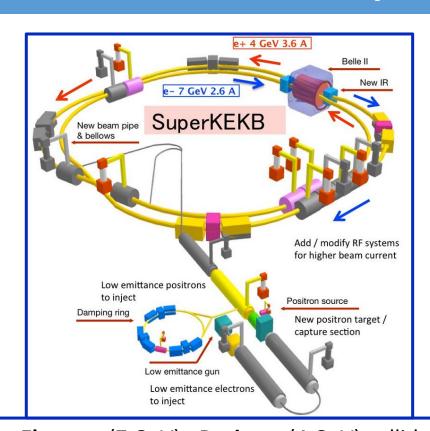
Tau physics prospects at Belle II

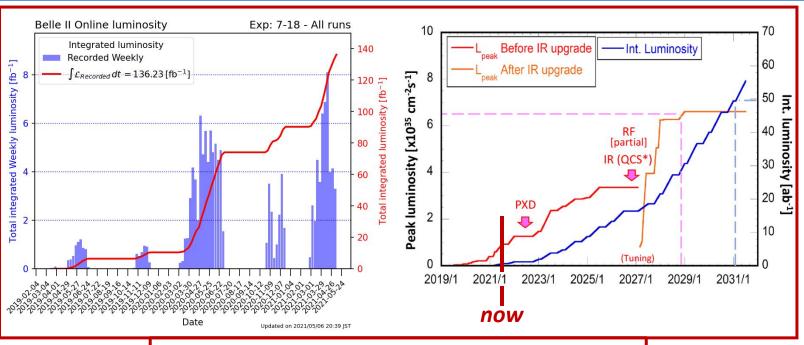
Güney Polat

CPPM Marseille

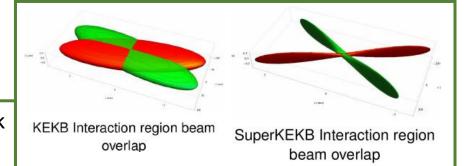
on behalf of the Belle II collaboration

Phenomenology 2021 Symposium - 24/05/2021



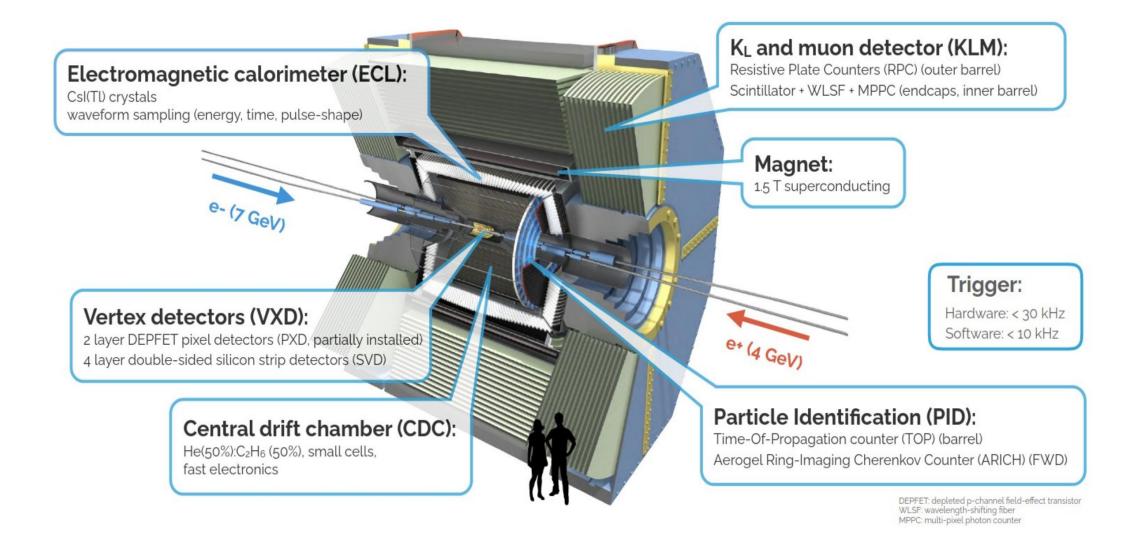


SuperKEKB and status of Belle II



Peak luminosity: 6·10³⁵ cm⁻² s⁻¹

Today: ~ 136 fb⁻¹ of data collected | Goal: **50 ab**⁻¹

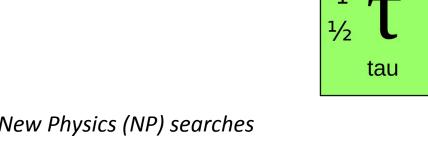

Electron (7 GeV) - Positron (4 GeV) collider. $e^+e^- \rightarrow \Upsilon(4S)[10.58 \text{ GeV}] \rightarrow B\overline{B} \ (\sigma = 1.1 \text{ nb})$ $e^+e^- \rightarrow \tau^+\tau^- \ (\sigma = 0.9 \text{ nb})$

Current **↗ 30x** KEKB peak Beam size **↘** Iuminosity

Belle II detector

Motivations for tau studies

1.777 GeV/c²


The large tau production cross section allows us to study tau physics with high precision, as a probe of new physics or a test of the standard model.

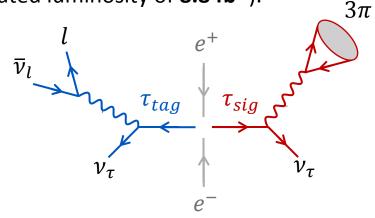
Tau studies at Belle II:

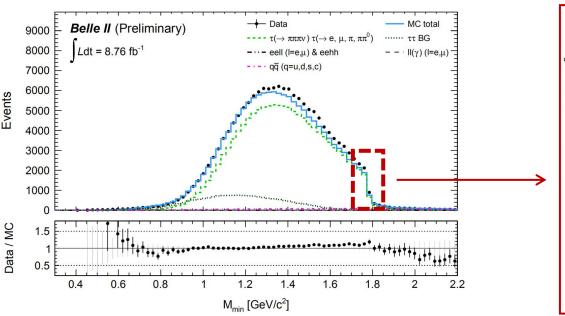
- Lepton flavour violating (LFV) decays: $\tau \rightarrow l\gamma$, lll, lhh, lV⁰...
- LFV decay with new particles: $\tau \rightarrow l + \alpha$,
- Tau electric dipole moment,
- CP violation: $\tau \rightarrow K_s \pi \nu$,
- Tau mass and lifetime measurements,
- Michel parameters determination,
- Search for second-class hadronic currents: $\tau \rightarrow \pi \eta \nu$,
- V_{us} and α_s determinations,

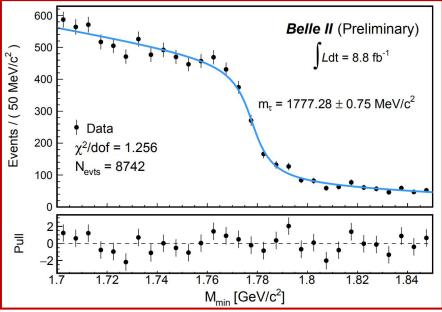
Motivations:

- LFV decays: testing predictions from SUSY, little Higgs models, leptoquark models, etc.,
- Tau mass: tests of leptonic universality depend on the tau mass value and its accuracy,

Precise test of the Standard Model (SM)


Tau mass measurement (Preliminary)




- Tau mass measurement analysis performed using Belle II early Phase 3 data (integrated luminosity of 8.8 fb⁻¹).
- $[\tau \rightarrow 3\pi \nu] + [\tau \rightarrow 1\text{-prong}]$ events are selected and the tau mass is measured following the pseudomass technique developed by the ARGUS collaboration:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le m_{\tau}$$

The tau mass is extracted by fitting the pseudomass to an empirical edge function.

Tau mass measurement (Preliminary)

PDG average \bigotimes 1776.86 \pm 0.12 MeV/c²

BES III (2014) \otimes 1776.91 \pm 0.12 \pm 0.13 MeV/c²

Belle (2007) $\times 1776.61 \pm 0.13 \pm 0.35 \text{ MeV/c}^2$

ARGUS (1992) \times 1776.3 \pm 2.4 \pm 1.4 MeV/c²

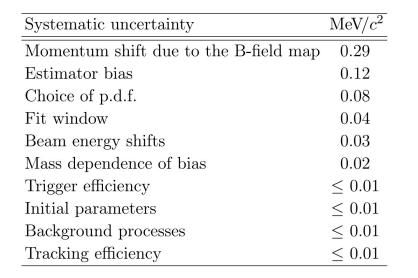
Current best fit by Belle (414 fb⁻¹): 1776.61 ± 0.13 ± 0.35 MeV

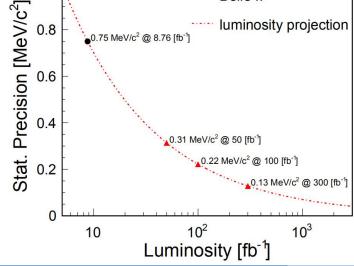
K. Belous et al, Phys. Rev. Lett. 99, 011801 (2007)

More precise measurement done by BES III near τ pair production threshold:

1776.91 ± 0.12 ± 0.13 MeV

M. Ablikim et al, Phys. Rev. D 90 012001 (2014)

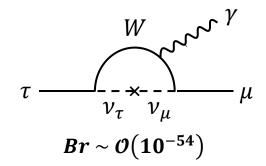

Preliminary result from Belle II early Phase 3 data:

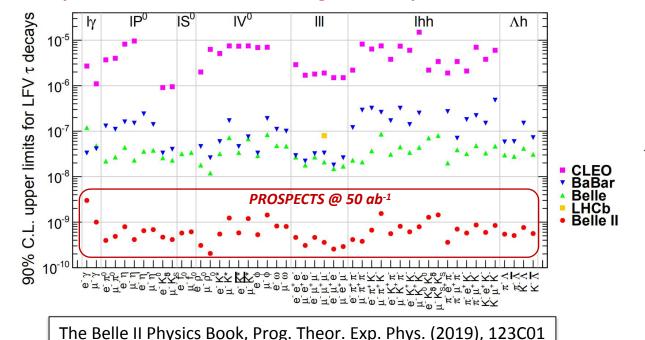

$$m_{\tau} = 1777.28 \pm 0.75 \pm 0.33 \text{ MeV}$$

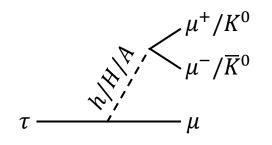
BELLE2-CONF-PH-2020-0

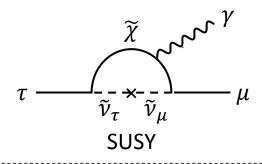
→ Consistent with previous measurements, improvable statistical systematic error similar to Belle.

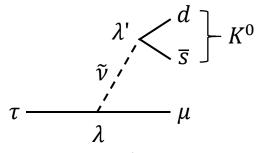
		• ***	Ų		
010	BaBar (2009) 1776.68 ± 0.12 ± 0.41 MeV/c ² Belle II (2020) 1777.28 ± 0.75 ± 0.33 MeV/c ²				
	lr r	₁		(1
uncertainty, 17	773 1774 1775	1776 17	777 1778	1779	1780
.,,		m_{τ} [M	leV/c²]		
1 - B	1 • Belle II				
0.8 0.8 0.75 MeV/c² @ 8.76 [fb¹]	luminosity projection				
0.6					
0.8 0.75 MeV/c² @ 8.76 [fb¹]	30.500.00000				




Tau lepton flavour violation

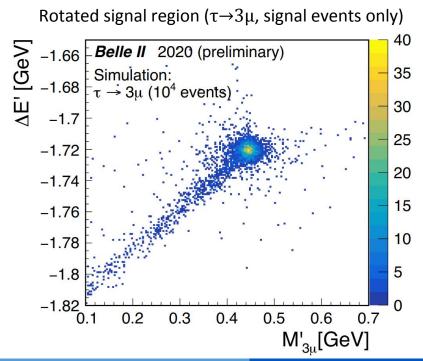

- Lepton flavour violation is heavily suppressed in the SM (extended with neutrino masses).
- Many NP models allow LFV at scales that can be probed by particle physics experiments.
- In tau physics, the "golden modes" are $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow 3\mu$, but a lot more are also studied (ly, lll, lhh, lV⁰...).

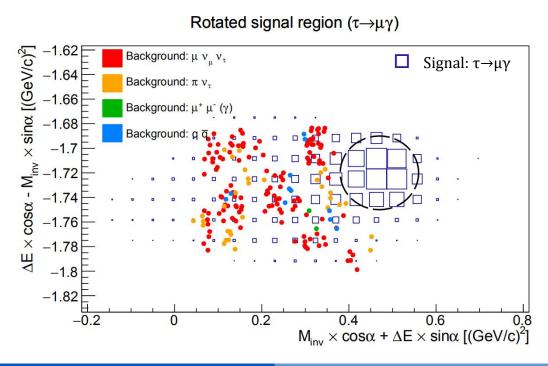

Improvement of 2 orders of magnitude expected for Belle II!



NP models: $Br \sim \mathcal{O}(10^{-10}) \cdot \mathcal{O}(10^{-7})$

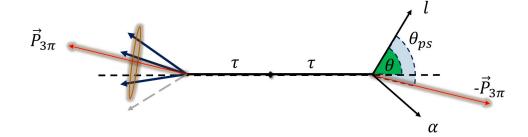
Higgs-mediation LFV



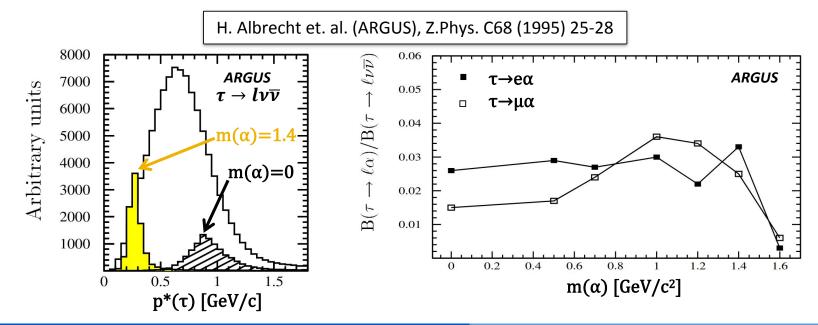

R-parity violation

Tau lepton flavour violation

- The signal is looked for within the M_{τ} - ΔE space ($\Delta E = E_{\tau} E_{beam}$), in an optimised region defined around the signal peak in simulation.
- Usually the signal region is rotated to get rid of the correlations: $\binom{M_{\tau}}{\Delta E'} = \binom{\cos\theta}{-\sin\theta} \cdot \frac{\sin\theta}{\cos\theta} \binom{M_{\tau}}{\Delta E}$
- Background is evaluated from side bands. Some channels require a more thorough background suppression strategy (e.g. $\tau \rightarrow \mu \gamma$ is much more contaminated than $\tau \rightarrow 3\mu$).



LFV decay $\tau \rightarrow l + \alpha$ (invisible)



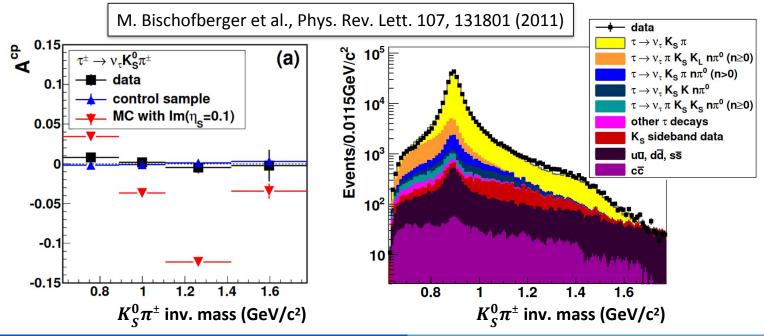
- Search for LFV two-body decay $\tau \to l + \alpha$, $l = e/\mu$ and α being an invisible particle (Goldstone boson in new physics models).
- The paired τ decays as $\tau \to 3\pi \nu$. Due to the missing energy from neutrino, we approximate: $E_{\tau} \approx E_{CMS}/2$, $\vec{p}_{\tau} \approx \vec{p}_{3\pi}$
- LFV decay manifests as a **peak in the momentum of the** τ **rest frame** against the $\tau \rightarrow l\nu\nu$ background.
- Full spectrum is fitted with (SM) and (SM+NP) expectations and respective likelihoods are compared.

- Latest results are from:
 - ARGUS (472 pb⁻¹)
 - MARK III (9.4 pb⁻¹)

Belle II is already competitive with respect to ARGUS.

Summary

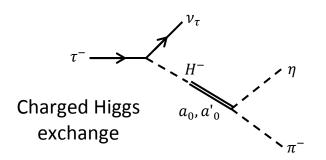
- The Belle II experiment is currently collecting data with a final goal of 50 ab⁻¹ by \sim 2031. $\rightarrow \sim 5 \times 10^{10} \, \tau$ pairs, much larger sample than in previous B-factories.
- This amount of data will enable researchers to perform analyses probing new physics or testing with high precision the parameters of the standard model with respect to τ particles.
- Some analyses are already progressing well:
 - Tau mass measurement: m_{τ} = 1777.28 ± 0.75 ± 0.33 MeV (with a small set of data),
 - Lepton flavour violating decays: $\tau \rightarrow \mu \gamma \& \tau \rightarrow 3\mu$, $\tau \rightarrow l + \alpha$...
- Many other analyses are ongoing or in preparation (electric dipole moment, CP violation, hadronic currents...).

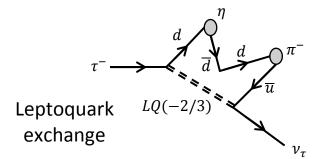

Backup

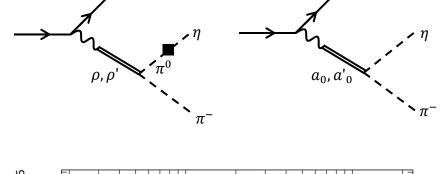
CP violation in $\tau \rightarrow K_s \pi \nu$

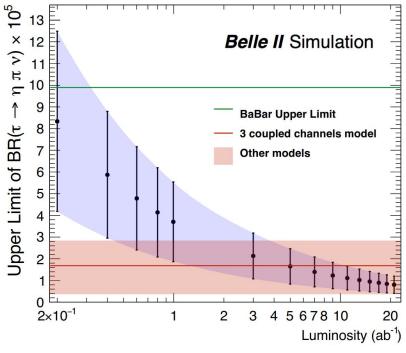
- A **decay rate asymmetry** is expected in $\tau \rightarrow K_s \pi \nu$ according to the SM because the K_s is subject to CP violation:
- $\mathcal{A}_{\tau} = \frac{\Gamma(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) \Gamma(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}) + \Gamma(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau})}$
- The SM predicts: $\mathcal{A}_{\tau}^{SM} \approx (0.36 \pm 0.01)\%$ I. I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005)
- ... while BaBar has measured: $\mathcal{A}_{\tau}^{BaBar} = (-0.36 \pm 0.23 \pm 0.11)\%$ J. P. Lees et al., Phys. Rev. D 85, 031102 (2012)
 - \rightarrow **2.8** σ discrepancy w.r.t. the SM.

A measurement of the decay rate asymmetry is a priority for Belle II, which should improve the precision by a factor ~ 8 at 50 ab⁻¹.




Second-class hadronic currents: $\tau \rightarrow \pi \eta \nu$




• **Second-class hadronic currents** violate G-parity, still present in the SM because of the charge and mass differences between *up* and *down* quarks, but heavily suppressed.

- $\tau \rightarrow \pi \eta \nu$ violates G-parity, therefore it is a potential probe for new physics.
- The SM predicts: ${\rm Br}(au o \pi \eta
 u) \sim 10^{-5}$ A. Pich, Phys. Lett. B 196, 561 (1987)
- Upper limits from two previous experiments:
 - BaBar (470 fb⁻¹): $\text{Br}(\tau \to \pi \eta \nu) < 9.9 \times 10^{-5}$ K. Hayasaka, PoS EPS-HEP2009, 374 (2009)
 - Belle (670 fb⁻¹): $Br(\tau \to \pi \eta \nu) < 7.3 \times 10^{-5}$ P. del Amo Sanchez et al., Phys. Rev. D 83, 032002 (2011)

Other topics

Michel parameters:

- 4 parameters ρ , η , ξ and δ (combinations of coupling constants in four-lepton point interaction Lagrangian), experimentally accessible in decay $\tau \rightarrow l\nu_l\nu_\tau$.
- Belle II expected to improve statistical uncertainties at 50 ab⁻¹ by one order of magnitude w.r.t. Belle ($10^{-3} \rightarrow 10^{-4}$).

Electric and magnetic dipole moments of the τ :

- Evaluating some observables that are proportional to the EDM and getting maximal sensitivity by combining results from multiple τ decay modes. Belle II expected to gain in precision by a factor 40: $|\text{Re, Im}(d_{\tau})| < 10^{-18} 10^{-19}$.
- g-2 can be evaluated similarly but sensitivity is expected to be worse than that of the τ EDM.

Measurements of V_{us} and α_s :

• Determinations of the CKM matrix element and the strong coupling constant at the tau mass (+ running to the Z mass) with the help of inclusive hadronic τ decays and observable: $R_{\tau} = \frac{\Gamma(\tau^- \to \nu_{\tau} \, \text{hadrons}^-(\gamma))}{\Gamma(\tau^- \to \nu_{\tau} \, \text{e}^- \overline{\nu}_{\rho}(\gamma))}$

More details in:

The Belle II Physics Book, Prog. Theor. Exp. Phys. (2019), 123C01