might involve hundreds of
weights, complicated activations and losses
How do we actually implement training in a computationally efficient way for a NN??

Given a function e and a set of variables (a & b) :
How does a change in a affect e?

To calculate it we follow the path through each of
the connecting branches
What if the number of layers increases
Combinatorics explodes!

http://colah.github.io/posts/2015-08-Backprop/

25

Back-propagation

• the key algorithm that makes training deep models computationally tractable.
• it’s a technique for calculating derivatives quickly
• It simply relies on the derivatives chain rule

“the difference between a model taking a week to train and taking 200,000 years”

http://colah.github.io/posts/2015-08-Backprop/

26

A simple visual example

Back-propagation
Forward pass computes values from
inputs to output
X = -2, Y = 5, Z = -4

How does a change in Y affect f?
Calculate (forward) derivatives

OR
use backward derivatives: recursively
applie the chain rule backward

27

Backward derivatives approach is much more efficient in the case of large graphs
Because of the chain rules, at each step the derivative depends only

On the derivatives already calculated for the parent nodes
On the node values calculated during the forward pass

Gradients flow “backward” through the graph

A visual example

Back-propagation

Backpropagation is a special case of the
automatic differentiation programming
abstraction applied to neural networks

28

Ex: Back-propagation example
Example circuit for a 2D neuron with a sigmoid activation function

Try it @HOME!

Decompose using :

http://cs231n.github.io

29

High learning rate will quickly decay the loss faster
Can get stuck at worse values because the parameters
bounce around chaotically

Low learning rate induces very low convergence speed

Evaluating the learning process: loss check

Typical loss function over time
A slightly too small learning rate ?

Too low batch size ?

30

“Art” pieces

“Taming Spatial
Transformer Networks,
contributed by Diogo.
For the record, it’s not
supposed to look like
that”

"This RNN smoothly forgets
everything it has learned. God
knows what happened… »

“A heart rate or a loss
function? :)”

https://lossfunctions.tumblr.com

31

Overfitting:
A model with high capacity fits the
noise in the data instead of the
underlying relationship

Overfitting

http://scikit-learn.org/

Correct identification of
outliers (noise) leads to
better generalization

Simple models may underfit: will
deviate from data but will not be
influenced by its peculiarities

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

32

Overfitting

validation error curve shows very small validation
accuracy compared to training

indicating strong overfitting

à increase regularization (stronger L2 weight penalty, more
dropout, etc.) or collect more data.

validation accuracy tracks the training accuracy fairly
well.

model capacity is not high enough: make the
model larger by increasing the number of parameters

Gap between training and
validation accuracy
indicates the amount of
overfitting

33

Optimising hyper-parameters

Noise is intrinsic to
system or
measurements
Can not be avoided or
improved with
modeling
Lower bound on
possible noise

Slide from M. Kagan

34
(http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)

Regularisation

• L2 or L1 regularisation
• Introduce directly in the objective

function terms penalising large weights)
• use all inputs with small contributions

instead of just a few ones with larger
weights

• Cap the maximum value
• Dropout

35

Beyond Neural Networks

Decision Trees
Kernel Methods

36

Decision Tree

Consecutive set of questions (nodes)
• Only two possible answers per question
• Each question depends on the formerly given

answers
• Final verdict (leaf) is reached after a given

maximum number of nodes
Advantages
• Easy to understand/interpret
• Good with multivariate data
• Fast training
Disadvantages
• Single tree not very strong à Random Forest

L. Breiman et al., “Classification and Regression Trees” (1984)

37

Random Forests

Available methods to train Random Forests:
• Bagging

• A subset of events is drawn from the training data with
replacement

• Tree is trained on this subset, this is repeated many times

• Boosting
• Misclassified events are weighted higher so that future

learners
• concentrate on these
• Most commonly used method AdaBoost pngsumo image

Ensemble of trees, based on majority vote:
• ensemble of uncorrelated trees is better than only one tree even though
their separation power is the same

38

Boosting

AdaBoost (Adaptive Boosting):

• Enhances weights of misclassified events
and reduces weight of correctly classified
ones after each training so that future trees
learn those better

• Iterates until weight of misclassified > 50%

• Final weight is the sum of all classifiers
weighted by their errors

Alternative algorithms: Gradient Tree Boosting, XGBoost

39

Support Vector Machines

Separate two sets of points with the widest possible
margin

Decision function is fully specified by a support vectors
(subset of training samples)

Input: set of training pair samples with a result function 𝑦 𝑥! ∈
−1,1 ;

Output: set of 𝑤! whose linear combination predicts the value of
𝑦 𝑥!

Optimising a SVM is a convex optimization problem
(global minimum)

Example of a kernel based method Support Vectors

Maximize margin

40

Distance from support point to centerline

One word on how SVM works

H0

H1

H2

𝑤 �⃗� + 𝑏 = +1

𝑤 �⃗� + 𝑏 = −1

𝑤 �⃗� + 𝑏 = 0

𝑥!, 𝑦! 𝑑"

𝑑#

𝑑 = ⁄𝑤 �⃗� + 𝑏 𝑤 = ⁄1 𝑤

minimize 𝑤 and
impose no points “in between”
𝑦$ 𝑤 �⃗�$ + 𝑏 ≥ 1

quadratic minimization problem with linear
constraint solved with Lagrangian multipliers

min
% ,'

ℒ �⃗�, �⃗� = min
% ,'

41 2 𝑤 +6
$

𝑎$ 𝑦$ 𝑤 �⃗�$ + 𝑏 − 1

41

Non-linearity

𝑥$(= 𝑥$

𝑦$(= 𝑥$) + 𝑦$)

➽
Introducing kernels

We do not need 𝑥(= Φ �⃗� but just K 𝑥) , 𝑥* = Φ 𝑥) ⋅ Φ 𝑥* !

42

Reinforcement Learning for
accelerator control

Online training of an agent on 160MeV LINAC4
trajectory steering in horizontal plane.

LINAC4 parameters are usually trained manually !

17 states, 16 possible actions
Agent: 2 fully-connected layers (32 nodes)
Online hyperparameter tuning

Maximum allowable RMS is limited to 3 mm to
protect the machine.
The target set to reach 1 mm RMS max.

Achieved in less than 5 iterations

V. Kain, PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 124801 (2020)

43

Classification in High Energy Physics

Irreducible tt+bb background with final state being
indistinguishable from signal
Background simulation comes with large theory
modelling uncertainties
large number of jets in final state:
assignment of jets to partons not trivial
→ combinatorial background
information lost: significant amount of events
cannot be fully reconstructed because jets are
out of acceptance

C. Reissel, ML4Jets 2021

Higgs classification

V. Belis, arxiv: 2104.07692

44

Simplified analysis
BDT vs DNN vs SVM (and QSVM…)

V. Belis, arxiv: 2104.07692

45

ANN discriminant used for
event classification and final
selection in the fit based on
high-level variables

Higgs Classification: ANN in CMS

CMS PAS HIG-18-030

Slide from C. Reissel

46

Two BDT – based
classification steps
High-level variables are used
as input

Higgs Classification: BDT in ATLAS

CMS PAS HIG-18-030

Slide from C. Reissel

47

Machine Learning -based
analysis

“Conventional machine-learning
techniques were limited in their
ability to process natural data in
their raw form.
For decades, constructing (…) a
machine-learning system required
careful engineering and
considerable domain expertise to
design a feature extractor … ”

LeCun, Y., Bengio, Y. & Hinton, G. Deep
learning. Nature 521, 436–444 (2015).

ATLAS-CONF-2020-058 analysis flowchart

48

Summary

Machine learning uses mathematical and statistical models learned from data to
characterize patterns and relations between inputs, and use this for inference /
prediction

a powerful tool for many different applications
Choosing a model for a given problem is difficult so is optimizing the training
process.

Always plot the losses!

Classical Machine Learning has limitations
Deep Learning

49

For tomorrow:
Think about the smartest person you know.

Why do you think she/he is smart ?

50

Thanks!
Questions?

Sofia.Vallecorsa@cern.ch

51

References

• M. Kagan, Introduction to Machine Learning, CERN openlab summer student lectures
• G. Louppe, Deep Learning, https://github.com/glouppe/info8010-deep-learning
• François Fleuret, Deep Learning Course at UniGE: https://fleuret.org/dlc/
• http://cs231n.github.io/
• Pattern Recognition and Machine Learning, Bishop (2006)
• Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
• Introduction to machine learning, Murray:

http://videolectures.net/bootcamp2010_murray_iml/
• CS181, Parkes and Rush, Harvard University: http://cs181.fas.harvard.edu
• CS229, Ng, Stanford University: http://cs229.stanford.edu/
• http://scs.ryerson.ca/~aharley/vis
• http://cs. stanford.edu/people/karpathy/convnetjs/
• http://scikit-learn.org/

http://cs231n.github.io/
http://videolectures.net/bootcamp2010_murray_iml/
http://cs181.fas.harvard.edu/
http://cs229.stanford.edu/
http://scs.ryerson.ca/~aharley/vis
http://scikit-learn.org/

