Fits to semileptonic b ightharpoonup c decays

Zoltan Ligeti

(ligeti@berkeley.edu)

Lawrence Berkeley Lab

Missing particle signatures and new physics at Belle II and LHCb July 5–6, 2021

Since 2012, 2014: emerging hints of LUV

2012: BaBar, charged current

2014: LHCb, neutral current

"Who ordered that?"

Hardly any theory discussions before the measurements

Simplest models to fit the data do not (simply) connect to DM and hierarchy puzzle

- ullet Forced both theory and experiment to rethink program, discard some prejudices New directions: model building, high- p_T searches, lepton flavor violation searches
- What would it take to convince your most skeptical colleague that the $B \to X_c \ell \bar{\nu}$ data are evidence for BSM? (Not fluctuations nor unknown systematics?)
- Huge stakes: would make the physics case for FCC (even more) obvious
 (And also pushing future upgrades of flavor experiments to the technology limits)

The $B o D^{(*)} auar u$ decay rates

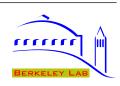
• BaBar, Belle, LHCb: $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X (e/\mu)\bar{\nu})}$

3.1 σ from SM predictions — robust due to heavy quark symmetry + lattice QCD (only D so far)

many channels: $R(D^*)$ with $au o
u 3\pi$ [1708.08856] $B_c o J/\psi\, auar
u$ [1711.05623]

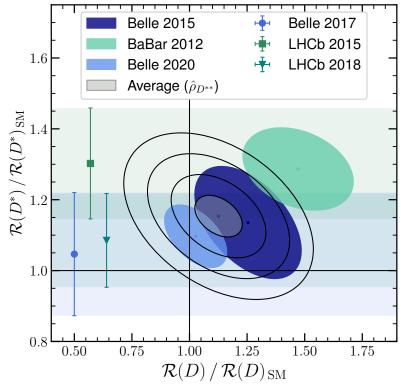


- Imply NP at fairly low scales (leptoquarks, W', etc.), likely visible at ATLAS / CMS Many models Fierz (mostly) to the SM operator: SM-like distributions and τ polarization
- Tree level: three ways to insert mediator: $(b\nu)(c\tau), (b\tau)(c\nu), (bc)(\tau\nu)$ overlap with ATLAS & CMS searches for \tilde{b} , leptoquark, H^{\pm}
- Models built to fit these anomalies have impacted many ATLAS & CMS searches



Slightly different fits are possible

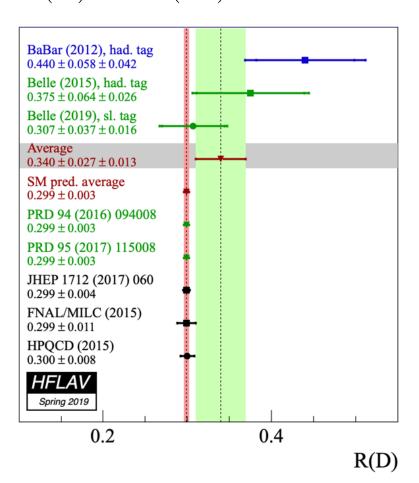
• With different assumptions than HFLAV, same data averages to 3.6σ (Correlations between experiments from D^{**} feed-down backgrounds)

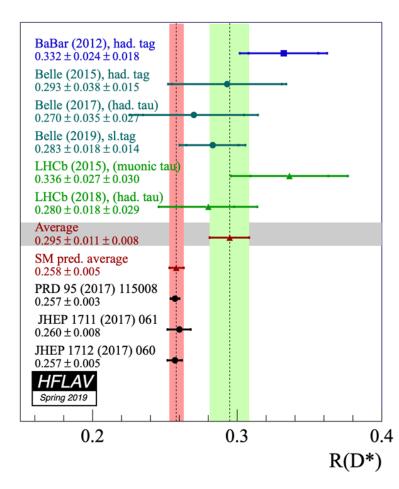


[Bernlochner, Franco Sevilla, Robinson, 2101.08326]

Another look at the data

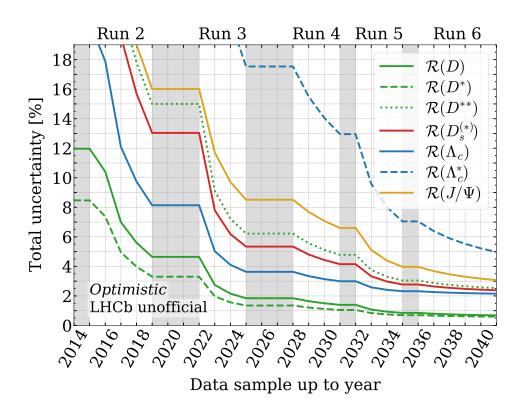
• The R(D) and $R(D^*)$ measurements — all central values above SM:

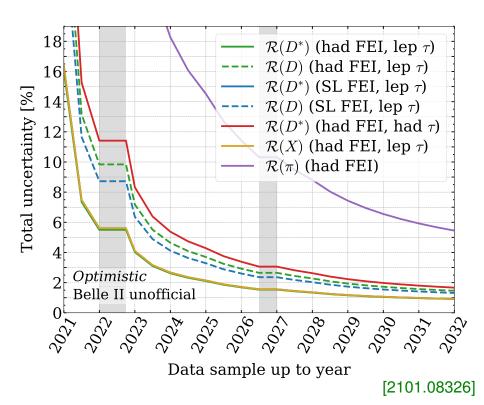




Not decisive yet, consistent with both an emerging signal or fluctuations

Prospects





- Measurements will improve a lot! (Even if deviations from SM shrink, can establish presence of BSM)
- Competition, complementarity, cross-checks between LHCb and Belle II

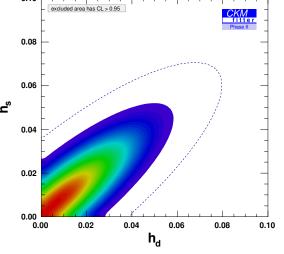
Some key questions

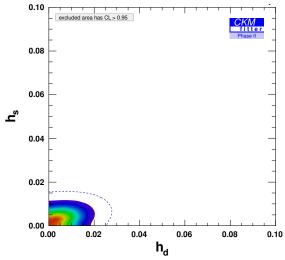
- Can it be a theory issue? not at the current level
- Can it be an experimental issue? previous talks
- Can [reasonable] models fit the data? maybe [subjective] (won't say much)
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP? ... we know how to make progress
- Which channels are most interesting? (To establish deviation from SM / understand NP?) $B_{(s)} \to D_{(s)}^{(*,**)} \ell \bar{\nu}, \ \Lambda_b \to \Lambda_c^{(*)} \ell \bar{\nu}, \ B_c \to \psi \ell \bar{\nu}, \ B \to X_c \ell \bar{\nu}, \ \text{etc.}$
- Which calculations can be made most robust (continuum & lattice QCD)?
- What else can we learn from studying these anomalies?

$|V_{cb}|$ determinations should converge...

- $|V_{cb}|$ important to assess if there is an ε_K tension, predict $K \to \pi \nu \bar{\nu}$, $B \to \mu^+ \mu^-$ SM predictions involve A^4 , so 5% in $|V_{cb}|$ yields 20%
- The $b \to c \tau \bar{\nu}$ data will make $|V_{cb}|$ much better understood are we there yet? To understand the τ mode thoroughly, must understand the e, μ modes better
- Recently: $|V_{cb}|$ uncertainty limits future improvements in the sensitivity to NP in B and B_s mixing

Plots: "Phase II" in late 2030-s without / with huge $|V_{cb}|$ improvements + others (unrealistic) [Charles *et al.*, 2006.04824]



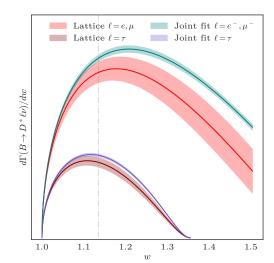


$B o D^{(*)}$: some open questions

- Won't talk about fits to unfolded vs. folded data what I think is important is that different approaches and new ideas can be tested
- CLN is model dependent, and not self-consistent without adding more parameters (1/m) at zero recoil fit to data, but their slopes fixed by QCD sum rules) [1703.05330]
- Fit results (BGL, CLN) depend (more than expected?) on truncation order Just looking at goodness of fits is not the full story [1708.07134]
- For $B \to D^* \ell \nu$, lattice results in full q^2 range only recently Some tension between data and lattice \Longrightarrow

They obtain: $R(D^*) = 0.266 \pm 0.014$ [FNAL & MILC, 2105.14019]

 $B_s \rightarrow D_s^* \ell \bar{\nu}$: $R(D_s^*) = 0.244 \pm 0.009$ [Harrison & Davies, 2105.11433]



$B \to D^{**}$: unsatisfactory understanding

• Large mass splitting: $m_{D_1^*} - m_{D_0^*} \sim 80 \, \text{MeV}$ (Compared to quark model, for example)

Poor consistency of $m_{D_0^*}$ measurements

[Details: Bernlochner & ZL, 1606.09300]

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0+	2349	236
D_1^*	$\frac{1}{2}^{+}$	1+	2427	384
D_1	$\frac{3}{2}^{+}$	1+	2421	31
D_2^*	$\frac{3}{2}^{+}$	2+	2461	47

Branching fraction

 $\mathcal{B}(B o D_0^*\pi)$ puzzling: $\ll D_1\pi$ and $D_2^*\pi$ breakdown of factorization?

Small fracti Are these

breakdown of lactorization:	$B^0 \to D_2^{*-} \pi^+$	$(0.59 \pm 0.04) \times 10^{-3}$
tion of BaBar & Belle data $+$ LHCb	_ 1	$(0.71 \pm 11) \times 10^{-3}$ $(0.12 \pm 0.01) \times 10^{-3}$
e (nearly) pure $Qar q$ states?		(0.22 2 0.02)

Decay mode

[Le Yaouanc, Leroy, Roudeau, 2102.11608]

The "1/2 vs. 3/2 puzzle" remains... puzzling

Better understand of how "inclusive = \sum exclusive" works is needed

How well can the "nonresonant" components be ultimately measured?

D_s^{**} states: some open questions

- All $4 D_s^{**}$ states much narrower than non-strange counterparts nice for LHCb
- $D_{s0}^*(2317)$: orbitally excited state or "molecule"?

If D_{s0}^* is excited $c\bar{s}$ state, predict $\mathcal{B}(D_{s0}^*\to D_s^*\gamma)/\mathcal{B}(D_{s0}^*\to D_s\pi)$ above CLEO bound, <0.059 [Mehen & Springer, hep-ph/0407181; Colangelo & De Fazio, hep-ph/0305140; Godfrey, hep-ph/0305122]

CLEO used 13.5/fb, the Belle bound < 0.18 used 87/fb, the BaBar bound < 0.16 used 232/fb

Ample motivation for Belle II to re-measure it!

• If these excited states have significant non- $Q\bar{q}$ components, then HQET-based predictions need not apply

However, inclusive calculations (and their expected uncertainties) unaffected

Speculations on SU(3) in $B_{(s)} o D_{(s)}^{(*)}\ellar u$

Considerations suggesting possibly sizable effects: [ZL@BNL, Sep 2019 Lattice X Intensity Frontier] Bjorken and Voloshin sum rules relate the behavior of $B_{(s)} o D_{(s)}^{(*)}$ ground state transition to the decays to excited states; e.g., Voloshin sum rule [PRD 46 (1992) 3062] "Also the sum rule shows that the slope parameter should be a growing function of the mass of the spectator quark."

$$\rho^{2} = -\frac{\mathrm{d}}{\mathrm{d}w} \frac{\mathrm{d}\Gamma}{\mathrm{d}w}\Big|_{w=1} < \frac{1}{4} + \frac{m_{M} - m_{Q}}{2(m_{M_{1}} - m_{M})} + \dots$$

where $m_{M_1} - m_M$ is the gap to the first excited meson state above $D_{(s)}^{(*)}$

• Expect: slope parameter increases, if larger rates to excited states (not $D_{(s)}^{(*)}$) if $m_{M_1}-m_M$ smaller ("gap" above $D_{(s)}^{(*)}$) Discovered in 2003: $m_{D_{s0}^{*\pm}}-m_{D_s^{\pm}}\approx 206\,\mathrm{MeV}$, but $m_{D_0^{*\pm}}-m_{D^{\pm}}\approx 484\,\mathrm{MeV}$

• Interesting if these arguments for larger slope hold, or compensated by something Recently: $\rho_{D_s^*}^2=1.16\pm0.09$ [LHCb, 2003.08453] vs. HFLAV: $\rho_{D^*}^2=1.122\pm0.024$ (use CLN) LQCD: "no significant SU(3) symmetry breaking" [Harrison & Davies, 2105.11433]

SU(3) and nonleptonic decays

- ullet Compare shapes of $\mathrm{d}\Gamma/\mathrm{d}w$
- Factorization may work better in $B_s \to D_s^{(*)} \pi$ than $B \to D^{(*)} \pi$, tells us $\mathrm{d}\Gamma/\mathrm{d}w\big|_{w_{\mathrm{max}}}$

Interesting for hadronic dynamics as well, to better understand: [hep-ph/0312319]

$$|A(\bar{B}^0 \to D^+\pi^-)| = |T + E|, \quad |A(B^- \to D^0\pi^-)| = |T + C|, \quad |A(B_s \to D_s^-\pi^+)| = |T|$$

Since $\tau_{B^0} \approx \tau_{B_s}$, we can compare directly the branching ratios:

[1]
$$\mathcal{B}(B^0 \to D\pi) = (2.52 \pm 0.13) \times 10^{-3}$$

[2]
$$\mathcal{B}(B^0 \to D^*\pi) = (2.74 \pm 0.13) \times 10^{-3}$$

[3]
$$\mathcal{B}(B_s \to D_s \pi) = (3.00 \pm 0.23) \times 10^{-3}$$
 [LHCb, only 0.37/fb]

[4]
$$\mathcal{B}(B_s \to D_s^* \pi) = (2.0 \pm 0.5) \times 10^{-3}$$

Central values: [1] < [3] and [2] > [4] seem puzzling, warrants more precise measurements

• Seek improvements in $B_{(s)} \to D_{(s)}^{**} \pi$ and $B_{(s)} \to D_{(s)}^{**} \ell \bar{\nu}$ rate measurements

Baryons

(Skip most of it — unless questions)

Intro to $\Lambda_b o \Lambda_c \ell ar{ u}$

- Ground state baryons are simpler than mesons: brown muck in (iso)spin-0 state
- SM: 6 form factors, functions of $w=v\cdot v'=(m_{\Lambda_b}^2+m_{\Lambda_c}^2-q^2)/(2m_{\Lambda_b}m_{\Lambda_c})$

$$\langle \Lambda_c(p',s')|ar{c}\gamma_
u b|\Lambda_b(p,s)
angle = ar{u}_c(v',s') \Big[f_1\gamma_\mu + f_2v_\mu + f_3v'_\mu\Big] u_b(v,s)$$

$$\langle \Lambda_c(p',s')|ar{c}\gamma_
u\gamma_5b|\Lambda_b(p,s)
angle \ = \ ar{u}_c(v',s')\Big[g_1\gamma_\mu+g_2v_\mu+g_3v_\mu'\Big]\gamma_5\,u_b(v,s)$$

Heavy quark limit: $f_1 = g_1 = \zeta(w)$ Isgur-Wise fn, and $f_{2,3} = g_{2,3} = 0$ [$\zeta(1) = 1$]

• Include α_s , $\varepsilon_{b,c}$, $\alpha_s \varepsilon_{b,c}$, ε_c^2 : $m_{\Lambda_{b,c}} = m_{b,c} + \bar{\Lambda}_{\Lambda} + \dots$, $\varepsilon_{b,c} = \bar{\Lambda}_{\Lambda}/(2m_{b,c})$

 $(\bar{\Lambda}_{\Lambda} \sim 0.8 \, {\rm GeV} \, \text{larger than} \, \bar{\Lambda} \, \text{for mesons, enters via eq. of motion} \Rightarrow \text{expect worse expansion?})$

$$f_1 = \zeta(w) \left\{ 1 + \frac{\alpha_s}{\pi} C_{V_1} + \varepsilon_c + \varepsilon_b + \frac{\alpha_s}{\pi} \left[C_{V_1} + 2(w-1)C'_{V_1} \right] (\varepsilon_c + \varepsilon_b) + \frac{\hat{b}_1 - \hat{b}_2}{4m_c^2} + \dots \right\}$$

• No $\mathcal{O}(\Lambda_{\mathrm{QCD}}/m_{b,c})$ subleading Isgur-Wise function, only 2 at $\mathcal{O}(\Lambda_{\mathrm{QCD}}^2/m_c^2)$

[Falk & Neubert, hep-ph/9209269]

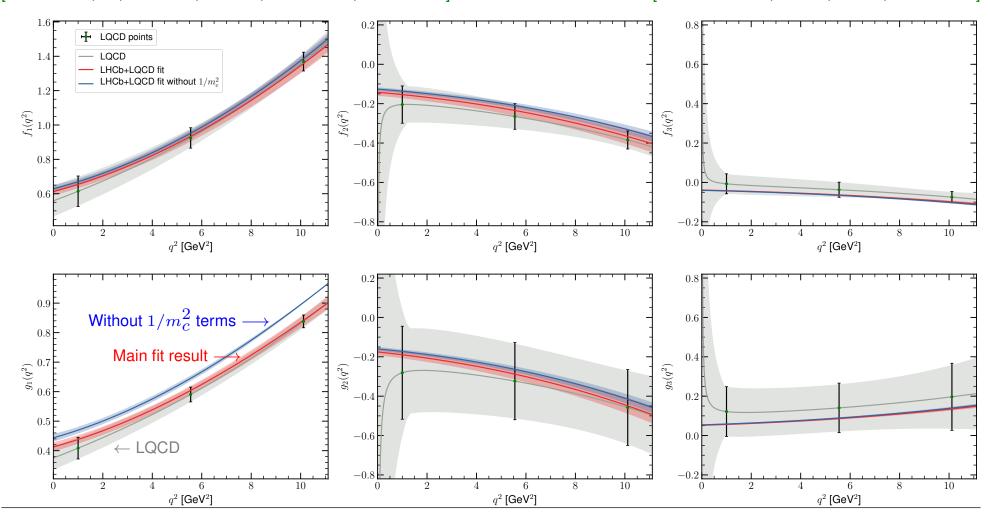
HQET is more constraining than in meson decays!

Fit to lattice QCD form factors and LHCb (1)

• Fit 6 form factors w/ 4 parameters: $\zeta'(1)$, $\zeta''(1)$, \hat{b}_1 , \hat{b}_2

[Bernlochner, ZL, Robinson, Sutcliffe, 1808.09464, 1812.07593]

[LQCD: Detmold, Lehner, Meinel, 1503.01421]

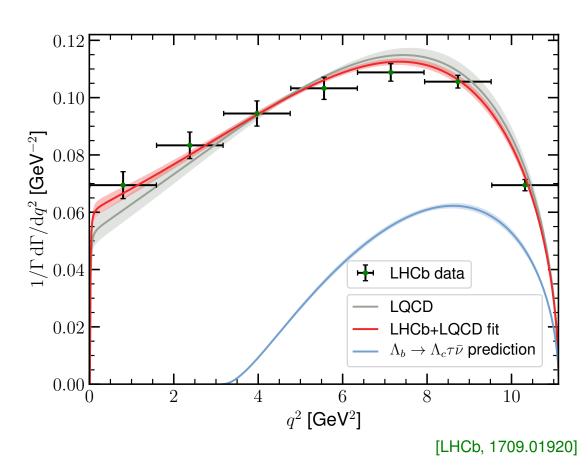


Fit to lattice QCD form factors and LHCb (2)

Our fit, compared to the LQCD fit to LHCb:

• Obtain: $R(\Lambda_c) = 0.324 \pm 0.004$

A factor of ~ 3 more precise than LQCD prediction — data constrains combinations of form factors relevant for predicting $R(\Lambda_c)$

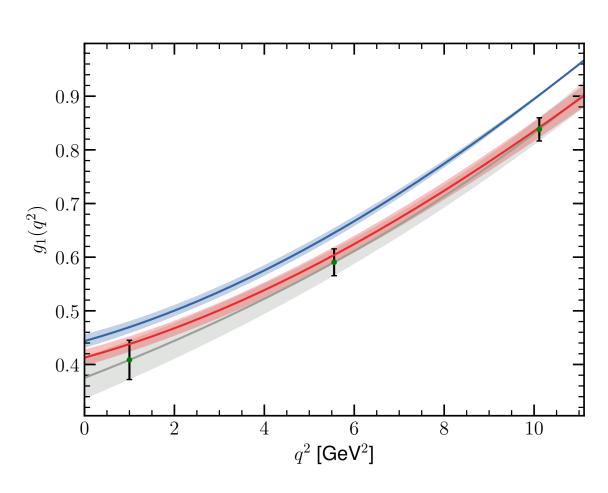


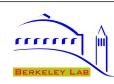
The fit requires the $1/m_c^2$ terms

- E.g., fit results for g_1 blue band shows fit with $\hat{b}_{1,2}=0$
- Find: $\hat{b}_1 = -(0.46 \pm 0.15) \, \mathrm{GeV}^2$... of the expected magnitude

Well below the model-dependent estimate: $\hat{b}_1=-3\bar{\Lambda}_{\Lambda}^2\simeq -2\,{
m GeV}^2$ [Falk & Neubert, hep-ph/9209269]

• Expansion in $\Lambda_{\rm QCD}/m_c$ appears well behaved (contrary to some other claims)





BSM: tensor form factors — an issue?

Parameter free predictions!

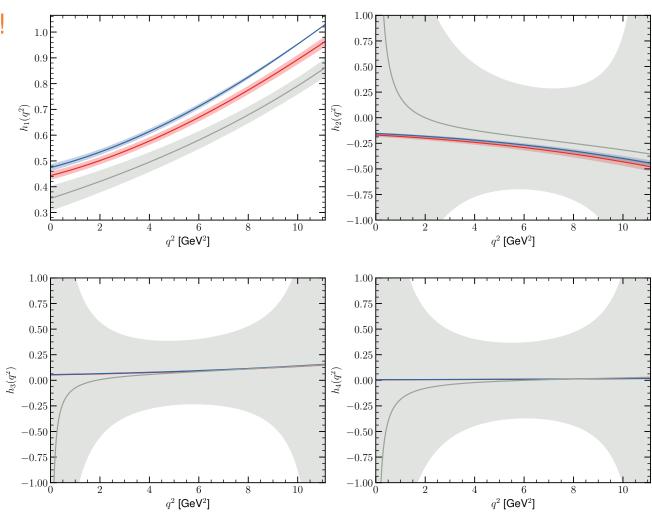
There are 4 form factors HQET: $h_1 (= \widetilde{h}_+) = \mathcal{O}(1)$ $h_{2,3,4} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

LQCD basis: all 4 form factors calculated are $\mathcal{O}(1)$

[Datta, Kamali, Meinel, Rashed, 1702.02243]

Compare at $\mu = \sqrt{m_b m_c}$

 Heavy quark symmetry breaking terms consistent (weakly constrained by LQCD)



If tensions between data and SM remain, this difference has to be sorted out



Lot more to measure in baryon decay

• What is the maximal information that the $\Lambda_b \to \Lambda_c \mu \bar{\nu}$ decay can give us?

 $\Lambda_c \to pK\pi$ complicated, $\Lambda_c \to \Lambda\pi \, (\to p\pi\pi)$ loses lots of statistics

• If Λ_c decay distributions are integrated over, but θ is measured (angle between the \vec{p}_{μ} and \vec{p}_{Λ_c} in $\mu\bar{\nu}$ rest frame), then maximal info one can get:

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})}{\mathrm{d}w\,\mathrm{d}\cos\theta} = \frac{3}{8} \Big[(1 + \cos^2\theta)\,H_T(w) + 2\cos\theta\,H_A(w) + 2(1 - \cos^2\theta)\,H_L(w) \Big]$$
(forward-backward asym.)

Measuring the 3 terms would give more information than just $d\Gamma(\Lambda_b \to \Lambda_c \mu \bar{\nu})/dq^2$

ullet Long term: including Λ_c decay distributions would give even more information

And the Λ_c^* states...

ullet Two states, $\frac{1}{2}^-\colon \Lambda_c^*(2595)$ and $\frac{3}{2}^-\colon \Lambda_c^*(2625)$ — widths $2.6\,\mathrm{MeV}$ and $<1\,\mathrm{MeV}$

Small widths make them attractive [Long history: Leibovich & Stewart, hep-ph/9711257; Boer et al., 1801.08367]

- Recently first LQCD predictions published [Meinel & Rendon, 2103.08775]
 - Update of HQET-based description, both for the SM and NP [Papucci & Robinson, 2105.09330]
 Find tensions with lattice:
 - Need huge HQS breaking to fit lattice form factor results
 - Lattice form factors in tension w/ $\Gamma(\Lambda_b \to \Lambda_c^*(2595)\mu\bar{\nu})/\Gamma(\Lambda_b \to \Lambda_c^*(2625)\mu\bar{\nu}) = 0.6^{+0.4}_{-0.2}$

CDF data can be accommodated in HQET framework (nominal 1/m terms)

Results included in Hammer

[Bernlochner, Duell, ZL, Papucci, Robinson, 2002.00020]

Hammer

hammer.physics.lbl.gov — public v1.1.0 (Aug 2020), v.1.2 soon

The need for Hammer

Helicity Amplitude Module for Matrix Element Reweighting

[Bernlochner, Duell, ZL, Papucci, Robinson, 2002.00020]

- MC uncertainty is a significant component in many measurements or $R(D^{(*)})$
- Standard practice: fit HFLAV averages of $R(D^{(*)})$ with one's favorite NP model
- If NP was indeed present, $R(D^{(*)})$ measurements would be different All measurements use numerous cuts, acceptances depend on distributions of $D^{(*)}\tau\bar{\nu}$ and their decay products in many variables the SM is assumed for these in the measurements
- Reported CL of (dis)agreement with SM is correct, but cannot determine CL of accepting a certain NP model, nor what NP parameters give the best fit to data
- Prohibitively expensive computationally to redo the MC for general NP One operator in SM, while 5 (or 10 with ν_R) in general

What Hammer does

- Fully differential distributions of detected particles, incl. $D^* \& \tau$ decay interference Include arbitrary NP interaction and $m_\ell \neq 0$, for all 6 mesons: $B \to \{D, D^*, D^{**}\} \ell \bar{\nu}$
 - Efficiently reweight fully simulated samples (detector simulation only once)
 - Makes it feasible and fast to explore and run fits in all NP parameter space
- Weight matrix: For a given MC sample, calculate a reweight tensor which determines event weights for any NP (C_n) and any form factor parametrization (F_m)

$$F_i^{\dagger} C_j^{\dagger} \mathcal{W}_{ijkl} C_k F_l$$

Rapidly calculate differential distributions for any NP & form factors (contractions)

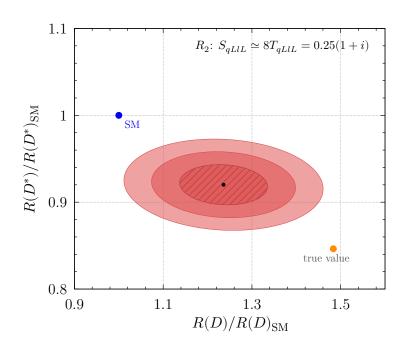
- Can do arbitrary NP couplings
- Can do arbitrary hadronic matrix elements (some form factors [not] known from first principle calc.)
- Publicly available, implemented in both Belle II and LHCb hammer.physics.lbl.gov

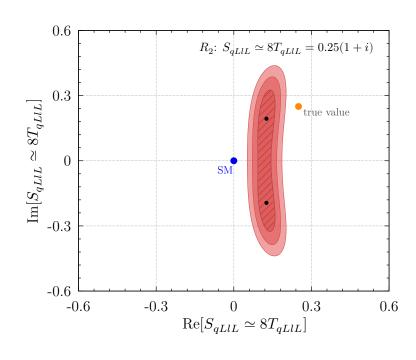
Status of implementations

Process	FF parametrizations				
$B \to D^{(*)} \ell \nu$	${\tt ISGW2^*}[16,17]$, ${\tt BGL^*}[13{\text -}15]$, ${\tt CLN^{*\ddagger}}[18]$, ${\tt BLPR^\ddagger}[19]$				
$B \to (D^* \to D\pi)\ell\nu$	ISGW2*, BGL* [‡] , CLN* [‡] , BLPR [‡]				
$B \to (D^* \to D\gamma)\ell\nu$	ISGW2*, BGL* [‡] , CLN* [‡] , BLPR [‡]				
$B o D_0^* \ell u$	ISGW2*, LLSW* $[20, 21]$, BLR ‡ $[22, 23]$				
$B o D_1^* \ell u$	ISGW2*, LLSW*, BLR [‡]				
$B o D_1 \ell u$	ISGW2*, LLSW*, BLR [‡]				
$B o D_2^* \ell u$	ISGW2*, LLSW*, BLR [‡]				
$B \to (\rho \to \pi\pi)\ell\nu$	${ t ISGW2}^*$, ${ t BSZ}^{\ddagger}$ [24]				
$B \to (\omega \to \pi\pi\pi)\ell\nu$	ISGW2*, BSZ [‡]				
$\Lambda_b o \Lambda_c \ell u$	$\mathtt{PCR}^*\left[25\right]$, $\mathtt{BLRS}^{\ddagger}\left[26,27\right]$				
$\Lambda_b o \Lambda_c^* \ell u$	\mathtt{PCR}^* , $\mathtt{LSPR}^{\ddagger}[28,\ 29]$				
$B_c \to (J/\psi \to \ell\ell)\ell\nu$	Kiselev* $[30]$, EFG* $[31]$, BGL* $^{\ddagger}[32]$,				
$B o\pi\ell u$	ISGW2*, BCL* [‡] [33]				
$ au o \pi u$					
$ au ightarrow \ell u u$	_				
$ au o 3\pi u$	RCT* [34-36]				
$D_1 \to (D^* \to D\pi/\gamma)\pi$	PW				
$D_2^* \to (D^* \to D\pi/\gamma)\pi$	PW				
$D_2^* \to D\pi$	PW				
	Planned for next release				
$B_{(c)} o \ell u$	MSbar				
$ au o 4\pi u$	RCT*				
$\tau \to (\rho \to \pi\pi)\nu$	_				

An illustration: the R_2 leptoquark

ullet An example: consider the R_2 leptoquark model ($S_{qLlL} \sim 8 \, T_{qLlL}$)





- Recovered parameters, from fitting toy (Asimov) data, are several σ from "truth" Sizable bias in measured $R(D^{(*)})$ values, due to SM template built into the measurements
- Hammer allows experiments to directly quote bounds on BSM Wilson coeff's

Conclusions

- Measurable NP contribution to $b \to c\ell\bar{\nu}$ would imply NP at a fairly low scale
- $B \to X_c \ell \bar{\nu}$: Need (much) more data to know how anomalies (and $|V_{cb}|$) settle $\Lambda_b \to \Lambda_c \ell \bar{\nu}$: HQET more predictive than in meson decays, $\Lambda_{\rm QCD}^2/m_c^2$ well behaved
- LQCD will continue to be important: lot more to calculate, some tensions
 Independent cross-checks as relevant as for continuum calculations
- Hammer: can bound BSM operators without full simulations (sizable past biases)
- Forced both theory and experiment to rethink program, discard some prejudices New directions: model building, high- p_T searches, lepton flavor violation searches
- Measurements and SM predictions will both improve a lot (continuum + lattice)
 (Even if central values change, plenty of room for significant deviations from SM)
- Best case: new physics, new directions; Worst case: better SM tests, better $|V_{cb}|$

