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• Three “families” of charged leptons:
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The charged leptons
• Three “families” of charged leptons:

• No upper bound to number of lepton families in SM, but mass of fourth neutrino constrained experimentally:
 GeVmν4

≳ 45 [Adv. Ser. Dir. HEP 23 (2015) 89-106]
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https://www.worldscientific.com/doi/abs/10.1142/9789814644150_0004
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Lepton flavor (universality) violation
• Two properties (still) hold in the SM: 

1) Lepton flavor number (accidentally) conserved in the SM (by charged leptons and neutrinos) 

2) Lepton flavor universality: couplings to gauge bosons do not depend on lepton family 

• SM could be just a “low-energy version” of a more general theory: 

• Lepton flavor conservation violated (LFV) and/or lepton families could behave very differently at high energies (LFUV)

• Recently hints of LFUV in several measurements (not an exhaustive list):
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• Many BSM models (e.g. SUSY, Z’, LQ, …) allow LF(U)V processes [Phys. Rev. D 59, 034019, 1999], [Phys. Rev. D 92, 054013, 2015], 

[arXiv:1505.05164], [arXiv:1609.08895]

https://arxiv.org/abs/2103.11769
https://arxiv.org/abs/2105.14007
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.011802
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.59.034019
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.054013
http://www.apple.com
https://arxiv.org/abs/1609.08895
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• Tau leptons in the final state: 

‣ Pros: 

1) m𝜏 ~ 17 mµ ~ 3500 me, taus could be the most sensitive to NP according 

to some models and enhanced by up to several orders of magnitude 

2) 𝛕 modes still largely unexplored (state of the art in the next slide)  

‣ Cons: 

1) More complex experimentally: 

• It decays before it can be detected, actually measure final state particles 

• Neutrinos in the final state, missing energy. LHCb has not 4π coverage!

Rare B decays with 𝜏 leptons in the final state

• Rare  decays excellent probes for new physics: 

• Branching ratios could be enhanced by NP contributions

b → s l+l−

[Phys. Rev. Lett. 120, 181802, 2018]

• Not only rare decays! Sophisticated reconstruction techniques used for  (very short introduction in backup)  R(D(*))

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.181802
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Tau modes: the state of the art
Decay SM prediction Measurement or limit at 90% CL

B0 → τe - < 2.8 ⋅ 10−5

Reference

B0
(s) → τμ

- - -

-

-

-

(2.22 ± 0.19) ⋅ 10−8

(7.73 ± 0.49) ⋅ 10−7

(0.98 ± 0.10) ⋅ 10−7

(1.20 ± 0.12) ⋅ 10−7

(7.7 ± 0.6) ⋅ 10−5

(9.35 ± 0.38) ⋅ 10−5

B+ → K+τe

B+ → π+τe / B+ → π+τμ

B0 → K*0τe / B0 → K*0τμ

B0 → ττ

B0
s → ττ

B0 → K*0ττ
B+ → K+ττ

B+ → τ+ν
B0 → π−τ+ν

[Phys. Rev. Lett. 118, 251802, 2017]

[Phys. Rev. Lett. 118, 251802, 2017]

-

B0
s → τe

-

< 1.2 (3.4) ⋅ 10−5 [Phys. Rev. Lett. 123, 211801, 2019]

B+ → K+τ+μ−

-

< 3.0 ⋅ 10−5 [Phys. Rev. D 86, 012004 (2012)]

< 3.9 ⋅ 10−5 [JHEP 2006 (2020) 129]

[Phys.Rev. D 77, 091104 (2008)]

- -
< 7.5 ⋅ 10−5 / 7.2 ⋅ 10−5 [Phys. Rev. D 86, 012004 (2012)]

[Phys. Rev. Lett. 120, 181802, 2018]

< 1.6 ⋅ 10−3

< 5.2 ⋅ 10−3

< 2.3 ⋅ 10−3

(1.09 ± 0.24) ⋅ 10−4

< 2.5 ⋅ 10−4

[Phys. Rev. Lett. 118, 031802 (2017)]

[PDG]

[Phys. Rev. D 93, 032007 (2016)]

(BaBar)

(LHCb)

(BaBar)

(LHCb)

(BaBar)

(LHCb)

(LHCb)

(BaBar)
(Belle, BaBar)

(Belle)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.032007
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.251802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.211801
https://pdg.lbl.gov/2021/web/viewer.html?file=/2021/listings/rpp2021-list-B-plus-minus.pdf#page=33
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.012004
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.031802
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.77.091104
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.181802
https://link.springer.com/article/10.1007/JHEP06(2020)129
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.012004
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.251802
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Tau decays: main channels used

• Hadronic decay: 

•  

• Additional neutral pion component:  

• Decay vertex position reconstructed from pion tracks 

• : cross-shape in pseudo-Dalitz plane

τ− → a−
1 (1260) ντ → ρ0(770) π−ντ → π−π+π−ντ

τ− → π−π+π−π0ντ

ρ0(770) → π+π−

π
π
π

𝜈

𝛕

π
π
π

𝜈

𝛕
π0

+
BR = (9.31 ± 0.05) % BR = (4.62 ± 0.05) %

• Muonic decay: 

•  

• Decay vertex not reconstructed, more topological 

constraints from the rest of the event needed

τ− → μ− ν̄μ ντ

µ

𝜈

𝛕

𝜈

BR = (17.39 ± 0.04) %

• And many others: [PDG]

https://pdg.lbl.gov/2021/web/viewer.html?file=/2021/listings/rpp2021-list-tau.pdf#page=5


Prospects for  and related decays at LHCbb → sτ+τ− Jacopo Cerasoli11

Analytic mass reconstruction
• Hadronic tau decay reconstructable analytically: 

• Impose the constraint  MeV 

•  

• Momentum direction from tau and  decay vertices (if  vertex available) 

• Square root argument can be affected by vertex resolution: 

• Apply a correction: absolute value, set to 0 if negative, vertex constraint, … 

(don’t forget your systematics 🙂)

mτ = 1776.86

| ⃗pτ | =
(m2

τ + m2
3π) | ⃗p 3π |cos θ ± E3π (m2

τ − m2
3π)2 − 4m2

τ | ⃗p 3π |2 sin2 θ

2(E2
3π − | ⃗p3π |2 cos2 θ)

B B

πν

τ

π

π

Unofficial

 simulationB0 → K0*τ+τ−

Visible mass

Reconstructed mass

Unofficial

 
simulation

B0 → K0*τ+τ−

θ

ν

τ 3π

see also q2 reconstruction in Ulrik Egede’s talk!
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More missing energy recovering techniques

• Minimally corrected mass:  

• Minimal correction to take into account neutral/undetected particles 

• invariant mass of a two-body decay with a massless particle 

in the final state 

• Refit of the decay chain applying mass constraints: 

• Improve mass resolution 

• Need to initialize the fitter, analytic reconstruction can be used 

• Fitter can fail, reduced efficiency

Mc = M2
vis + p2

vis sin2 θ + pvis sin θ

m2 + p2 + p = pvisB
θ

ν
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see also Ulrik Egede’s talk!
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Isolation variables
• Isolation variables estimate the “activity” near signal candidate: estimate how likely it is for a given track in 

proximity of the signal candidate to be actually part of it 

• Examples: 

A) Smallest Δχ2: smallest variation in vertex χ2 when adding to the vertex an (two) additional track(s) from the event  

B) Smallest Δχ2 mass: mass of the tracks obtained from definition A 

C) Cone isolation (neutral and charged): properties of neutral or charged particles in a cone around the track 

(momentum, transverse momentum, track multiplicity, asymmetries, …) 

D) MVA-based track isolation: obtained from MVA output using kinematic and geometrical variables of given track

A

 simulation

Combinatorial background
B0 → K*0τ+τ−

Unofficial B Unofficial C Unofficial D Unofficial
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MVA techniques
• Wide variety available (BDT, NN, …), strong effort by HEP community to develop new algorithms 

• Exploit correlations between input variables to enhance discriminating power 

• Used at different level of the analysis: 

- Pre-selection variables (e.g. trigger, particle identification, BDT-based isolation, …) 

- Selection variables (e.g. anti-combinatorial BDT, specific background MVA, …) 

- Fit variables: 

✓Pros: recover discriminating power by combining several less discriminating variables 

❌Cons: input variables validated on other channels, background description data-driven (correlation with 

variable(s) used to define control region)

• : final fit performed on neural network output 

• NN flattened on simulated signal events 

• Background from control region, peaking at low values

B0
(s) → τ+τ−

Neural network output
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[Phys. Rev. Lett. 118, 251802, 2017]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.251802
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Control samples
• Same-sign data: require both final state leptons to have the same charge 

- Good for background modeling and cross-checks, but no exclusive events are present (always need an extra track) 

- Need to estimate peaking backgrounds
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[Phys. Rev. Lett. 118, 251802, 2017]• Mass sidebands:  

- Fit on events close to mass peak, background shapes from sidebands

• In general if B mass is not reconstructable hard to validate that background MVA has same shape in signal and control region

• Pseudo-Dalitz plane: invariant masses of oppositely charged pions from  

-  intermediate resonance forms cross-shape 

- Define signal region (e.g. box 5) and use other boxes to get background shape

τ− → π−π+π−ντ

ρ0(770)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.251802
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B0
(s) → τ+τ−

•  

• Neural network fit performed on events with both tau’s in central box of pseudo-Dalitz 

• Background from data in control region: one tau in boxes 4, 5 or 8 and the other in boxes 4 or 8 

• Contamination from residual signal in control region taken into account

τ− → π−π+π−ντ

[Phys. Rev. Lett. 118, 251802, 2017]

                @ 95 % CLℬ(B0 → τ+τ−) < 2.1 ⋅ 10−3 ℬ(B0
s → τ+τ−) < 6.8 ⋅ 10−3
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.251802
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B0
(s) → τ±μ∓

•  

• B mass reconstructed analytically, background model from same-sign data 

• Isolation-based BDT + anti-combinatorial BDT 

• One more BDT used to split data in four bins, with same amount of signal in each bin 

• Simultaneous fit over BDT bins, no signal excess observed

τ− → π−π+π−ντ

[Phys. Rev. Lett. 123, 211801, 2019]

                @ 95 % CLℬ(B0 → τ±μ∓) < 1.4 ⋅ 10−5 ℬ(B0
s → τ±μ∓) < 4.2 ⋅ 10−5
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.211801
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B+ → K+τ+μ− [JHEP 06 (2020) 129]

       @ 95 % CLℬ(B+ → K+μ−τ+) < 4.5 ⋅ 10−5

•  selected from  (  coming directly from primary vertex included, worse mass resolution) 

• Measure  and  momenta + mass constraints on  and :  four-momentum reconstructed (two-fold ambiguity) 

• Fit the missing mass distribution by computing  

• Tau reconstructed inclusively,  removed (suppresses background and easier to combine with other analyses) 

• Background further suppressed with BDT, final fit simultaneously in 4 BDT bins, no excess found

B+ B*0
s2 → B+K− B+

K− K+μ− B+ B*0
s2 B+

Pmiss = PB − PKμ

τ− → π−π+π−ντ
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https://link.springer.com/content/pdf/10.1007/JHEP06(2020)129.pdf
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Future prospects

• Run 2: design luminosity  cm-2 s-1, peak luminosity  cm-2 s-1 

• Run 3: 5x higher luminosity,  cm-2 s-1 

• Upgrade 1: new sub-detectors and hardware interventions to cope with luminosity 

• Hardware trigger bottleneck for hadronic modes, removed from Run 3 

• Full software trigger based on commercial GPUs 

• Expected ~ 2x yields for fully hadronic decays

2 ⋅ 1032 4.4 ⋅ 1032

2 ⋅ 1033

[CERN-LHCC-2011-001]

https://cds.cern.ch/record/1333091?ln=en
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Rare B decays with tau’s in Run 3 and beyond
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Luminosity scaling + reasonable performance improvements
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Conclusions

• Exciting times! Deviations from SM predictions in observables involving LFU 

• Extensive studies on rare B decays with e/µ in the final state, tau modes still largely unexplored 

• Tau’s could be the most sensitive to NP due to their large mass, improved measurements are very much needed! 

• Very challenging: missing energy due to neutrinos in the final state 

• Dedicated reconstruction techniques: analytic formulas, kinematical constraints, isolation variables, MVA fits, … 

• Expected ~ 300 fb-1 collected by LHCb in the next 20 years + Belle 2 is entering the game

John Lund / Getty Images
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The LHCb detector

• High vertex resolution m 

• Low momentum muon trigger  GeV (2018) 

• PID capabilities with  

• Good momentum resolution ,  GeV

σIP = 15 + 29/pT μ

pμ
T > 1.75

ϵμ ∼ 98 % επ→μ ∼ 1 %

σp/p = 0.5 − 1.0 % p ∈ [2,200]

[JINST 3 (2008) S08005]
[Int.J.Mod.Phys. A 30, 1530022 (2015)]

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005/meta
https://www.worldscientific.com/doi/abs/10.1142/S0217751X15300227


• Rare B decays described in a model-independent way with effective hamiltonian: 

• FCNC processes (high energy contributions) treated as point-like and encoded in Wilson coefficients  

• Long-distance physics (low energy contributions) described by effective operators  

•  is the energy scale of the process

Ci (λ)

Qi (λ)

λ = mb ∼ 4 GeV

Effective theories for  decaysb → s l+l− [Rev. Mod. Phys. 68 (1996) 1125-1144]

Hb→s
eff =

GF

2 ∑
i

VibV*is Ci (λ) Qi (λ)

• Dominant SM contributions: 

 (electromagnetic operator) 

 (semi-leptonic vector operator) 

 (semi-leptonic axial vector operator)

Q7 =
e2

16π2
mb(s̄LσμνbR)Fμν

Q9 =
e2

16π2
(s̄LγμbL)∑

l

(l̄γμl)

Q10 =
e2

16π2
(s̄LγμbL)∑

l

(l̄γμγ5l)

• NP can modify the values of Wilson coefficients or add new ones

https://arxiv.org/abs/hep-ph/9512380


• Tree-level  processes:  

• Analysis performed separately in two tau decay modes: 

- Hadronic  +  

- Muonic     

• 3-dimensional binned fits to: 

- Hadronic: 𝜏 lifetime,  (from analytic reconstruction!), BDT distribution →  

- Muonic:  energy (in  rest frame), ,  → 

b → c l ν R(D*−) = ℬ(B0 → D*−τ+ντ)/ℬ(B0 → D*−μ+νμ)

τ− → π−π+π−ντ τ− → π−π+π−π0ντ

τ− → μ− ν̄μ ντ

q2 R(D*−) = 0.291 ± 0.019 ± 0.026 ± 0.013

μ B0 m2
miss = (pB − pD − pμ)2 q2 R(D*−) = 0.336 ± 0.027 ± 0.030

Not only rare decays: R(D*−)

[Phys. Rev. Lett. 120, 171802 (2018)]

3 fb-1

[Phys. Rev. Lett. 115, 111803 (2015)]

Data
ντ D*→B 

X')Xν l→(c D*H→B 
ν D**l→B 
νµ D*→B 

Combinatorial
µMisidentified 

• Other results from BaBar and Belle: [Phys. Rev. D 94, 072007 (2016)] [Phys. Rev. D 97, 012004 (2018)] [Phys. Rev. D 88, 072012 (2013)] 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.171802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.111803
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.072007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.012004
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.072012

