Global fits from $b \rightarrow s\ell\ell$ decays

Peter Stangl AEC & ITP University of Bern

The $b \rightarrow s \ell \ell$ anomalies

$b ightarrow { m s}\, \mu^+\mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by 2-3 σ :

• Angular observables in $B \to K^* \mu^+ \mu^-$.

LHCb, arXiv:2003.04831, arXiv:2012.13241

• Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731, arXiv:2105.14007

Hints for LFU violation in $b \rightarrow s \, \ell^+ \ell^-$ decays

Measurements of lepton flavor universality (LFU) ratios $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$, $R_{K}^{[1,6]}$ show deviations from SM by 2.3, 2.5, and 3.1 σ .

Combination of $B_{s,d} \rightarrow \mu^+ \mu^-$ measurements

Measurements of BR($B_{s,d} \rightarrow \mu^+ \mu^-$) by LHCb, CMS, and ATLAS show combined deviation from SM by about 2σ .

CMS, arXiv:1910.12127 LHCb seminar 23 March 2021 Altmannshofer, PS, arXiv:2103.13370

Theoretical Framework

- $b \to s \ell \ell$ in the weak effective theory
 - ► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, sl}^{bs\ell\ell} + \mathcal{H}_{eff, had}^{bs\ell\ell}$
 - Semileptonic operators: $(\mathcal{N} = \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2})$

$$\begin{split} \mathcal{H}_{\text{eff, sl}}^{bs\ell\ell} &= -\mathcal{N}\bigg(C_7^{bs}O_7^{bs} + C_7'^{bs}O_7'^{bs} + \sum_{\ell} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell}O_i^{bs\ell\ell} + C_i'^{bs\ell\ell}O_i'^{bs\ell\ell}\right)\bigg) + \text{h.c.} \\ O_9^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\ell) \,, \qquad O_9'^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_Rb)(\bar{\ell}\gamma^{\mu}\ell) \,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \,, \qquad O_1'^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_Rb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \,, \\ O_7^{bs} &= \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu}P_Rb) F^{\mu\nu} \,, \qquad O_7'^{bs} = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu}P_Lb) F^{\mu\nu} \,, \\ O_S^{bs\ell\ell} &= m_b (\bar{s}P_Rb)(\bar{\ell}\ell) \,, \qquad O_7'^{bs\ell\ell} = m_b (\bar{s}P_Lb)(\bar{\ell}\ell) \,, \\ O_P^{bs\ell\ell} &= m_b (\bar{s}P_Rb)(\bar{\ell}\gamma_5\ell) \,, \qquad O_7'^{bs\ell\ell} = m_b (\bar{s}P_Lb)(\bar{\ell}\gamma_5\ell) \,. \end{split}$$

- $b \to s \ell \ell$ in the weak effective theory
 - ► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, sl}^{bs\ell\ell} + \mathcal{H}_{eff, had}^{bs\ell\ell}$
 - Semileptonic operators: $(\mathcal{N} = \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2})$

$$\begin{split} \mathcal{H}_{\text{eff, sl}}^{bs\ell\ell} &= -\mathcal{N}\bigg(C_7^{bs}O_7^{bs} + C_7'^{bs}O_7'^{bs} + \sum_{\ell} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell}O_i^{bs\ell\ell} + C_i'^{bs\ell\ell}O_i'^{bs\ell\ell}\right)\bigg) + \text{h.c.} \\ O_9^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\ell) \,, \qquad O_9'^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_Rb)(\bar{\ell}\gamma^{\mu}\ell) \,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \,, \qquad O_{10}'^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_Rb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \,, \\ O_7^{bs} &= \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu}P_Rb) F^{\mu\nu} \,, \qquad O_7'^{bs} = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu}P_Lb) F^{\mu\nu} \,, \\ O_S^{bs\ell\ell} &= m_b (\bar{s}P_Rb)(\bar{\ell}\ell) \,, \qquad O_7'^{bs\ell\ell} = m_b (\bar{s}P_Lb)(\bar{\ell}\ell) \,, \\ O_P^{bs\ell\ell} &= m_b (\bar{s}P_Rb)(\bar{\ell}\gamma_5\ell) \,, \qquad O_P'^{bs\ell\ell} = m_b (\bar{s}P_Lb)(\bar{\ell}\gamma_5\ell) \,. \end{split}$$

Hadronic operators:

$$\begin{aligned} \mathcal{H}_{\text{eff, had}}^{bs\ell\ell} &= -\mathcal{N} \frac{16\pi^2}{e^2} \left(C_8^{bs} O_8^{bs} + C_8'^{bs} O_8'^{bs} + \sum_{i=1..6} C_i^{bs\ell\ell} O_i^{bs} \right) + \text{h.c.} \\ \text{e.g.} \quad O_1^{bs} &= (\bar{s}\gamma_{\mu} P_L T^a c) (\bar{c}\gamma^{\mu} P_L T^a b) \,, \quad O_2^{bs} &= (\bar{s}\gamma_{\mu} P_L c) (\bar{c}\gamma^{\mu} P_L b) \,. \end{aligned}$$

Theory of $B \rightarrow M\ell\ell$ decays ($M = K, K^*, \phi$)

$$\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}}^{\text{bs}\ell\ell} | B \rangle$$
$$= \mathcal{N} \Big[\left(\mathcal{A}_{V}^{\mu} + \mathcal{H}^{\mu} \right) \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \bar{u}_{\ell} \gamma_{5} v_{\ell} \Big]$$

$$\begin{split} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} \, \mathbf{C}_{7} \langle M | \bar{\mathbf{s}} \, \sigma^{\mu\nu} q_{\nu} \, P_{R} \, b | B \rangle + \mathbf{C}_{9} \langle M | \bar{\mathbf{s}} \, \gamma^{\mu} \, P_{L} \, b | B \rangle \\ &+ \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime} \right) \\ \mathcal{A}_{A}^{\mu} &= \mathbf{C}_{10} \langle M | \bar{\mathbf{s}} \, \gamma^{\mu} \, P_{L} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime} \right) \\ \mathcal{A}_{S} &= \mathbf{C}_{S} \langle M | \bar{\mathbf{s}} \, P_{R} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime} \right) \\ \mathcal{A}_{P} &= \mathbf{C}_{P} \langle M | \bar{\mathbf{s}} \, P_{R} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime} \right) \end{split}$$

Theory of $B \rightarrow M\ell\ell$ decays ($M = K, K^*, \phi$)

$$\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}}^{\text{bs}\ell\ell} | B \rangle$$
$$= \mathcal{N} \Big[\left(\mathcal{A}_{V}^{\mu} + \mathcal{H}^{\mu} \right) \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \bar{u}_{\ell} \gamma_{5} v_{\ell} \Big]$$

$$\begin{split} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} \, \mathbf{C}_{7} \langle M | \bar{\mathbf{s}} \, \sigma^{\mu\nu} q_{\nu} \, P_{R} \, b | B \rangle + \mathbf{C}_{9} \langle M | \bar{\mathbf{s}} \, \gamma^{\mu} \, P_{L} \, b | B \rangle \\ &+ \left(P_{L} \leftrightarrow P_{R}, \mathbf{C}_{i} \rightarrow \mathbf{C}_{i}^{\prime} \right) \\ \mathcal{A}_{A}^{\mu} &= \mathbf{C}_{10} \langle M | \bar{\mathbf{s}} \, \gamma^{\mu} \, P_{L} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, \mathbf{C}_{i} \rightarrow \mathbf{C}_{i}^{\prime} \right) \\ \mathcal{A}_{S} &= \mathbf{C}_{S} \langle M | \bar{\mathbf{s}} \, P_{R} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, \mathbf{C}_{i} \rightarrow \mathbf{C}_{i}^{\prime} \right) \\ \mathcal{A}_{P} &= \mathbf{C}_{P} \langle M | \bar{\mathbf{s}} \, P_{R} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, \mathbf{C}_{i} \rightarrow \mathbf{C}_{i}^{\prime} \right) \end{split}$$

$$\mathcal{H}^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1..6,8} C_i \int dx^4 e^{iq \cdot x} \langle M | T\{j^{\mu}_{em}(x), O_i(0)\} | B \rangle$$
$$j^{\mu}_{em} = \sum_q Q_q \, \bar{q} \gamma^{\mu} q$$

Form factors

$$\begin{split} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} C_{7} \langle M | \bar{s} \sigma^{\mu\nu} q_{\nu} P_{R} b | B \rangle + C_{9} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle \\ &+ (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C'_{i}) \\ \mathcal{A}_{A}^{\mu} &= C_{10} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C'_{i}) \\ \mathcal{A}_{S} &= C_{S} \langle M | \bar{s} P_{R} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C'_{i}) \\ \mathcal{A}_{P} &= C_{P} \langle M | \bar{s} P_{R} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C'_{i}) \end{split}$$

- ▶ Wilson coefficients: short-distance UV physics, perturbative
- Form Factors: hadronic physic, non-perturbative, a main source of uncertainty
- Not all $\langle M | \bar{s} \Gamma_i b | B \rangle$ matrix elements independent:
 - ▶ 3 form factors for spin zero final states *M* = *K*
 - ▶ 7 form factors for spin one final states $M = K^*, \phi$

Form factors

$$\begin{split} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} C_{7} \langle M | \bar{s} \sigma^{\mu\nu} q_{\nu} P_{R} b | B \rangle + C_{9} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle \\ &+ (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \\ \mathcal{A}_{A}^{\mu} &= C_{10} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \\ \mathcal{A}_{S} &= C_{S} \langle M | \bar{s} P_{R} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \\ \mathcal{A}_{P} &= C_{P} \langle M | \bar{s} P_{R} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}') \end{split}$$

- ▶ Wilson coefficients: short-distance UV physics, perturbative
- Form Factors: hadronic physic, non-perturbative, a main source of uncertainty
- Not all $\langle M | \bar{s} \Gamma_i b | B \rangle$ matrix elements independent:
 - 3 form factors for spin zero final states M = K
 - ▶ 7 form factors for spin one final states $M = K^*, \phi$
- Determination of form factors
 - high q²: Lattice QCD

HPQCD, arXiv:1306.2384 Fermilab, MILC, arXiv:1509.06235 Horgan, Liu, Meinel, Wingate, arXiv:1310.3722, arXiv:1501.00367

Iow q²: Light-Cone Sum Rules (LCSR)

Bharucha, Straub, Zwicky, arXiv:1503.05534 Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Gubernari, Kokulu, van Dyk, arXiv:1811.00983 Ball, Zwicky, arXiv:hep-ph/0406232

▶ low + high *q*²: Combined fit to **LCSR + lattice**

Bharucha, Straub, Zwicky, arXiv:1503.05534 Gubernari, Kokulu, van Dyk, arXiv:1811.00983 Altmannshofer, Straub, arXiv:1411.3161

Non-local matrix elements

• Leading terms for $q^2 < 6 \text{ GeV}^2$ from QCD factorization (QCDF)

Beneke, Feldmann, Seidel, arXiv:hep-ph/0106067

- Subleading terms not calculable in QCDF, a main source of uncertainty
- Large subleading terms could mimic new physics in C₉

e.g. Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli, arXiv:1512.07157

Non-local matrix elements

• Leading terms for $q^2 < 6 \text{ GeV}^2$ from QCD factorization (QCDF)

Beneke, Feldmann, Seidel, arXiv:hep-ph/0106067

- Subleading terms not calculable in QCDF, a main source of uncertainty
- Large subleading terms could mimic new physics in C₉

e.g. Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli, arXiv:1512.07157

- Several compatible approaches to estimate subleading terms at low q²
 - LCSR estimates Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Gubernari, van Dvk, Virto, arXiv:2011.09813
 - order of magnitude estimate parameterized as polynomial in q²

Descotes-Genon, Hofer, Matias, Virto, arXiv:1407.8526, arXiv:1510.04239 Arbey, Hurth, Mahmoudi, Neshatpour, arXiv:1806.02791 Altmannshofer, Straub, arXiv:1411.3161

fit of sum of resonances to data

- Blake, Egede, Owen, Pomery, Petridis, arXiv:1709.03921
- analyticity + experimental data on $b
 ightarrow scar{c}$ Bobeth, Chrzaszcz, van Dyk, Virto, arXiv:1707.07305

Uncertainties of observables

- ► $B \rightarrow K\mu\mu$, $B \rightarrow K^*\mu\mu$, and $B_s \rightarrow \phi\mu\mu$ branching fractions: fully affected by uncertainties from form factors and non-local matrix elements
- Optimized angular observables: reduced impact of form factor uncertainties
- ► $B_s \rightarrow \mu\mu$ branching fraction Small uncertainties (no hadron in final state, B_s decay constant from lattice)

LFU observables

Tiny hadronic uncertainties in SM (but can be larger in the presence of new physics)

New physics interpretation

New physics in $b \rightarrow s\ell\ell$ in the weak effective theory

► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, SM}^{bs\ell\ell} + \mathcal{H}_{eff, NP}^{bs\ell\ell}$

$$\mathcal{H}_{\text{eff, NP}}^{bs\ell\ell} = -\mathcal{N} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$$

• Operators considered here ($\ell = e, \mu$)

$$\begin{split} & O_9^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \,, \qquad O_9^{\prime bs\ell\ell} = (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \ell) \,, \\ & O_{10}^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \qquad O_{10}^{\prime bs\ell\ell} = (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \\ & O_S^{bs\ell\ell} = m_b(\bar{s}P_R b)(\bar{\ell}\ell) \,, \qquad O_S^{\prime bs\ell\ell} = m_b(\bar{s}P_L b)(\bar{\ell}\ell) \,, \\ & O_P^{bs\ell\ell} = m_b(\bar{s}P_R b)(\bar{\ell}\gamma_5 \ell) \,, \qquad O_P^{\prime bs\ell\ell} = m_b(\bar{s}P_L b)(\bar{\ell}\gamma_5 \ell) \,. \end{split}$$

Not considered here

- Dipole operators: strongly constrained by radiative decays.
 e.g. [arXiv:1608.02556]
- Four quark operators: dominant effect from RG running above m_B.

Jäger, Leslie, Kirk, Lenz [arXiv:1701.09183]

Setup

▶ Quantify agreement between theory and experiment by χ^2 function

$$\chi^2(\vec{C}) = \left(\vec{O}_{\mathsf{exp}} - \vec{O}_{\mathsf{th}}(\vec{C})
ight)^{\mathsf{T}} \left(C_{\mathsf{exp}} + C_{\mathsf{th}}
ight)^{-1} \left(\vec{O}_{\mathsf{exp}} - \vec{O}_{\mathsf{th}}(\vec{C})
ight).$$

- theory errors and correlations in covariance matrix C_{th}
- experimental errors and available correlations in covariance matrix Cexp
- Theory errors depend on new physics Wilson coefficients $C_{th}(\vec{C})$
- $\Delta \chi^2$ and pull

$$\begin{aligned} \mathsf{pull}_{\mathsf{1D}} &= \mathsf{1}\sigma \cdot \sqrt{\Delta\chi^2}, \qquad \text{where } \Delta\chi^2 &= \chi^2(\vec{\mathsf{0}}) - \chi^2(\vec{\mathsf{C}}_{\mathsf{best\,fit}}), \\ \mathsf{pull}_{\mathsf{2D}} &= \mathsf{1}\sigma, 2\sigma, 3\sigma, \dots \quad \text{for} \quad \Delta\chi^2 &\approx 2.3, 6.2, \mathsf{11.8}, \dots \end{aligned}$$

New physics scenarios Weak Effective Theory (WET) at scale 4.8 GeV

Setup

• Quantify agreement between theory and experiment by χ^2 function

$$\chi^2(\vec{C}) = \left(\vec{O}_{\text{exp}} - \vec{O}_{\text{th}}(\vec{C})\right)^{\mathsf{T}} \left(C_{\text{exp}} + C_{\text{th}}(\vec{C})\right)^{-1} \left(\vec{O}_{\text{exp}} - \vec{O}_{\text{th}}(\vec{C})\right) \,.$$

- theory errors and correlations in covariance matrix C_{th}
- experimental errors and available correlations in covariance matrix Cexp
- Theory errors depend on new physics Wilson coefficients $C_{th}(\vec{C})$ *NEW*
 - Altmannshofer, PS, arXiv:2103.13370

$$\mathrm{pull}_{\mathrm{1D}} = \mathrm{1}\sigma\cdot\sqrt{\Delta\chi^2}\,,\qquad \text{where } \Delta\chi^2 = \chi^2(\vec{0}) - \chi^2(\vec{\mathcal{C}}_{\mathrm{best\,fit}})\,.$$

 $\text{pull}_{\text{2D}} = 1\sigma, 2\sigma, 3\sigma, \dots$ for $\Delta\chi^2 \approx 2.3, 6.2, 11.8, \dots$

New physics scenarios Weak Effective Theory (WET) at scale 4.8 GeV

 $\blacktriangleright \Delta \chi^2$ and pull

Scenarios with a single Wilson coefficients

	$b ightarrow { m s} \mu \mu$		LFU, $B_{ m s} ightarrow \mu \mu$		all rare B decays	
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.87^{+0.19}_{-0.18}$	4.3σ	$-0.74^{+0.20}_{-0.21}$	4 .1σ	$-0.80^{+0.14}_{-0.14}$	5.7 <i>σ</i>
$C_{10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60\substack{+0.14\\-0.14}$	4.7σ	$+0.55^{+0.12}_{-0.12}$	4.8 σ
$C_9^{\prime b s \mu \mu}$	$+0.39^{+0.27}_{-0.26}$	1.5σ	$-0.32^{+0.16}_{-0.17}$	2.0σ	$-0.14^{+0.13}_{-0.13}$	1.0 <i>o</i>
$C_{10}^{\prime b s \mu \mu}$	$-0.10^{+0.17}_{-0.16}$	0.6σ	$+0.06^{+0.12}_{-0.12}$	0.5σ	$+0.04^{+0.10}_{-0.10}$	0.4 σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.34\substack{+0.16\\-0.16}$	2 .1 σ	$+0.43^{+0.18}_{-0.18}$	2.4σ	$-0.01\substack{+0.12\\-0.12}$	0 .1 <i>σ</i>
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	$-0.60\substack{+0.13\\-0.12}$	4.3σ	$-0.35\substack{+0.08\\-0.08}$	4.6σ	$-0.41\substack{+0.07\\-0.07}$	5.9σ

Only small pull for

- Coefficients with $\ell = e$ (cannot explain $b \rightarrow s\mu\mu$ anomaly and $B_s \rightarrow \mu\mu$)
- Scalar coefficients (can only reduce tension in $B_s \rightarrow \mu \mu$)

see also similar fits by other groups: Geng et al., arXiv:2103.12738 Alg Ciuchini et al., arXiv:2011.01212 E

Algueró et al., arXiv:2104.08921 Datta et al., arXiv:1903.10086

Hurth et al., arXiv:2104.10058 Kowalska et al., arXiv:1903.10932

Scenarios with a single Wilson coefficients

		$b ightarrow { extsf{s}} \mu \mu$		LFU, $B_{ m s} ightarrow \mu \mu$		all rare B de	ecays
	Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
Ŀ	$C_9^{bs\mu\mu}$	$-0.87^{+0.19}_{-0.18}$	4.3σ	$-0.74^{+0.20}_{-0.21}$	4 .1σ	$-0.80^{+0.14}_{-0.14}$	5.7σ
NP er	$C_{ m 10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60\substack{+0.14\\-0.14}$	4.7σ	$+0.55^{+0.12}_{-0.12}$	4.8σ
	$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	$-0.60\substack{+0.13\\-0.12}$	4.3σ	$-0.35\substack{+0.08\\-0.08}$	4.6σ	$-0.41\substack{+0.07\\-0.07}$	5.9σ
Ŀ.	$C_9^{bs\mu\mu}$	$-0.96^{+0.19}_{-0.18}$	4.6 σ	$-0.74^{+0.20}_{-0.21}$	4 .1σ	$-0.83^{+0.14}_{-0.14}$	5.9σ
٩e	$C^{bs\mu\mu}_{10}$	$+0.51^{+0.22}_{-0.22}$	2.3σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.56^{+0.12}_{-0.12}$	4.9σ
S	$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	$-0.64\substack{+0.16\\-0.17}$	4.3σ	$-0.35\substack{+0.08\\-0.08}$	4.6σ	$-0.41\substack{+0.07\\-0.07}$	5.9σ

Visible effect of theory errors depending on new physics

Before Moriond 2021

WET at 4.8 GeV

After Moriond 2021:

- ► **R**_K: smaller uncertainty
- $B_s \rightarrow \mu \mu$: smaller uncertainty, better agreement with $b \rightarrow s \mu \mu$

WET at 4.8 GeV

WET at 4.8 GeV

Combination of $B_s \rightarrow \mu^+ \mu^-$ and NC LFU observables (R_K , R_{K^*} , $D_{P_{A'-5'}}$)

- ► NCLFU obs. & B_s → µµ: very clean theory prediction, insensitive to universal C^{univ.}₉
- b → sµµ sensitive to univ. coeff. possibly afflicted by underestimated hadr. uncert.
- Before Moriond 2021

WET at 4.8 GeV

Combination of $B_s \rightarrow \mu^+ \mu^-$ and NC LFU observables (R_K , R_{K^*} , $D_{P_{A'-5'}}$)

- ► NCLFU obs. & B_s → µµ: very clean theory prediction, insensitive to universal C^{univ.}₉
- b → sµµ sensitive to univ. coeff. possibly afflicted by underestimated hadr. uncert.

After Moriond 2021:

LFU obs. & B_s → μμ: smaller uncertainty, better agreement with b → sμμ

WET at 4.8 GeV

- ► Global fit in C₉^{bsµµ}-C₁₀^{bsµµ} plane prefers negative C₉^{bsµµ} = -C₁₀^{bsµµ}
- Tension between fits to b → sµµ observables and R_K & R_{K*} could be reduced by LFU contribution to C₉

Before Moriond 2021

WET at 4.8 GeV

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$: $C_9^{bsee} = C_9^{bs\tau\tau} = C_9^{\text{univ.}}$

$$\begin{split} C_9^{bs\mu\mu} &= C_9^{univ.} + \Delta C_9^{bs\mu\mu} \\ C_{10}^{bsee} &= C_{10}^{bs\tau\tau} = 0 \\ C_{10}^{bs\mu\mu} &= -\Delta C_9^{bs\mu\mu} \end{split}$$

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
 - could be mimicked by hadronic effects
 - can arise from RG effects:

After Moriond 2021: smaller uncertainty, better agreement between R_K & R_{K*} and B_s → μμ

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$: $C_9^{bsee} = C_{10}^{bs\tau\tau} = C_{10}^{\text{univ.}}$

$$C_{9}^{bs\mu\mu} = C_{9}^{univ.} + \Delta C_{9}^{bs\mu\mu}$$
$$C_{10}^{bsee} = C_{10}^{bs\tau\tau} = 0$$
$$C_{10}^{bs\mu\mu} = -\Delta C_{9}^{bs\mu\mu}$$

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
 - could be mimicked by hadronic effects
 - can arise from RG effects:

Before Moriond 2021

WET at 4.8 GeV

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$: $C_9^{bsee} = C_9^{bs\tau\tau} = C_9^{\text{univ.}}$ $C_9^{bs\mu\mu} = C_9^{\text{univ.}} + \Delta C_9^{bs\mu\mu}$

$$C_{10}^{bsee} = C_{10}^{bs\tau\tau} = 0$$

 $C_{10}^{bs\mu\mu} = -\Delta C_{9}^{bs\mu\mu}$

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
 - could be mimicked by hadronic effects
 - can arise from RG effects:

 After Moriond 2021: smaller uncertainty, better agreement

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

$$C_{9}^{bs\mu\mu} = C_{9}^{univ.} + \Delta C_{9}^{bs\mu\mu}$$

$$C_{10}^{bsee} = C_{10}^{bs\tau\tau} = 0$$

$$C_{10}^{bs\mu\mu} = -\Delta C_{9}^{bs\mu\mu}$$

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
 - could be mimicked by hadronic effects
 - can arise from RG effects:

 After Moriond 2021: smaller uncertainty, better agreement

► Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

$$C_{9}^{b = c_{9}} = C_{9}^{b = c_{9}}$$

$$C_{9}^{b s \mu \mu} = C_{9}^{univ.} + \Delta C_{9}^{b s \mu \mu}$$

$$C_{10}^{b s e \mu} = C_{10}^{b s \tau \tau} = 0$$

$$C_{10}^{b s \mu \mu} = -\Delta C_{9}^{b s \mu \mu}$$

scenario first considered in Algueró et al., arXiv:1809.08447

- Preference for non-zero C₉^{univ.}
 - could be mimicked by hadronic effects
 - can arise from RG effects:

RG effect in SMEFT

RG effects require scale separation

Consider SMEFT

Possible operators:

- $[0_{l_{1}}^{(3)}]_{3323} = (\bar{l}_{3}\gamma_{\mu}\tau^{a}l_{3})(\bar{q}_{2}\gamma^{\mu}\tau^{a}q_{3})$ Might also explain R_{p(*)} anomalies!
- $[\mathbf{0}_{lg}^{(1)}]_{3323} = (\bar{l}_3 \gamma_\mu l_3)(\bar{q}_2 \gamma^\mu q_3)$: Sı Cı Strong constraints from $B \to K \nu \nu$ require $[\mathbf{C}_{lg}^{(1)}]_{3323} \approx [\mathbf{C}_{lg}^{(3)}]_{3323}$
- U₁ vector leptoquark (3, 1)_{2/3} couples LH fermions

$$\mathcal{L}_{\textit{U}_1} \supset g^{ji}_{\textit{lq}} \left(ar{q}^i \gamma^\mu l^j
ight) \textit{U}_\mu + ext{h.c.}$$

Generates semi-leptonic operators at tree-level

$$[C_{lq}^{(1)}]_{ijkl} = [C_{lq}^{(3)}]_{ijkl} = -\frac{g_{lq}^{jk} g_{lq}^{jl*}}{2M_U^2}$$

SU(2)

 $b \rightarrow s \tau \tau$

b

U

a

q

bı

Buras et al., arXiv:1409.4557

 $\rightarrow c \tau \nu$

Constraint on scalar coefficients

Before Moriond 2021

WET at 4.8 GeV

Constraint on scalar coefficients

- After Moriond 2021:
 - Region corresponding to mass eigenstate rate asymmetry A_{ΔΓ} = -1 excluded at 1σ

WET at 4.8 GeV

WET at 4.8 GeV

Constraint on scalar coefficients

- After Moriond 2021:
 - Region corresponding to mass eigenstate rate asymmetry A_{ΔΓ} = -1 excluded at 1σ
 - Clear effect of new, more precise measurement of effective $B_s \rightarrow \mu \mu$ lifetime τ_{eff}

Summary and Outlook

Summary

- ► Updated measurements of R_K and $B_s \rightarrow \mu \mu$ (new $B_s \rightarrow \phi \mu \mu$ data not included yet)
- ▶ New physics in the single muonic Wilson coefficients $C_9^{bs\mu\mu}$, $C_{10}^{bs\mu\mu}$, and $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$ gives clearly better fit to data than SM (pull_{1D} ≥ 5 σ).
- Slight tension between $R_{K^{(*)}}$ and $b \to s\mu\mu$ in $C_9^{bs\mu\mu}$ - $C_{10}^{bs\mu\mu}$ scenario can be reduced by **lepton flavor universal** $C_9^{univ.}$.

Outlook

Some directions for improving theory predictions and global fits

• Updated $B \to K\ell\ell$ LCSR form factors including $\mathcal{O}(\alpha_s)$ corrections

Gubernari, Kokulu, van Dyk, arXiv:1811.00983 Ball, Zwicky, arXiv:hep-ph/0406232

Implement recent results on non-local matrix elements into global fits Bobeth, Chrzaszcz, van Dyk, Virto, arXiv:1707.07305

Gubernari, van Dyk, Virto, arXiv:2011.09813

▶ $B \rightarrow K^*$ beyond narrow width on the lattice: study $B \rightarrow K\pi$ transition amplitude

Briceño, Hansen, Walker-Loud, arXiv:1406.5965

▶ $B \rightarrow K^*$ beyond narrow width in LCSR: implement into global fits

Descotes-Genon, Khodjamirian, Virto, arXiv:1908.02267

▶ Non-local $B \rightarrow K\ell\ell$ matrix elements on the lattice

Nakayama, Ishikawa, Hashimoto, arXiv:2001.10911

Backup slides

 Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃

- Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃
- ▶ $R_{D^{(*)}}$ explanation: Very good agreement between $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $b \rightarrow s\mu\mu$ explanations

- Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃
- ▶ $R_{D^{(*)}}$ explanation: Very good agreement between $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $b \rightarrow s\mu\mu$ explanations
- ► Only a simple SMEFT scenario ⇒ Consider explicit models that yield this coefficients
 - \Rightarrow Good candidate: *U*₁ Leptoquark

Correlation effects in the global likelihood

Slightly different results by different groups

Descotes-Genon, PS, Talk at Beyond the Flavour Anomalies https://conference.ippp.dur.ac.uk/event/876/

		All		LFUV		
1D Hyp.	1σ	$Pull_{\mathrm{SM}}$	p-value	1σ	$Pull_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	[-1.19, -0.88]	6.3	37.5%	[-1.25, -0.61]	3.3	60.7 %
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{10\mu}^{\rm NP}$	[-0.59, -0.41]	5.8	25.3 %	[-0.50, -0.28]	3.7	75.3 %
$\mathcal{C}_{9\mu}^{\rm NP} = -\mathcal{C}_{9'\mu}$	[-1.17, -0.87]	6.2	34.0 %	[-2.15, -1.05]	3.1	53.1%

Coefficient	type	best fit	1σ	${\sf pull}_{1{\sf D}}=\sqrt{\Delta\chi^2}$
$C_9^{bs\mu\mu}$	$L \otimes V$	-0.93	[-1.07, -0.79]	6.2 σ
$C_9^{\prime b s \mu \mu}$	$R \otimes V$	+0.14	[-0.02, +0.31]	0.9σ
$C_{10}^{bs\mu\mu}$	$L \otimes A$	+0.71	[+0.58, +0.84]	5.7 σ
$C_{10}^{\prime b s \mu \mu}$	$R \otimes A$	-0.20	[-0.29, -0.08]	1.7σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L \otimes R$	+0.15	[+0.02, +0.29]	1.2σ
$m{C}_9^{bs\mu\mu}=-m{C}_{10}^{bs\mu\mu}$	$L \otimes L$	-0.53	[-0.61, -0.46]	6.9 σ

C_9 vs. $C_9 = -C_{10}$ with global likelihood

Likelihood contours for different sets of observables taken into account

- ▶ Most groups doing fits of $b \rightarrow s\ell\ell$ observables do not include $\Delta F = 2$ obs.: They do not depend on $b \rightarrow s\ell\ell$ Wilson coefficients
- In global likelihood, △F = 2 obs. naturally included (global!)
- Choice whether to include them or not: clear difference in C₁₀^{bsμμ} direction (red contour vs. blue contour)
- This explained the differences between the different groups!

Why does the inclusion of $\Delta F = 2$ observables has such an impact on the fit in the $C_{10}^{bs\mu\mu}$ direction if $\Delta F = 2$ observables do not depend on $C_{10}^{bs\mu\mu}$?

Why does the inclusion of $\Delta F = 2$ observables has such an impact on the fit in the $C_{10}^{bs\mu\mu}$ direction if $\Delta F = 2$ observables do not depend on $C_{10}^{bs\mu\mu}$?

Theory correlations...

Correlations in a toy example

• Correlations for observables O_1 , O_2 (uncertainties $\sigma_{1,2}$, correlation coeff. ρ):

$$-2\ln \mathcal{L}(O_1, O_2) = \frac{1}{1 - \rho^2} \left(\frac{D_1^2}{\sigma_1^2} + \frac{D_2^2}{\sigma_2^2} - 2\rho \frac{D_1 D_2}{\sigma_1 \sigma_2} \right) , \qquad D_{1,2} = (O_{1,2} - \hat{O}_{1,2})$$

▶ If $D_1(C_{10})$ depends on C_{10} and D_2 is constant in C_{10} , then $\Delta \ln \mathcal{L}$ between $C_{10} = 0$ and $C_{10} = \tilde{C}_{10}$ yields

$$\Delta \ln \mathcal{L} \propto \frac{D_1^2(0) - D_1^2(\tilde{C}_{10})}{\sigma_1^2} - 2 \rho D_2 \frac{D_1(0) - D_1(\tilde{C}_{10})}{\sigma_1 \sigma_2}$$

- First term is present whether we include O_2 or not (up to $\frac{1}{1-\sigma^2}$ prefactor)
- Second term makes a difference
 - if $\rho \neq 0$, i.e. **0**₁ and **0**₂ are correlated
 - if $D_2 \neq 0$, i.e. experimental estimate \hat{O}_2 shows deviation from SM prediction O_2

Correlations in the global likelihood

The same is true for $\Delta F = 2$ observables, in particular ϵ_{K} :

- ▶ theory predictions of ϵ_{κ} and $BR(B_s \rightarrow \mu\mu)$ are correlated, $BR(B_s \rightarrow \mu\mu)$ depends on C_{10}
- experimental estimate of ϵ_{K} shows deviation from SM prediction

Should we include $\Delta F = 2$ observables in $b \rightarrow s\ell\ell$ fit or not?

Two different assumptions:

- ▶ Including them and only varying C_{10} means we assume all other Wilson Coefficients $C_i = 0$, i.e. we fix the SM point in these directions
- Excluding them is (nearly) equivalent to setting certain $C_i \neq 0$ such that theory prediction and experimental estimate of $\Delta F = 2$ observables agree

Bayesian approach: marginalise over "nuisance coefficients" C_i

- ▶ Including them and only varying C_{10} corresponds to prior on C_i strongly peaked around SM value $C_i = 0$
- **Excluding them** is equivalent to flat prior that allows the posterior for C_i to be peaked around $C_i \neq 0$

What can we learn from this?

- There are different assumptions we can make by including or excluding certain observables
- It is not obvious if there is a "correct" one, but we should be aware of the differences
- ► The $\Delta \chi^2$ values between best-fit point and SM point can be different and one has to think about what "SM point" actually means if one does not fix $C_i = 0$