Semi-leptonic B decays at Belle II

Racha Cheaib DESY July 5th, 2021

- A *B* meson factory in Tsukuba, Japan based on the SuperKEKB accelerator complex.
- Upgrade of its predecessor Belle and KEKB.

- a (Super) B-factory (~1.1 x $10^9 BB$ pairs per ab⁻¹)
- a (Super) charm factory (~1.3 x 10⁹ $c\bar{c}$ pairs per ab⁻¹)

Belle II experiment

Current Belle II dataset

Many results presented today with 34.6 or 68.2 fb⁻¹ of reprocessed data.

- Semi-leptonic decays involve neutrinos, which is inferred as missing energy in our detector.
- Inclusive and exclusive $b \to u\ell\nu$ and $b \to c\ell\nu$ transitions are crucial for the determination of the CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$.

• Lepton Flavour Violation studies are an important probe for physics beyond the Standard Model.

Semi-leptonic decays

Full Event Interpretation

- Implement tagging, where one *B* referred to as B_{tag} is exclusively reconstructed using hadronic or semi-leptonic modes.
- The remaining tracks and clusters are then attributed to the signal *B*, $B_{\rm sig}$, on which the search or measurement of a particular decay is done.
- Any missing energy is attributed to the B_{sig} .

Infer momentum and direction of signal B candidate:

$$p_{Bsig} \equiv (E_{Bsig}, \vec{p}_{Bsig}) = \left(\frac{m_{\Upsilon(4S)}}{2}\right)$$

Ideal for decays with neutrinos, missing energy signatures!

Full Event Interpretation

Candidates / (0.002 GeV/c²) 90 80 11 57

0.4

0.2

Multivariate algorithm with hierarchal approach

- candidate.
- signal probability cut.

Hadronic FEI calibration

- Calibration is required to account for data MC differences in the FEI algorithm.
- compared between data and MC.

Require B_{tag} candidate with $M_{bc} > 5.27 \text{ GeV/c}^2$ and $-0.15 \le \Delta E \le 0.1$ GeV.

Look for signal side lepton with momentum (in B_{sig} rest frame) >1 GeV/c.

Using a signal side decay with a large branching fraction $B \to X \ell \nu$ (~20%), the efficiency of the FEI is

 $B \to X_c \ell \nu$: main channel for inclusive $|V_{cb}|$ determination.

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Heavy Quark expansion of decay rate with non-perturbative matrix elements and perturbative coefficients.
- Non-perturbative parameters determined using the lepton energy or hadronic mass moments of $B \rightarrow X_c \ell \nu$
- $B \to D^{(*)} \ell \nu$: main channel for exclusive $|V_{cb}|$ determination:
 - Clean experimental modes with low background.
 - Decay rate requires input on the form factor parametrization.

 $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$ (inclusive) PDG value $|V_{cb}| = (39.5 \pm 0.9) \times 10^{-3}$ (exclusive) PDG value

 $h \rightarrow c \ell \nu$

Tagged Exclusive B^0

- Clean mode for testing FEI calibration and Belle II analysis chain.
- Identify B_{tag} candidate with M_{bc} >5.27 GeV/c² $-0.15 < \Delta E < 0.1$ and FEI signal probability >0.001.
- Reconstruct D⁰ meson from oppositely charged tracks and form D*+ with 0.143 < ΔM < 0.148 GeV/c²
- Identify high momentum lepton with $p_1^* > 1.0$ GeV and determine M_{miss}^2

$$m_{\rm miss}^2 = \left(p_{e^+ e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell} \right)^2$$

Extract signal yield using a fit to signal + background:

 $\mathscr{B}(\bar{B}^0 \to D^{*+}\ell\nu_{\ell}) = (4.51 \pm 0.41_{stat} \pm 0.27_{syst} \pm 0.45_{\pi_s})\%$

In agreement with world average $\mathscr{B}(\bar{B}^0 \to D^{*+} \ell \nu_{\ell}) = (5.05 \pm 0.14) \%$

Extract signal yield with a fit to $cos\theta_{BY}$, where $Y = D * \ell$.

Flagship decay for exclusive V_{cb} measurements!

Reconstruct $D^0 \to K^- \pi^+$. Identify lepton using PID algorithms. Suppress $e^+e^- \rightarrow q\bar{q}$ events using p_{D*}<2.4 GeV/c and R₂ <0.3

Apply D* veto by combining D candidates with: π_s^+ and exclude $\Delta m \in [0.144, 0.148]$ GeV/c² γ, π_s^0 and exclude $\Delta m \in [0.141, 0.146]$ GeV/c²

 $B^- \to D^0 \ell \nu$

First measurement at Belle II !

- Heavy Quark Expansion (HQE) in powers of $1/m_h$
- Determine parameters of HQE using moments of the differential rate.

$$\langle E^n \rangle_{\text{cut}} = \frac{\int_{\boldsymbol{E}_{\ell} > \boldsymbol{E}_{\text{cut}}} d\boldsymbol{E}_{\ell} \, \boldsymbol{E}_{\ell}^n \, \frac{d\Gamma}{d\boldsymbol{E}_{\ell}}}{\int_{\boldsymbol{E}_{\ell} > \boldsymbol{E}_{\text{cut}}} d\boldsymbol{E}_{\ell} \, \frac{d\Gamma}{d\boldsymbol{E}_{\ell}}} \qquad \langle (M_X^2)^n \rangle_{\text{cut}} = \frac{2\pi}{2\pi} \mu_{\boldsymbol{K}}^2, \mu_{\boldsymbol{G}}^2, \rho_{\boldsymbol{D}}^3$$

Using the branching fraction, determine $|V_{ch}|$ lacksquare $\operatorname{Br}(\bar{B} \to X_c \ell \bar{\nu}) \propto \underbrace{|V_{cb}|^2}_{\tau_B} \left[\Gamma_0 + \Gamma_{\mu_\pi} \frac{\mu_\pi^2}{m_h^2} + \Gamma_{\mu_G} \frac{\mu_G^2}{m_h^2} + \Gamma_{\rho_D} \frac{\rho_D^3}{m_h^3} \right]$

Inclusive $B \rightarrow X_{c} \ell \nu$

 $\frac{\int_{\boldsymbol{E}_{\ell} > \boldsymbol{E}_{\text{cut}}} dM_X^2 (M_X^2)^n \frac{d\Gamma}{dM_X^2}}{\int_{\boldsymbol{E}_{\ell} > \boldsymbol{E}_{\text{cut}}} dM_X^2 \frac{d\Gamma}{dM_X^2}} \qquad R^*(\boldsymbol{E}_{\text{cut}}) = \frac{\int_{\boldsymbol{E}_{\ell} > \boldsymbol{E}_{\text{cut}}} d\boldsymbol{E}_{\ell} \frac{d\Gamma}{d\boldsymbol{E}_{\ell}}}{\int_{\boldsymbol{0}} d\boldsymbol{E}_{\ell} \frac{d\Gamma}{d\boldsymbol{E}_{\ell}}}$ $\rho_{LS}^3, m_b, (m_c)$

	Kinetic scheme	1S scheme
<i>O</i> (1)	m_b, m_c	m _b
$O(1/m_b^2)$	μ_π^2, μ_G^2	λ_1,λ_2
$O(1/m_b^3)$	$ ho_D^3, ho_{LS}^3$	$ ho_1, au_{1-3}$

JHEP 1109 055 (2011) Phys. Rev. D 70, 094017 (2004)

$$\langle M_{\rm X}^n \rangle = \frac{\sum_i w_i(M_{\rm X}) M_{{\rm X},{\rm calib},i}^n}{\sum_i w_i(M_{\rm X})} \times \mathcal{C}_{\rm calib} \times \mathcal{C}_{\rm true}$$

Calibration Bias

Hadronic Mass Moments of $B \to X_c \ell \nu^{\text{arx}}$

Phys. Rev. D 75, 032005, 2007 BABAR-CONF-07/003 arXiv:0707.2670

Achieve more precision by including higher order:

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} \Gamma^{(D,0)} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \cdots \right)$$

- Number of parameters: 4 up to $1/m_h^3$, 13 up to $1/m_h^4$ and 31 up to $1/m_h^5$
- Use reparametrization invariance to link different orders of 1/mb and reduce the number of total parameters
- Requires RPI observables such as q²

- $2M_B r_G^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [iD_\mu, iD_\nu] [iD^\mu, iD^\nu] b_v | B \rangle \propto \langle \vec{E}^2 \vec{B}^2 \rangle$
- $2M_B r_E^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [ivD, iD_\mu] [ivD, iD^\mu] b_v | B \rangle \propto \langle \vec{E}^2 \rangle$
- $2M_B s_B^4 \equiv \frac{1}{2} \langle B | \bar{b}_v [i D_\mu, i D_\alpha] [i D^\mu, i D_\beta] (-i \sigma^{\alpha \beta}) b_v | B \rangle \propto \langle \vec{\sigma} \cdot \vec{B} \times \vec{B} \rangle$
- HQE expressed in higher order terms

$$Br(\bar{B} \to X_{c} \ell \bar{\nu}) \propto \frac{|V_{cb}|^{2}}{\tau_{B}} \left[\Gamma_{\mu_{3}} \mu_{3} + \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}} + \Gamma_{\tilde{\rho}_{D}} \frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}} \right. \\ \left. + \Gamma_{r_{E}} \frac{r_{E}^{4}}{m_{b}^{4}} + \Gamma_{r_{G}} \frac{r_{G}^{4}}{m_{b}^{4}} + \Gamma_{s_{B}} \frac{s_{B}^{4}}{m_{b}^{4}} + \Gamma_{s_{E}} \frac{s_{E}^{4}}{m_{b}^{4}} + \Gamma_{s_{qB}} \frac{s_{qB}^{4}}{m_{b}^{4}} \right]$$

Alternative Inclusive IV_{cb}

Fael, Mannel, Vos, JHEP 02 (2019) 177

8 parameters instead of 13 !

$$\left\langle (q^2)^n \right\rangle_{\text{cut}} = \int_{q^2 > q_{\text{cut}}}^2 dq^2 (q^2)^n \frac{d\Gamma}{dq^2} \bigg/ \int_{q^2 > q_{\text{cut}}}^2 dq^2$$
$$R^*(q_{\text{cut}}^2) = \int_{q^2 > q_{\text{cut}}}^2 dq^2 \frac{d\Gamma}{dq^2} \bigg/ \int_0^2 dq^2 \frac{d\Gamma}{dq^2}$$

 $\mu_3, \mu_G, \tilde{\rho}_D, r_E, r_G, s_E, s_B, s_{aB}, m_b, m_c$

Determine moments and use it determine |V_{cb}|

- \bullet from rest-of-event (ROE).
- resolution.
- normalization and determine signal probability

Untagged analysis in progress and targeting summer 2021.

- Experimentally challenging due to dominant $b \rightarrow c \ell \nu$ background.
- Only certain kinematic regions allow for clean separation: lepton momentum endpoint spectrum or low m_x.
- $B \to X_u \ell \nu$ is used for inclusive $|V_{ub}|$ measurement.
 - Precision of (~7%)
 - Operator Product Expansion (OPE) = Heavy Quark Expansion.
 - HQE breaks down and a non-perturbative shape function is

$$d\Gamma = d\Gamma_0 + d\Gamma_2 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^2 + d\Gamma_3 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^3 + d\Gamma_4 \left(\frac{\Lambda_{\rm QCD}}{m_b}\right)^4$$

- $B \rightarrow \pi \ell \nu$ is used for exclusive $|V_{ub}|$ measurement.
 - Most precise determination of |V_{ub}| (~4%)
 - Requires form factor determination: non-perturbative from lattice QCD (high q^2) or LCSR ($q^2 \sim 0$).

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

Hybrid Modeling for $B \to X_{\mu} \ell \nu$

- Non-resonant component overestimated in generic Belle II MC
- Use hybrid modeling instead, where the non-resonant component is weighted down such that the total number of events matches the inclusive rate:

 $H_i = R_i + w_i I_i$

- H_i : total number of hybrid events per bin R_i : number of resonant events per bin w_i: hybrid weight per bin
- I_i : number of non-resonant events per bin
- Re-weighting done via eFFORT, in 3D bins of E_R, m_X, q^2
 - E_R :lepton energy in Bsig frame
 - M_X : mass of hadronic system X
 - q^2 : 4-momentum transfer to leptonic system

Phys. Rev. D 41, 1496, 1990

Inclusive $B \to X_{\mu} e \bar{\nu}_{\rho}$

- Measurement of $|V_{ub}|$ in the lepton endpoint momentum spectrum.
 - Identify one lepton in the event using Particle Identification algorithms.
 - Suppress continuum using multi-variate Boosted Decision Tree trained with event shape variables.
 - In progress: train MVA to distinguish $b \rightarrow u$ from $b \rightarrow c$ events based on M_X^2 or rest-of-event variables.

 $<\pi$

Untagged

Isotropic

B

e

B

- Measured in 5 bins of $q^2 = (p_B p_\pi)^2$ to extract $|V_{ub}|$.
- Identify pion and lepton using PID algorithm with vertex fit to parent B.
- Suppress continuum using multivariate Boosted Decision Trees trained in each q^2 bin.
- Constrain background from simultaneous fit to p_1 in sideband region.
- Signal extraction from a 3D fit to $\Delta E, M_{bc}, q^2$

Untagged $B \rightarrow \pi \ell \nu$

Tagged Exclusive B^0

- FEI hadronic tagging to measure $\mathscr{B}(B^0 \to \pi^- \ell \nu)$.
- Identify oppositely charged lepton, $p_e > 0.3$ and $p_{\mu} > 0.6$ GeV/c, and pion using PID algorithms.
- Suppress continuum using FoxWolfram moment R2.
- Apply E_{miss} > 0.3 and $E_{residual}$ < 1.0 GeV.

$$p_{miss} \equiv (E_{miss}, \vec{p}_{miss}) = p_{Bsig} - p_Y$$

• Analysis performed blinded in the signal region $M_{miss}^2 \leq 1 \text{ GeV}^2/c^4$.

$$\mathcal{B}(B^0 \to \pi^- \ell \nu) | (1.58 \pm 0.43_{\text{stat}} \pm 0.07_{\text{sys}}) |$$

In agreement with world average.

Extract signal yields in bins of q^2 and determine $|V_{ub}|$. Similar effort in channels: $B \to X \ell \nu, X = \pi^0, \rho^+ \rho^0$

Sive $B^0 \to \pi^- \ell \nu_{\ell}$ 0.6 GeV/c, $B^{0} \to \pi^- \ell \nu_{\ell}$

Persistent deviation from Standard Model prediction, measured by **Belle, BaBar and LHCb.**

R(D) and $R(D^*)$

- $W^{-}/H^{-} \xrightarrow{\overline{\nu}_{\tau}} \overline{\overline{\nu}_{\tau}}$ $\overline{B}\left\{\begin{array}{c} b \\ \overline{a} \end{array}\right\} \xrightarrow{\overline{\rho}} \overline{\overline{\rho}} \xrightarrow{\overline{c}} B \\ \overline{a} \end{array}\right\} D^{(*)}$
- Current ongoing analyses with FEI hadronic tagging:
 - Leptonic tau decays

R(D)

- Separation between signal, normalization and background modes can be established with E_{ECL} , sum energy of all neutral deposits in the event not related to the B_{sig} or B_{tag} reconstruction.
- At Belle II, beam backgrounds contribute to E_{ECL} and dilute separation between signal and background.

Work in progress for further optimization and suppression of hadronic split-offs as well.

Use $e^+e^- \rightarrow \mu^+\mu^-$ data events and examine the cluster shape and energy distribution of energy deposits related to beam backgrounds.

Train MVA to suppress beam background contributions in E_{ECL}.

 $E_{\rm ECL}$ Background Normalization

$B \to X\ell\nu \text{ Prospects at Belle II}$

- With 1 ab⁻¹ size dataset, the limitation will mainly be systematic.
 - Improved tracking, PID and vertexing tools.
- Improved tagging techniques Full Event Interpretation(see backup) is expected to increase efficiency by ~2%
- Improved measurements for $N_{B\bar{B}}$ and f^{+0}
- Achieve higher precision in the measurements of the moments for inclusive $|V_{cb}|$.
 - Valuable input for theory!
- Provide complementary kinetic information by measuring other single differential spectra, such as the hadronic energy or q^2 .
 - Work already in progress.
- Improved measurements of $B \to D^{**}\ell\nu$ with 1 ab⁻¹
- For inclusive |Vub|, ,maximize shape function information by measuring a large number of differential spectra
- Global fit to the full spectrum, combining $B \to X_u \ell \nu$ and $B \to X_s \gamma$ with constraints on HQE parameters from $B \to X_c \ell \nu$ simultaneously.

	Statistical	Systematic	Total Exp	Theory	
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
$711 { m ~fb}^{-1}$	3.0	(2.3, 1.0)	3.8	7.0	
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	

Conclusion

- $B \to D^{(*)} \ell \nu$ and exclusive $|V_{ch}|$:
 - Work in progress at Belle II for improved precision in $B \to D\ell\nu$ and $B \to D^*\ell\nu$ results.
 - Expected first |Vcbl measurement by EPS 2021 for untagged $B \rightarrow D^* \ell \nu$.
- $B \to X_c \ell \nu$ and inclusive $|V_{ch}|$:
 - Novel q^2 moments to be measured at Belle II using tagged and untagged approaches.
 - First results expected by EPS2021.
- $B \to \pi, \rho, \eta \ell \nu$ and exclusive $|V_{\mu b}|$
 - Upcoming results on untagged $B \rightarrow \pi \ell \nu$ for Fall 2021.
 - Work in progress at Belle II for improved precision in $B \to \pi \ell \nu$ and $B \to \rho \ell \nu$, results by EPS 2021.
- $B \to X_{\mu} \ell \nu$ and inclusive $|V_{\mu b}|$:
 - Work in progress at Belle II for first results using lepton endpoint spectrum analysis.

Back up

Algorithm has been successfully applied to the $\Upsilon(5S)$ resonance.

tags at Belle II!

FEI prospects • Exploring deep extensions of the FEI.

• We can look forward to exciting physics results from the growing number of B

Inclusive $B \to X_u \ell \nu$ at Belle II

- Maximize shape function information by measuring a large number of differential spectra
- Global fit to the full spectrum, combining $B \to X_u \ell \nu$ and $B \to X_s \gamma$ with constraints on HQE parameters from $B \to X_c \ell \nu$ simultaneously
- This has been demonstrated by SIMBA, Analysis of *B*-Meson,
 Inclusive Spectra, group.

	Statistical	Systematic (reducible_irreducible)	Total Exp	Theor
$ V_{ub} $ inclusive	- 1	(reducible, meddelble)		
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5

- Systematic uncertainties related to tracking and PID will be improved by Belle II upgrades:
 - New and improved PID in the barrel region (time of propagation counter)
 - Smaller drift chamber cell size .
 - Improved detector performance

Hadronic FEI Systematics

Sou

Channel	Fit Model	${\cal B}(B^{0/+} o X \ell u)$	Lepton ID	Fit Stat.	Tracking	MC Stat.	$D^*\ell u$ FF	$D\ell u$ FF
B^+e^-	2.67	2.09	0.76	0.93	0.91	0.39	0.41	0.06
$B^+\mu^-$	2.93	2.1	2.13	0.86	0.91	0.37	0.38	0.06
$B^0 e^-$	3.72	2.1	0.73	1.22	0.91	0.62	0.43	0.07
$B^0\mu^-$	3.17	2.09	2.13	1.19	0.91	0.6	0.41	0.06

irces	of	uncertaintv	in	%	
	•	anooneanney			

Diamond Frame definition

- q² reconstructed using
 Diamond Frame method
- Takes a weighted average over four different possible configurations of the B direction

$q^2 = (p_B - p_\pi)^2$

