

Semileptonic b→c and b→u decays at LHCb

Ulrik Egede
On behalf of the LHCb collaboration

5 July 2021

LHCb collision region

• Producing b-hadrons in p-p collisions is very different to a B-factory

LHCb – the good bits

- All b-hadrons produced (B⁺, B⁰, Λ_b, B_s, B_c, Σ_b, Ξ_b, ...)
- Rates are huge, for 2022-2030 (Upgrade I) about 600 kHz in detector (factor 300 above Super KEKB design)
- Vertex separation is fantastic

LHCb – the challenges

- The large number of π^0 's produced at the PV
- The rates are huge, so trigger has to be very selective
- Flavour tagging is hard as there are many other particles
- With O(100) tracks in each event which have nothing to do with the b-hadron decay, combinatorial background is a-priori huge

Kill the background

Detached vertices are tool #1

The typical b-hadron momentum is around 50 GeV, so γ factor of 10

 The b-hadron will fly O(cm) before it decays

We have O(100μm) resolution

Kill the background

- Tool #2 is pointing
- The decay products of a b-hadron decay should have its momentum vector aligned with vector from primary to secondary vertex

Kill the background

- Tool #3 is mass
- The long length of the LHCb spectrometer gives excellent mass resolution
- Reduces combinatorial background under peak
- Allows for clean separation of B⁰ and B⁰_s

Combinatorial background

 For fully reconstructed final states, the background levels in most LHCb analyses are really low

Combinatorial background

 When secondary vertex is no longer there, combinatorial background can still be controlled

Semileptonic decays

- With a semileptonic decay of the type h_b→hµv, we (partially) lose two of the three major tools for background reduction as missing neutrino means that
 - we no longer have the momentum of daughters pointing to the primary vertex
 - the 4-vectors of the daughters do not add up to the b-hadron mass

- All is not lost as we can combine the pointing and the mass into a single constraint called the corrected mass
 - Find the transverse momentum p_⊥ required to restore the pointing

• Consider the rest frame of the Λ_b

$$\mathcal{M}_{h} = E_{pm} + E_{v}$$

$$= \sqrt{m_{pm}^{2} + \rho_{\perp}^{2} + \rho_{||}^{2}} + \sqrt{\rho_{\perp}^{2} + \rho_{||}^{2}}$$

Now ignore the unknown p_{||}

$$m_{corr} = \sqrt{m_{p\mu}^2 + p_{\perp}^2} + p_{\perp}$$

Ignoring resolution effects, we always have m_{corr}<m_{∧b}

The corrected mass is not restoring the mass resolution but still gives a

peak

Here illustrated in B_s→Kµv simulation

$$m_{corr} = \sqrt{m_{p_{\mu}}^2 + p_{\perp}^2} + p_{\perp}$$

Width of corrected mass peak is affected by primary and secondary vertex reconstructions

$$\sigma_{m_{\text{corr}}}^2 = \sum_{i=1}^3 \sum_{j=1}^3 \frac{\partial m_{\text{corr}}}{\partial x_{\text{PV}}^i} \frac{\partial m_{\text{corr}}}{\partial x_{\text{PV}}^j} M_{ij} + \sum_{n=1}^3 \sum_{m=1}^3 \frac{\partial m_{\text{corr}}}{\partial k^m} \frac{\partial m_{\text{corr}}}{\partial k^n} J_{mn}$$
3x3 error matrix of PV

 Width of corrected mass peak is affected by primary and secondary vertex reconstructions

$$\sigma_{m_{\text{corr}}}^{2} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial m_{\text{corr}}}{\partial x_{\text{PV}}^{i}} \frac{\partial m_{\text{corr}}}{\partial x_{\text{PV}}^{j}} M_{ij} + \sum_{n=1}^{3} \sum_{m=1}^{3} \frac{\partial m_{\text{corr}}}{\partial k^{m}} \frac{\partial m_{\text{corr}}}{\partial k^{n}} J_{mn}$$

- Having a signal candidate, we would now like to get the kinematics of the decay
- By now assuming the b-hadron mass, we can calculate p_{\parallel}
- 2-fold ambiguity corresponding to if neutrino goes forwards or backwards in b-hadron rest frame

- We use two equivalent variables
 - Recoil energy w energy of hadronic system in rest frame
 - $-\underline{q}^2$ squared mass of $v\mu$ lepton system

- Unphysical solutions
- The quadratic equation sometimes have two imaginary solutions
 - These correspond to $m_{corr} > m_{\Lambda b}$
 - We can either discard them as unphysical see $\Lambda_b \rightarrow \Lambda_c \mu \nu$ example
 - ... or keep them to understand resolution effects

- With two solutions, there are different strategies for going ahead
- Both solutions can be kept in analysis.
 - Great care has to taken with uncertainties as we now get weighted events
 - Might not be optimal
- Always pick the one with smallest or largest q^2
 - This can be the optimal way to reduce systematic uncertainties
- Pick the best one
 - The two solutions result in different b-hadron momentum.
 - As we know b-hadron spectrum and b lifetime, one solution will be more probable

Recover the lost constraint through cascade decays

- Most of us are familiar with using $D^{*+} \rightarrow D^{0}\pi^{+}_{s}$ decays as a way to reduce background in charm decays and to recover kinematic constraint
- Same trick can be played for b-hadrons but works less well

Analyses using the tools at LHCb

- $\Lambda_b \rightarrow p\mu v$ and $\Lambda_b \rightarrow \Lambda_c \mu v$ measured to determine $|V_{ub}|/|V_{cb}|$
 - Want to identify candidates with high q² (low recoil) where Lattice QCD predictions of form factors are the best
 - Pick only events where the lowest q^2 solution is above 15 GeV²

Analyses using the tools at LHCb

- Spectra of $B^0_s \rightarrow D_s^* \mu v$
 - Machine learning method used to pick correct solution 70% of time
 - Spectra can be unfolded but a remaining correlation between bins is left

Analyses using the tools at LHCb

- A search has also been performed for the rare decay $B^+ \rightarrow \mu\mu\mu\nu$
 - The use of muon identification, corrected mass and the uncertainty on the corrected mass essential to reduce background

Achieves branching fraction limit of 1.8 x 10⁻⁸

What if missing particle is massive

- If we have a single missing particle that is massive, assumption for m_{corr} breaks down
 - Separation less powerful
- The use of cascade decays now becomes essential
 - Idea explored in looking for dark matter candidate
- Method not exploited yet

Conclusion

- Semileptonic b→c and b→u decays can be cleanly reconstructed in LHCb with kinematics well determined
- The corrected mass variable is essential for high quality separation of signal and background
- Cascade decays can be utilised but comes at a price of lower efficiency and fake solutions
- Rare decays are possible to search for as well