.="). CERN
1= openlab

Introduction to Deep Learning

Examples from High Energy Physics

Sofia Vallecorsa

26/07/2021
1



Intelligence .. or the hability to:
* Learn from experience

« Extract semantics
 Model

* (Generalize

* Abstraction

* Meta-learning
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Outline

Motivation: Deep Learning in High Energy Physics
Introduction & Basic Concepts

Example architectures and applications in HEP
Convolutional Neural Networks
Recurrent Neural Networks
Graph Neural Networks
Generative Models
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Big Data at the LHC

Experiments (detectors & physics data)
330 PB of collisions data stored by end 2018

Accelerators infrastructure

9600 magnets for beam control
1232 superconducting dipoles for bending

1600 A

Computing infrastructure

LHC data is multi-structured, hybrid

800 -

THSO06 *

Next generation colliders will require larger, highly granular

detectors that will generate huge particle data rates O(100 TB/s)
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CPU seconds by Type

I Prompt Data
I Non-Prompt Data
BN LHC MC

B HL-LHC MC

BN Analysis

arXiv:1811.10309




Deep Learning in HEP

DL can recognize patterns in large complicated data sets
Better performances if applied directly to raw data

Re-cast physics problems as “DL problems”
Interpret detector output as images and apply techniques borrowed from computer vision
Interpret physics events as sentences and apply NLP techniques

Intense R&D activity

ROC for Electron vs. Pi+ Classifier

Adapt DL to HEP requirements Lo —————

In terms of model interpretability /

Results validation against classical methods |

Detailed systematics Zos B. Hooberman et

: n ” : & al. (NIPS 2017

Adopting "new” computing models ( )

Accelerators and dedicated hardware ’

HPC integration i —— cell-based nn (width=256, depth=4)

Cloud resources  fatur based bt (mexdeptn )

':::'g?;gnlab Big Data platforms - . . Bacl?g;found Efficigrt::y 0r4 S e



Applications in HEP (I1)

Classical Machine Learning has been used for many
years, mostly during the final steps of data analysis for
signal /background separation

Deep Learning is studied for many different applications

Raw data processing

Monitoring and Control Systems
- Analysis
Optimisation
Simulation
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Universal approximator

NN with a single hidden layer containing a finite number of non-linear
neurons approximate continuous functions to any desired degree of
accuracy.

Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Neural
Networks. 2. Pergamon Press. pp. 359-366.
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The need for depth

A single layer perceptron can categorize ‘linearly separable” patterns

Two classes classification: Exclusive OR is an example of a non
(OR function) (linearly separable) linearly separable pattern:
X s X
o X1 Xz Y
(X1,X2) 1
T 0 © 0 0 0 & @
o © 0 1 1
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=¥ CERN (tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
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The need for depth (ll)

Need a Multi-Layer architecture to solve the exclusive OR problem:
Two-stages approach

%1 CERN b (tutorial) http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
k= openia (images)http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
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Deep Neural Networks

“Deep learning allows computational models that are composed of multiple
processing layers to learn representations of data with multiple levels of abstraction.

Deep learning discovers intricate structure in large data sets by using the
backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the
representation in the previous layer...”

LeCun, Y., Bengio, Y. & Hinton, G. Deep
learning. Nature 521, 436—444 (2015).

<. CERN
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Increasing sizes

Number of transistors per CPU/GPU

1018 4 CPUs
GPUs
TPUs
1015 Nb. human synapses
)
10%2 + ®
E Nb. mouse synapses
g 8
P 100
Q2
=
Ag_,_.
...,.=
106 - A
Nb. fruit fly synapses e® @° ® _
e e
500 o
10° - e
1960 1970 1980 1990 2000 2010 2020

(Wikipedia “Transistor count™)

Fleuret, Deep Learning Course: https://fleuret.org/dlc
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Petaflogs/s-day (Training)

80 1
Inception-v3 ‘
ResNet-101
75 ResNet—SO“ VGG-16 VGGf19
. ResNet-34
X 70 a ResNet-18
g GoogLeNet
5
S 65 4
©
g @ Bn-NIN
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BN-AlexNet
55 ' AlexNet
50 . : . v v . . v
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Operations [G-Ops]
(Canziani et al., 2016)

AlexNet to AlphaGo Zero: A 300,000x increase in compute

4
10 500MWh
@ AlphaGoZero =
103 1.7M car km
@ AlphaZero ~
) 120 kCHF
10° A ® Neural Machine Translation
® Neural Architecture Search
10! A = @ TI7 Dota 1vl
Xception
100 .
VGG o DeeﬁSpeechZ
10-1 4 @ Seq25eq ® ResNets
GTX 1080
10-2 ® GoogleNet for a day
® AlexNet @ Visualizing and Understanding Conv Nets 3
@ Dropout 5 kWh
10—3 -
107+
e DQN
103 T T T T T T T
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Year 11

(Radford, 2018)



More than just a deeper NN

Y. LeCun

What is Deep Learning?

P Definition: Deep Learning is building a system by
assembling parameterized modules into a (possibly
dynamic) computation graph, and training it to perform a
task by optimizing the parameters using a gradient-based

method.

programs: differentiable programming

» Output may be computed through complex (non feed-forward)
process, e.g. by minimizing some energy function: relaxation,
constraint satisfaction, structured prediction

» Learning paradigms and objective functions are up to the
designer: supervised, reinforced, self-supervised/unsupervised,
classification, prediction, reconstruction

» Note: the limitations of Supervised Learning are sometimes
mistakenly seen as intrinsic limitations of DL

. AAAI 20 keynotes Turing Award Winners (Geoff Hinton Yann Le Cunn, Yoshua Bengio):
="1. CERN
%, openlab https://www.youtube.com/watch?v=UX80ubxsY8w 12



openAl GTP-3

Generative Pretrained Transformer-style
autoregressive model
175 billion parameters

Previously largest model was Microsoft's Turing NLG,

with 17 billion parameters (Feb. 2020)

A generative model: learns a probabilty
distribution from a data set and generate a new
set belonging to the same distribution

Create realistic texts

Can do other tasks (translation, question-answering,
etc..)

Trained with large Internet data sets (bias?)
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https://arxiv.org/pdf/2005.14165.pdf

Text fragments:
https://arr.am/2020/07/09/gpt-3-an-ai-
thats-eerily-good-at-writing-almost-
anything/

'ucy

.. of Neil Gaiman & Dave McKear&] in the Walls.

https://vimeo.com/507801358



How do we train DL

« Algorithms improvements
« Back-propagation, Auto
Differentiation

« Large amount of data
(labelled data for
supervised learning)

« Computing power
* Highly parallel hardware

 Dedicated accelerators
(GPUs, Google TPUs,
AWS INF1, Graphcore..)

 Cloud and HPC resources
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Frequency of Word or Phrase

Image from “Deep Learning”, |. GoodFellow, Y. Bengio, A.
Courville , MIT press book

0.000250

0.000200 H

cybernetics

5 g - - - .
(connectionism + neural networks) ~

0.000150

0.000100

0.000050

0.000000
1940

1950 1960 1970 1980 1990 2000

Year

Different approaches to training:

Unsupervised pre-training
Transfer learning and fine tuning
Few-shot learning

Meta-learning 14



Vanishing gradients

Activation Functions -
Small gradients slow down N B R
stochastic grad|ent descent. " _________________ ________________ _________________ _________________
Limits ability to learn T
Gradients for layers far from the S TR W28 N O T
output vanish to zero. g
s +e*
tanh(x)
100 T T T T T T I -3 ~l2 ~Il 6 1 ‘2 3
—Layer 1 R . i : ;
—Layer 2 * Vanishing gradient problem * Rectified Linear Unit (ReLU)
—Layer 3 — Derivative of sigmoid: — ReLU(x) = max {0, x}
50F —1.; 4| — Derivative 1s constant!
o 9909 _ ()1 - o))
vLayer S ox dReLU(x) | 1 when x>0
— Nearly 0 when x 1s far from 0! dx 0  otherwise
0 . , s - . i — Can make gradient descent hard! — ReLU gradient doesn’t vanish
-0.2 -0.15 -0.1 -0.0 0 0.05 0.1 0.15 0.2
Backpropagated gradients
Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
=0
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Accelerating the training process

Introducing techniques to parallelise training

« Data parallelism

Compute gradients on several batches
independently

Update the model synchronously or
asynchronously
 Model Parallelism, Hybrid techniques

« Use reduced precision representation (INT6,
BF16, ...)

« Extreme parallelism using combined
strategies and SGD algorithm optimisation
 DeepSpeed and ZeRO-2 on Microsoft Azure
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GPUO ! GPU 8

GPU4 ' GPU12 | 4 GPU20

-
Pipeline Parallel
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https://www.microsoft.com/en-us/research/blog/deepspeed-

extreme-scale-model-training-for-everyone/
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158 000 nodes:
Fugako System @RIKEN, Japan » 48-core Arm 8.2-A

Computing
resources

4,356 nodes:

Summit @Oak Ridge, USA » 2x 22-core IBM Power9 CPUs
6 NVIDIA Tesla V100 GPUs.



Transfer learning, pre-training, fine-tuning

use in new one”?

U-Net
“Transfer learning and domain adaptation refer to the situation ;;,g;;-»lﬂl- »I_IH - Ot
where what has been learned in one setting ... is exploited to / 5
improve generalization in another setting” ! N
Deep Learning, 2016. I-I[ >I_I_
Transferring learned knowledge to E.. :
Slmllar taSk I|:I/— I\]I‘ [ convolutional ayer
. 5. I:] Activation .function
How much of the pre-trained model to “H_.'H” _:m;a,,,:m

CNN features are more generic in early
layers and more dataset-specific in later
layers

Can be used to train large models

Ex. Extraction of flood water extent
from satellite images using U-Net
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Nemni, Edoardo, et al., Remote Sensing 12.16 (2020): 2532.
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Counting shelters in refugee camps

CERN openlab and UNOSAT collaboration

(UN Operational Satellite Applications Centre)

=
Retrain &

encode point data
cleverly

Detectron Framework (FacebookAl) Unosat Adapted model

Transfer learning from RCNN model
Average precision is 82%

Speedup is x200 wrt (human) expert
processing

] B *
%.& openlab B Human M Neural Net

https://indico.cern.ch/event/727274/contributions/3100369/
A & & 2B O & . 5 O Shh. &>y o




Example Architectures
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layer m-| hidden layer m

wi. 0O

Convolutional Neural Networks

w0 | ‘wro

o

Exploit spatially-local
correlation

Enforce local connectivity
pattern between neurons of CVPR 2012 tutorial
adjacent layers

Increasing level of
abstraction

Initial layers learn simple
features (edges and color
gradients)

Output dense layers combine
high level features and
produce predictions.
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LeNet

%m l LeNet 5 | gesearcw

answer: 0

St

/-layers CNN to recognise hand-written
numbers on checks
digitized in 32x32 pixel greyscale input
Images.

to process higher resolution images need
larger and more convolutional layers ” /
http://yann.lecun.com

availability of computing resources! : exdb/lenet/index.htmi
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\.s
Dl
A
oy
'Y
"
&
-
)
dJ

i

Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps  (C2) 6 feature maps

| convolution layer I sub-sampling layer l convolution layer I sub-sampling layer I fully connected MLP i
=T, CERN

" openlab LeCun et al.,"1998
AR 2 2 2 O B h. &5 & hhh B & D OO DB A B G 2 o




ILVRC challenge

Imagenet: >14 M images with 20k classes

ImageNet Large Scale Visual Recognition
Challenge started in 2010 with 100 classes
(1000 classes in 2017)

152 layers
A
\
\
\
\
\
\
‘ : 11.7
22 layers _ 19 Iayers
\ 6.7

3 S7 I_ i I 8 Iayers 8 layers shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
3 ResNet ~ GoogleNet VGG AlexNet

ImageNet Large Scale Visual Recognition Challenge results

100%
wrong
In 2017 29/38
com petito I's got better
than human score
75 T
In the competition’s first year
— teams had varying success.
Every team got at least 25%
wrong.
In 2012, the team to first use
deep learning was the only
50 team to get their error rate
below 25%.
The following year
nearly every team got
25% or fewer wrong.
(¢}
25 °
In 2017, 29 of 38
teams got less than
5 5% wrong.
=]
Human performance |
~
perfect
10 il 12 13 14 15 16 17



CN N app|ications arxiv:1712.04837

Multiple tasks:

Image analysis,
segmentation

Object detection and
pattern recognition

Different fields:

Science, medicine, Earth
Observation

=% CERN
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F. Rehm, vCHEP2021

GANSs for detector simulation

Monte Carlo simulation is extremely demanding in terms of
computing resources

Train a Deep Generative Model instead S —
Particle x=25

Detector output as images: read-out channels become pixels

Train a Generative Adversarial Network: a pair of networks in a min- Pixelized 3D image

max game y
g

)Gey, [
" e)I(ample J[: 20 10~

L | it s ‘ T 15
Real/Fake o ‘ ad . J |

Real data &

y [cells]

Discriminator ug I

—

. Fake 1
Noise = EECENEICICIEN . 1 i
l l

: |

ion 1

___________ 1 Backpropagation |




F. Rehm, vCHEP2021

The 3DGAN prototype

— Geant4
— Conv3D
—— Conv2D

3D convolutional layers are computationally expensive 5 N e N o

Reproduce a 3D volume using 2D convolutions b = T ------------------ ~~~~~~~~~~~~~~~ ------------------
2.1x speed-up while maintaining accuracy SEE """"""""" """"""""" “““““““““

Generator: 2.15M parameters 7 ‘. o v, .. ™, . - .................. .................. .......... l ..... ..................

1
, — True / Fake Cell gr?ergy depo1sition Ge\}0
f .' —> dlassification
p— / Dense output 500
Layer
> 9||
\ Ol AUX —— Gean4

el - Dense .' (primary 400
A ; Layer energy) 2 Conv3D
Input Image\ —>  Convolu tiona ' —> Dense ay o
eoaszn) VI .’ (R . (gxg)’B}ck“ o Concatenate o Layer  OUPd D 300{ —— Conv2D
Transpose (25x25x25) Transpose (27x9x9) Flatten (1) 2
| '''''' T e (2187) ECAL o 200
..................................... > (sum of pixels) 3
........... output 100 -
Conv2D LeakyRel U + BatchNorm + Dropout(0.2)
A il A 1 A 1 A4 )| A j| Ang g <o 0 -
Q
AN AN AN BN AN | (N
64(8,8) 64 (6.6) 2 9(33 I 29 0.000 -
8 : (5,5) 32(4,4) 32 (3,3) Q, ) ol =
ot g Same Valid- Valid- Valid- Valid- Valid- S| -0.0251, . .
5 Op Padding Padding Padding Padding Padding Padding 3

0 100 2(l)0 3(I)0 460 500
electron engergy [GeV]
A 2 O O B O h. &5 O G &S @& S




arxiv: 1312.6199

CNN shortcomings

Spatial features:

Humans recognize objects under different view angles, scales or
lighting conditions

CNNs can handle translations but none of the above
Adversarial examples:

Minimal changes in the image can cause entirely different outcome

A proposed solution: construct a hierarchical
representation based on instantiations of specific
types of entities

match it with already learned patterns and
relationships stored in the brain

(capsule networks)
4 S nlab Hinton, ICLR 2018
O 2 42 2. & & S S O G =»Y: o A & 5 2 A& &




Recurrent Neural Networks and LSTM

Recognize patterns in sequences of data

Preserve sequential information in hidden state
across multiple time steps
Input previously analised example together with the
current one

Long Short-Term Memory units, by Hochreiter
and Schmidhuber in mid 90s

Use analog gated cells to allow for data store,
reads writes operations.
element-wise multiplication by sigmoids, (differentiable)

=%, CERN
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Elman, 1990

DEORuGg)

omror LR

https://people.idsia.ch//~juergen/rnn.html
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Joanna Waczynska, vCHEP2021, Grid21

Network traffic o rediction @ CERN arxiv: 2107.02496
Compare CNN, LSTM and hybrid architectures —

Transfers from TRIUMF to TierO/Tierl

1 1e10 1e10 CNN A =4, b=1, f=8
T 2 TN
2 £ i
" d UWWMJ W\M a < 505 {H j J A‘)\
2 100 400500 700 , \)k ”‘mib\.‘; M[\r Uik e UAJ\J
ol I win (] ow | E ' 00 300 400 500 600
9 /\J W“me % \ 1e10 LSTM A=10, b=1, f=8
m =}
'5 0 ' \FM,\J W\Awm g L9 .‘—— wwwrﬁ q
0 100 300 400 = @ \R A J\
1e9 " o 0.5 ” At
3 ,
g° | A/MM ™ WWW kﬂm /VU\'\WWM M M i: % 0.0 ! ‘* M w’LJ I‘A} Jl’ »A AL M\M\'
@ 28 0 100 200 300 400 500 600 760
% 100 300 40(“;/Ww ﬂiw 6ooﬂ . 700 §° 10 CAN-LSTM &= 10, b=1.28, T=64
28 % M 10| )
500 I 4= " ' m |
- W\ﬁ + ol Wt | J | Aﬁ
| | !
0 JM (\VMWMMJM\/WW g c 0.0 ¢ \JI‘)A"\ vﬂ 7\ j\AJ\L‘N erJ ‘J AI[/\J '/\—«J ’Li Jl |
0 100 200 400 500 600 700 = Tt % %0 0 530 =
Conv-LSTM A= 10, b=1, f=8
7000 v 3 ) | e ~~.;.~ . onv-
c o
\K\_ﬁ R n 7“1
"5 100 200 300 400 500 600 700 g & 0> | L H K k | “ A\J\
T — A T
\/-/ t / % ll\ AN \,. .‘L. J\Ak JU J»./AIMJ ﬂhﬂul l\
Time window A 160 200 300 t 400 500 600 760

'I:..ﬁ' vpcCinav —_—



Murnane, Xiangyang, https://indico.cern.ch/event/852553/contributions/4062229/

Hidden layer Hidden layer

Graph Neural Networks S S R
A e

Full event embedding requires large graphs ( ~10° nodes) e A c A
Sparse matrix implementation
|dentify disjoint sub-graphs and distributed learning of large graphs

Structure data as a (directed) graph of connected hits
Connect plausibly-related hits using geometric constraints

Interaction GNN,
Battaglia, Advances in neural

information processing systems. v{‘ node features
k k vi." node features Attgntion GNN 2016. y - eikj edge features
V1 Uy eikj edge features arXiv:1710.10903 Ul: node features il 2 at iteration k
: . e;; edge score [0, 1]
at iteration k vf vé‘ atjiteration .
k k+1 _ k ..k _k
€01 €02 = ¢(vo;v2:eoz)

e(")‘2 = MLP([U(’)‘, vé‘])

— p(ok. ok ok
= ¢ (e, vy, o) vp*t = p(vy, Zeg; )

Message Passing
Kipf, ICLR 2017

et = MLP([(Ze(’)"'jvlc vE])



Murnane, Xiangyang, https://indico.cern.ch/event/852553/contributions/4062229/

une r /
G ra p h N e U ra I N EtWO rkS r?ttps://Ii_rﬁ:li-cl:-(l:.gern.ch/event/852553/contributions/4059542/
Next generation colliders will present
challenges to image-based methods (

Graphs can capture inherent sparsity
and relational structure ) e

. . High Gram;ivarity Calorimeter true edges
Can approximate geometry of the physics https://arxiv.org/abs/2003.11603
problem

50 501 Correct noise (E = 12.33)
False signal (E = 0.78)

False noise (E = 1.60) j
Correct signal (E = 837.91) K

Are a generalization of many other
machine learning techniques

40 40+

w
S

w

S

E.g. Message passing convolution
generalises CNN from flat to arbitrary
geometry

layer [arb]
layer [arb]

ise (E = 12.33)

/f False signal (E = 0.78)
False noise (E = 1.60)
Correct signal (E = 837.91)

. ]
:'l_ CERN -150 -100  -%0
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M. Rossi, vVCHEP2021

Raw data denoising with hybrid models

ProtoDUNE SP simulation, dunetpc v09_.10_00

GConV: https:/arxiv.org/abs/1907.08448 . Collection plane, ADC heatmap
: g 2750
L T,ga_, — 0> %Iﬂ@ hj!—)i)—;w 1004 “ ' & 2500
o [ | £ -
5x 3 5 :
M Vﬂﬂﬂﬂﬂﬂﬂl‘ sl — E w7 -
9x9 HHHZQH Aoy _: E oo o . | 1750
o == gy 11 gl g0 ke = | :
ROI block M ”Iﬂ l]l*ﬂ ”Iﬂ el | 1500
PREPROCESS BLOCKS ROI Block ‘
wo b : 1250
USCG Net https://arxiv.org/pdf/2009.01599.pdf L6
X+n XDN
. e Final Evaluation
‘;’c:)?ltime (vo%StESiL':j; s
Y USCG-Net 95 +1.57
Conv 3x3 (v08 trained)
! genn A2 14
BNorm
! cnn 2
ReLU
POOLING BLOCK Bt

Iy OPENIAU




Generative models

The problem:
Assume data sample follows py,i, distribution
Can we draw samples from distribution p.,.qe; SUCh that p;ogel = Pyata?

A well known solution:
Assume some form for p,,.4e (USing prior knowledge, parameterized by 0)
Find the maximum likelihood estimator

6* = arggnax Z |0g(pmode|(x; 9)) draw samples from Po-
xeD

Generative models don’t assume any prior form for
models

=¥ CERN Use Neural Networks instead 33
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Deep Generative Models

Deep models allow higher levels of abstractions and improve generalization wrt to
shallow models

Multiple applications in Simulation, Anomaly Detection, Data manipulation

encoder decoder
A variety of models:

Generative Adversarial Networks
Auto Encoders

Compression and decompression are data-specific,
lossy, learned automatically from examples

Used for data compression, dimensionality reduction
(PCA) and de-noising

Variational AEs learn the latent variable model

input

hidden
latent
hidden
output

X Pol(zlx) 2 Po(X|2) X

=%, CERN
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. . . 384
See Danilo Rezende tutorial on Deep Generative Models
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Real-time event selection

Only a minimal fraction of

1 ns 1 us 100 ms 1s
collider data can be stored | | | —>
and processed 40 MH 100 KHz 1 MB/event

Keep only the interesting . 9 - -
events ol ,“-\QQQ ];‘/\9/5 e, Offline
Sophisticated studies to v %,
optimise selection for
SpeCIfIC phySICS Processes We don’t know what unknown physics looks like!
4k Sobnlab 335



arXiv:1811.10276

Physics Mining as anomaly detection

Classical strategy uses very loose selection
1M Standard Model (“*known physics”) events per day

Train Variational Auto Encoders on known physics
Monte Carlo data
Real detector data

Train
-=»] NN (VAE)

Run it in real time and store only "anomalies”

O

=%). CERN
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Arxiv:1811.10276

Model-independent - Modeldep.  —— VAE

- Model dep. on a different model

selection

107

VAE as model-independent new physics
selection tool

=
o
o

Robust alternative solution

BSM efficiency
[
=

Create a dataset of anomalous events

1= 5
Probe large range of processes . 7 —— A-4l (Rewr = 26.9)

) . i i 10-5 —— LQ (Rewp = 3.9)
Might open new physics directions — hO-TT (Rgup = 3.6)

pesssnner’

—— h*>T1V (R@Wp = 3.2)

108 —6 —5 ) - - —1
10 0 10 10 10 10
SM efficiency

€.\, = 5.4:107° & 30 evts/day

=%, CERN
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Adversarial training for Anomaly Detection

= Features === L; === L; == logits = VAE

Aol LQ
Q 10°

,_.
<,
L

Variational AutoEncoder

-4

-
5}
o

BSM efficiency
BSM efficiency
=
o
M

._.
=
e

1075 4 10-5 4

(% B(G(2)))
Y. €[0,1]

108+ . ; - . 105 4y . . : -
10 10~° 10™* 1073 102 107! 10° 10 10~° 10™* 10~ 102 107! 10°
SM efficiency SM efficiency

h®> 1T h* >tV
10° = 10°

1071 4

BiGAN

(G(2),2)

& o
BSM efficiency

= =

o o

& 3

,_.
b
1

10-5 4

08 4y . . ! ! 1078 ey . ‘ ; .
10 10 107% 1073 1072 107! 10° 10 10 10™* 1073 1072 107' 10°
SM efficiency SM efficiency

Y2z € [0,1]
Yzz € [0,1]

(2, G(E(=)))

(2, B())

G0 s

4 S nlab arxiv: 2005.01598 38
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Comparing experimental data to theory

Simulation Measurement

[ Theory ] [ Nature ]

Detectors measure the results of : | : _
particle interactions with matter [ orarhative G0 ] ht [ P ]
e But we are interested in the O TS R R .7

[ Simulated Events ]‘ EWhat i doé { LHC Events ]

particle production processes

* Go back from experiments to
theory:

* Disentangle production process
from the experimental setup

* Bayesian problem p(x|y) = p(yzlgy(c;)p(x)




Inverting the experiment

Inverse problem: given observations y determine

underlying hidden parameters x

Use invertible networks

® Train on the forward processx 2> vy

®* Run backward y = x to get prediction

* Add latent variable z to compensate information

loss during forward process

v, 2] = f(x)

- x = [Ny, z) = g(y,2)
p(2)

arxiv:1808.04730
arxiv:2006.06685

uUsL

forward ( lation): x = ¥
_______________ >
-
y wv
< INN >
AR
i s i s o
inverse ( pling): [y.z] = x
Invertible Neural Network )

input

output

10!

2 jet excl.
""" Parton Truth
—— Parton ¢cINN
<= Detector Truth

7 80 85 % 95
My reco |GeV] 40



Attention mechanism as originally formulated in a
bi-directional LSTM Auto-Encoder

Atte nti onNn MmecC h an i SM https://arxiv.org/abs/1409.0473

Yo W

Focus on special region of input phase space

interpretation as a vector of importance weights oy T

Ex. soft attention as modules in a layer to
dynamically select vectors from the previous layer

Output is independent of the order of input
examples (set instead of sequences)

Attention mechanism applied to Higgs

Use relationships between different inputs (as classification: C. Reissel. ML4Jets 2021

graph representation).

3 0.48
Stacked self-attention layers at the base of - 10| 0
transformers (vaswani et al., Advances in Neural Information :§ 20 8:32
Processing Systems, 2017, 5998—-6008) %30- 8:%523
g 40} 0.06
Example transformers application in HEP: RN \/'0 ,»'o ,,)6 v'o 0-00

{:}Eﬁé‘mab https://iopscience.iop.org/article/10.1088/2632-2153/ac07f6/meta Predicted Higgs Dijet Index



Kendal, Gal, NIPS 2017,
https://papers.nips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Uncertainties

Aleatoric uncertainty captures noise inherent in the
observations.

Higher on object boundaries and for objects far from the
camera.

Cannot be reduced using more data, needs better
measurements

Epistemic uncertainty accounts for ignorance about

(a) Input Image (b) Ground Truth  (c) Semantic (d) Aleatoric (e) Epistemic

Wh|Ch model generated the data Segmentation Uncertainty Uncertainty
Higher for semantically and visually challenging pixels. the model fails to segment the footpath due to increased
It can be explained away given enough data. ep|StemiC UnCertalnty, but nOt a|eatOI’IC Uncertalnty

Introduce a prior distribution (Bayes statistics)

Learn uncertainty within the task.

the conditional distribution as a Normal distribution

Ex. Regression: model aleatoric uncertainty in the output by modelling @_, NN _,@_, N _,@

A

Find more details in: G.Louppe, Introduction to Deep Learning, @
https://glouppe.github.io/info8010-deep-learning/pdf/lec11.pdf 42
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Development directions

ML/DL have their origins in the studies on the human brain, but today DL doesn’t learn
like humans do.
Current research in DL tries to improve on this aspects

G. Hinton, Y. Le Cunn, Y. Bengio , AAAI 2020 keynotes, Turing Award Winners Event
https://www.youtube.com/watch?v=UX80ubxsY8w

New improvements will not be achieved by simply making models larger and larger

Alternative architectures and approaches to learning :
Attention mechanism
Self Supervised Learning: systems learn from raw data to label it.

Generalisation: capability to generalize to different data distributions (out-of-distribution
generalisation)

1. CERN
i, openlab 43



Thanks!
Sofia.Vallecorsa@cern.ch

https://openlab.cern/

=%). CERN
i, & openlab 44
AR 2 2 2 O B h. &5 & hhh B & D OO DB A B G 2 o


https://openlab.cern/

