HIDDev Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Invisible Decays of a Dark Photon at Bele

Invisibles 2021 Miho Wakai, University of British Columbia on behalf of the Belle II Collaboration

June 2nd, 2021

Dark Photon at Belle II What?

Dark sector mediator which couples to SM photon

How?

- Belle II looks into $e^+e^- \rightarrow \gamma_{ISR} A'; A' \rightarrow \chi\chi$
- Final state: Single γ + Missing Energy
- $m_{A'}^2 = 4E_{heam}^* (E_{heam}^* E_{\gamma_{ISR}}^*)$; Easy to find A' mass
- Newly designed trigger allows better sensitivity

Overview of search Background Studies

- When single photon has $E^* \sim$ 5 GeV, dominant background: $e^+e^- \rightarrow \gamma\gamma$, missing 1 γ
- How likely are we to miss a γ in our detector?
- Main detectors: Electromagnetic Calorimeter (ECL) and K-Long Muon (KLM) Detector

- "high leakage γ "

Working with $e^+e^- \rightarrow \gamma\gamma$ Background Monte Carlo (MC) and Data discrepancy

- Next stage is to understand the background uncertainty on data (pre-blind process)
- Currently we see many more high leakage photons in data than in MC
- Gaps between crystals may be larger in data than MC
- Currently trying to quantify background in data by scaling MC

Thank you for listening!

Questions?

Backup Slides

Searches in Other Experiments • Direct competitor: BaBar Phys. Rev. Lett.119 (2017) 13, 131804

• Complementary search: NA64 https://arxiv.org/abs/1906.00176

Sensitivity

Invisibles 2021, Miho Wakai

Trigger Efficiency

Electromagnetic Calorimeter Geometry

Event Selection of $e^+e^- \rightarrow \gamma\gamma$

- use 2 most energetic photons per event
- $4.5 < E_0^* < 7.0$ GeV
- $0.1 < E_1^* < 7.0$ GeV
- no charged tracks with $p_t > 0.2$ GeV/c coming near from IP
- $-\Delta \phi^* > 178^\circ$
- 178° < theta sum* < 182°
- Using tag and probe method for both gg events:
 - Tag: E* > 4.5 GeV
 - Probe: Must be in barrel (Theta ID 14 to 57)
- Event can contain two tags/two probes

Detector Efficiency

E_{leak} < 0.35 GeV (very little leakage)

Phi ID

% of ECL photons found in KLM, Eleak < 0.35 GeV

Belle II Simulation Preliminary

Detector Efficiency

E_{leak} > 2.8 GeV (very high leakage)

*Each bin is a crystal

Belle II Simulation Preliminary

Invisibles 2021, Miho Wakai

