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Intelligence .. or the hability to:
• Learn from experience
• Extract semantics
• Model
• Generalize
• Abstraction
• Meta-learning
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Motivation: Deep Learning in High Energy Physics
Introduction & Basic Concepts
Example architectures and applications in HEP

Convolutional Neural Networks
Recurrent Neural Networks
Graph Neural Networks 
Generative Models 

Outline
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Big Data at the LHC

Experiments (detectors & physics data)
330 PB of collisions data stored by end 2018

Accelerators infrastructure
9600 magnets for beam control
1232 superconducting dipoles for bending

Computing infrastructure

LHC data is multi-structured, hybrid
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Next generation colliders will require larger, highly granular 
detectors that will generate huge particle data rates O(100 TB/s)

arXiv:1811.10309
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Deep Learning in HEP

DL can recognize patterns in large complicated data sets
Better performances if applied directly to raw data

Re-cast physics problems as “DL problems”
Interpret detector output as images and apply techniques borrowed from computer vision
Interpret physics events as sentences and apply NLP techniques

Intense R&D activity
Adapt DL to HEP requirements

In terms of model interpretability
Results validation against classical methods
Detailed systematics

Adopting ”new” computing models
Accelerators and dedicated hardware
HPC integration
Cloud resources
Big Data platforms

B. Hooberman et 
al. (NIPS 2017)
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Applications in HEP (II)

Classical Machine Learning has been used for many 
years, mostly during the final steps of data analysis for 
signal /background separation
Deep Learning is studied for many different applications 

Optimisation

Raw data processing  
Monitoring and Control Systems

Real-time filtering 

Simulation

Analysis
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Universal approximator

NN with a single hidden layer containing a finite number of non-linear 
neurons approximate continuous functions to any desired degree of 

accuracy.

Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Neural 
Networks. 2. Pergamon Press. pp. 359–366.



8

Two classes classification: 
(OR function) (linearly separable)

Exclusive OR is an example of a non 
linearly separable pattern:

A single layer perceptron can categorize “linearly separable” patterns

The need for depth

(tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
(images)http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
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The need for depth (II)

(tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
(images)http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

Need a Multi-Layer architecture to solve the exclusive OR problem:
Two-stages approach
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Deep Neural Networks

“Deep learning allows computational models that are composed of multiple 
processing layers to learn representations of data with multiple levels of abstraction.
…
Deep learning discovers intricate structure in large data sets by using the 
backpropagation algorithm to indicate how a machine should change its internal 
parameters that are used to compute the representation in each layer from the 
representation in the previous layer…”

LeCun, Y., Bengio, Y. & Hinton, G. Deep 
learning. Nature 521, 436–444 (2015).
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Increasing sizes

Fleuret, Deep Learning Course: https://fleuret.org/dlc
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More than just a deeper NN 

AAAI 20 keynotes Turing Award Winners (Geoff Hinton Yann Le Cunn, Yoshua Bengio): 
https://www.youtube.com/watch?v=UX8OubxsY8w
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openAI GTP-3

Text fragments: 
https://arr.am/2020/07/09/gpt-3-an-ai-
thats-eerily-good-at-writing-almost-
anything/

https://arxiv.org/pdf/2005.14165.pdfGenerative Pretrained Transformer-style 
autoregressive model

175 billion parameters
Previously largest model was Microsoft's Turing NLG, 
with 17 billion parameters (Feb. 2020)

A generative model: learns a probabilty 
distribution from a data set and generate a new 
set belonging to the same distribution

Create realistic texts
Can do other tasks (translation, question-answering, 
etc..)

Trained with large Internet data sets (bias?)
https://vimeo.com/507801358
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How do we train DL

• Algorithms improvements
• Back-propagation, Auto 

Differentiation

• Large amount of data 
(labelled data for 
supervised learning)

• Computing power
• Highly parallel hardware
• Dedicated accelerators 

(GPUs, Google TPUs, 
AWS INF1, Graphcore.. ) 

• Cloud and HPC resources

Image from  “Deep Learning”, I. GoodFellow, Y. Bengio, A. 
Courville , MIT press book

Back-
propagation

Greedy layer-
wise pre-training

Different approaches to training: 
Unsupervised pre-training
Transfer learning and fine tuning
Few-shot learning
Meta-learning 
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Vanishing gradients

Small gradients slow down 
stochastic gradient descent.

Limits ability to learn

Gradients for layers far from the 
output vanish to zero.

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
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Introducing techniques to parallelise training
• Data parallelism

Compute gradients on several batches 
independently
Update the model synchronously or 
asynchronously 

• Model Parallelism, Hybrid techniques
• Use reduced precision representation (INT6, 

BF16, …)
• Extreme parallelism using combined 

strategies and SGD algorithm optimisation
• DeepSpeed and ZeRO-2 on Microsoft Azure

Accelerating the training process

https://www.microsoft.com/en-us/research/blog/deepspeed-
extreme-scale-model-training-for-everyone/
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Computing 
resources

Fugako System @RIKEN, Japan

Summit @Oak Ridge, USA
4,356 nodes:

2x 22-core IBM Power9 CPUs
6 NVIDIA Tesla V100 GPUs.

158 000 nodes:
48-core Arm 8.2-A
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Transferring learned knowledge to 
similar task
How much of the pre-trained model to 
use in new one?

CNN features are more generic in early 
layers and more dataset-specific in later 
layers

Can be used to train large models
Ex. Extraction of flood water extent 
from satellite images using U-Net

“Transfer learning and domain adaptation refer to the situation 
where what has been learned in one setting … is exploited to 
improve generalization in another setting”

Deep Learning, 2016.

Transfer learning, pre-training, fine-tuning

Nemni, Edoardo, et al., Remote Sensing 12.16 (2020): 2532.

U-Net
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Counting shelters in refugee camps

CERN openlab and UNOSAT collaboration
(UN Operational Satellite Applications Centre)

Transfer learning from RCNN model
Average precision is 82%
Speedup is x200 wrt (human) expert 
processing 

https://indico.cern.ch/event/727274/contributions/3100369/

2019 CERN openlab 

Summer Students 

Program



20

Example Architectures



21

Convolutional Neural Networks

Exploit spatially-local 
correlation

Enforce local connectivity 
pattern between neurons of 
adjacent layers

Increasing level of 
abstraction

Initial layers learn simple 
features (edges and color 
gradients) 

Output dense layers combine 
high level features and 
produce predictions.

CVPR 2012 tutorial
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LeNet

LeCun et al., 1998

7-layers CNN to recognise hand-written 
numbers on checks 

digitized in 32x32 pixel greyscale input 
images. 

to process higher resolution images need 
larger and more convolutional layers

availability of computing resources!
http://yann.lecun.com/
exdb/lenet/index.html



23

ILVRC challenge

Imagenet: >14 M images with 20k classes
ImageNet Large Scale Visual Recognition 
Challenge started in 2010 with 100 classes 
(1000 classes in 2017)

In 2017 29/38 
competitors got better 
than human score

Human performance
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CNN applications 

Multiple tasks: 
Image analysis, 
segmentation
Object detection  and 
pattern recognition
..
Different fields: 
Science, medicine, Earth 
Observation 

arxiv:1712.04837
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GANs for detector simulation

Monte Carlo simulation is extremely demanding in terms of 
computing resources

Train a Deep Generative Model instead

Detector output as images: read-out channels become pixels

Train a Generative Adversarial Network: a pair of networks in a min-
max game

Pixelized 3D image

F. Rehm, vCHEP2021
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The 3DGAN prototype

3D convolutional layers are computationally expensive
Reproduce a 3D volume using 2D convolutions
2.1x speed-up while maintaining accuracy

Generator: 2.15M parameters

F. Rehm, vCHEP2021
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CNN shortcomings

Spatial features:
Humans recognize objects under different view angles, scales or 
lighting conditions

CNNs can handle translations but none of the above

Adversarial examples:
Minimal changes in the image can cause entirely different outcome

arxiv: 1312.6199

CAR NOT A CAR

Hinton, ICLR 2018

A proposed solution: construct a hierarchical 
representation based on instantiations of specific 
types of entities
match it with already learned patterns and 
relationships stored in the brain
(capsule networks)
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Recurrent Neural Networks and LSTM 

Recognize patterns in sequences of data
Preserve sequential information in hidden state 
across multiple time steps

Input  previously analised example together with the 
current one

Long Short-Term Memory units, by Hochreiter
and Schmidhuber in mid 90s
Use analog gated cells to allow for data store, 
reads writes operations. 

element-wise multiplication by sigmoids, (differentiable)

Elman, 1990

https://people.idsia.ch//~juergen/rnn.html
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Network traffic prediction @CERN
Compare CNN, LSTM and hybrid architectures

Joanna Waczynska, vCHEP2021, Grid21
arxiv: 2107.02496
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Graph Neural Networks

Attention GNN
arXiv:1710.10903

Message Passing
Kipf, ICLR 2017

Interaction GNN,
Battaglia, Advances in neural 
information processing systems. 
2016.

Structure data as a (directed) graph of connected hits
Connect plausibly-related hits using geometric constraints 

Full event embedding requires  large graphs ( ~105 nodes)
Sparse matrix implementation
Identify disjoint sub-graphs and distributed learning of large graphs

Murnane, Xiangyang, https://indico.cern.ch/event/852553/contributions/4062229/
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Graph Neural Networks

High Granularity Calorimeter 
https://arxiv.org/abs/2003.11603

Dune LArTPC
https://indico.cern.ch/event/852553/contributions/4059542/

Next generation colliders will present 
challenges to image-based methods 
Graphs can capture inherent sparsity
and relational structure

Can approximate geometry of the physics 
problem
Are a generalization of many other 
machine learning techniques
E.g. Message passing convolution 
generalises CNN from flat to arbitrary 
geometry

Murnane, Xiangyang, https://indico.cern.ch/event/852553/contributions/4062229/
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Raw data denoising with hybrid models
GConV: https://arxiv.org/abs/1907.08448

USCG Net https://arxiv.org/pdf/2009.01599.pdf

M. Rossi, vCHEP2021
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The problem:
Assume data sample follows pdata distribution 
Can we draw samples  from distribution  pmodel such that pmodel ≈ pdata?

A  well known solution:
Assume some form for pmodel (using prior knowledge, parameterized by θ)
Find the maximum likelihood estimator

33

Generative models

draw samples from pθ∗

Generative models don’t assume any prior form for  pmodels
Use Neural Networks instead
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Deep Generative Models

A variety of models:
Generative Adversarial Networks
Auto Encoders

Compression and decompression are data-specific, 
lossy, learned automatically from examples
Used for data compression, dimensionality reduction 
(PCA) and de-noising 

Variational AEs learn the latent variable model

34

Deep models allow higher levels of abstractions and improve generalization wrt to 
shallow models
Multiple applications in Simulation, Anomaly Detection, Data manipulation

See Danilo Rezende tutorial on Deep Generative Models
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Real-time event selection

Only a minimal fraction of 
collider data can be stored 
and  processed 

Keep only the interesting
events

Sophisticated studies to 
optimise selection for 
specific physics processes

35

We don’t know what unknown physics looks like! 
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Physics Mining as anomaly detection

Classical strategy uses very loose selection 
1M Standard Model (“known physics”)  events per day

Train Variational Auto Encoders on known physics
Monte Carlo data
Real detector data 

Run it in real time and store only “anomalies”

36

arXiv:1811.10276
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Model-independent 
selection

VAE as model-independent new physics 
selection tool

Robust alternative solution

Create a dataset of anomalous events
Probe large range of processes

Might open new physics directions

37

Arxiv:1811.10276
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Adversarial training for Anomaly Detection

arxiv: 2005.01598

Variational AutoEncoder

BiGAN
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Comparing experimental data to theory

• Detectors measure the results of  
particle interactions with matter

• But we are interested in the 
particle production processes 

• Go back from experiments to 
theory: 
• Disentangle production process 

from the experimental setup 
• Bayesian problem
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Inverting the experiment

• Inverse problem: given observations y determine 
underlying hidden parameters x

• Use invertible networks
• Train on the forward process x → y
• Run backward y → x to get prediction
• Add  latent variable z to compensate information 

loss during forward process 

arxiv:1808.04730
arxiv:2006.06685
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Attention mechanism

Focus on special region of input phase space
interpretation as a vector of importance weights
Ex. soft attention as modules in a layer to 
dynamically select  vectors from the previous layer

Output is independent of the order of input 
examples (set instead of sequences) 

Use relationships between different inputs (as 
graph representation).

Stacked self-attention layers at the base of 
transformers (Vaswani et al., Advances in Neural Information 
Processing Systems, 2017, 5998–6008)

Attention mechanism applied to Higgs 
classification: C. Reissel, ML4Jets 2021

Attention mechanism as originally formulated in a 
bi-directional LSTM Auto-Encoder
https://arxiv.org/abs/1409.0473

Example transformers application in HEP: 
https://iopscience.iop.org/article/10.1088/2632-2153/ac07f6/meta
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Uncertainties
Aleatoric uncertainty captures noise inherent in the 
observations. 

Higher on object boundaries and for objects far from the 
camera. 
Cannot be reduced using more data, needs better 
measurements

Epistemic uncertainty accounts for ignorance about 
which model generated the data. 

Higher for semantically and visually challenging pixels. 
It can be explained away given enough data.
Introduce a prior distribution (Bayes statistics)

Learn uncertainty within the task.

Find more details in: G.Louppe, Introduction to Deep Learning, 
https://glouppe.github.io/info8010-deep-learning/pdf/lec11.pdf

Kendal, Gal, NIPS 2017, 
https://papers.nips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

the model fails to segment the footpath due to increased 
epistemic uncertainty, but not aleatoric uncertainty

Ex. Regression: model aleatoric uncertainty in the output by modelling 
the conditional distribution as a Normal distribution
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Development directions

New improvements will not be achieved by simply making models larger and larger
Alternative architectures and approaches to learning :

Attention mechanism
Self Supervised Learning: systems learn from raw data to label it. 

Generalisation: capability to generalize to different data distributions (out-of-distribution 
generalisation) 

G. Hinton, Y. Le Cunn, Y. Bengio , AAAI 2020 keynotes, Turing Award Winners Event
https://www.youtube.com/watch?v=UX8OubxsY8w

ML/DL have their origins in the studies on the human brain, but today DL doesn’t learn 
like humans do.

Current research in DL tries to improve on this aspects 
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Thanks!
Sofia.Vallecorsa@cern.ch

https://openlab.cern/
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https://openlab.cern/

