

Anticipated precision and sensitivity at Belle II

Phillip Urquijo

The University of Melbourne

Mini-workshop on missing particle signatures and new physics at Belle II and LHCb July 2021

E. Izaguirre, T. Lin, B. Shuve, PRL 118 (2017)

PS & MESON DECAYS

es in $B^{\pm} \to K^{\pm}a, \, a \to \gamma\gamma$ very promising for ALPs! form the **first search** for ALPs in this process

$$\mathcal{L} = -\frac{g_{aV}}{4} \, a \, W^a_{\mu\nu} \tilde{W}^{a\,\mu\nu}$$

$$BF(a \to \gamma \gamma) = 100\%$$

- B→ X_s |+|-
- Loop in SM
- .Zani, BEAUTY2020 Search for low-mass NB states at BaBar Rare at BR < ~10-0

(Pseudoscalars)

- Higgs-like (Scalars)
- Dark photons (Vector)

Belle II 2021

Phillip URQUIJO

Missing particle and (semi)leptonic signatures

Forbidden decays

Tests of lepton flavour universality

- Lepton flavour violating
- Lepton number violating
- Forbidden or very highly suppressed

- Semileptonic or leptonic
- BR ratios with $\tau/$ *μ*, τ/e, *μ*/e
- Tree or loop

- Low lepton fake rates, good electron momentum resolution.
- High hadronic and semileptonic tag full reconstruction efficiencies.
- Hermetic coverage for vetoes and inclusive tagging.
- Background robustness at high luminosity.

To project to future capacity we must look at current detector performance!

Belle II 2021

Missing energy and semileptonic analyses

K-Long and muon detector: Resistive Plate Chambers (barrel outer layers); Scintillator + WLSF + SiPMs (endcaps, inner 2 barrel layers)

Particle Identification Time of Propagation TOP (barrel) **Proximity focusing Aerogel RICH (fwd)**

 $He(50\%):C_2H_6(50\%)$, small cells, long

(Anticipated) SuperKEKB/Belle II Luminosity Profile

~90% data taking efficiency

Belle II 2021

	KEKB	SuperKEKB	Achievements
β* _y (mm)	5.9/5.9	0.3/0.27	1/1 **
I _{beam} (A)	1.19/1.65	2.6/3.6	0.7/0.8 **
L(cm ⁻² s ⁻¹)	2.11x10 ³⁴	65x10 ³⁴	3.12x10 ³⁴

4

bremsstrahlung corrections.

Lepton identification

- Electrons strongly rely on ECL shower shapes, E/p, dE/dx (CDC).
- Muons rely on KLM (above ~700 MeV/c), and ECL (lower momenta).
- The τ problem: B $\rightarrow \tau \rightarrow I$ have ~500 MeV/c.
 - Use of ML methods for e & μ ID in use, optimised for low p (big improvements with ECL shower shape BDT).

Neutrals and vetos

- - signal from beam background and split offs).

 - Track counting based veto (absolutely crucial).

Belle II Track Counting

>1 M hadronic B-tags, >5 M semileptonic B-tags in 200 fb⁻¹ sample.

Recent improvements (new channels, PID, vertex fitting).
 Belle II 2021
 Phillip URQUIJ

ags in 200 fb⁻¹ sample. ertex fitting). Phillip URQUIJO

Tree Decays

Belle II 2021

Phillip URQUIJO

	\checkmark^{ℓ^+}
	ν
)	
t =	34.6fb^{-1}
•	Background Continuum MC stat. unc. Data
i4	4
.0	2.5
,—	1
ן ו	V _{ub} .

- Belle II needs to improve R(D) also more sensitive to H[±]-like scalar.
- Beyond R(D) and R(D^{*}) kinematics, polarisation and other observables. $\times 10^3$

- Inclusive $B \rightarrow X\tau v$ (with FEI hadronic tag) only ever measured by LEP.
- Charmless (Belle $B \rightarrow \pi \tau v$ had tag.) is highly stats limited and can be seen with Belle II.

Belle II 2021

Phillip URQUIJO

$B \rightarrow X_{c,u} / v, B \rightarrow D^* / v$ MELBOURN

- V_{xb} inclusive-exclusive puzzle persists.
 - V_{ub}: recent inclusive Belle result reduces tension.
 - V_{cb}: Non-zero recoil LQCD inputs coming from Fermilab/MILC & JLQCD (Fermilab/MILC) 2105.14019 [hep-lat]).

Belle arXiv:2102.00020 V_{ub} inclusive

FIG. 9. The post-fit projection of M_X of the two-dimensional fit to $M_X : q^2$ on M_X and the q^2 distribution in the range of $M_X \in [0, 1.5]$ GeV are shown. The resulting yields are corrected to correspond to a partial branching fraction with $E_{\ell}^{B} > 1 \,\text{GeV}$. The remaining q^{2} distributions are given in Figure 22 (Appendix D).

D. Ferlewicz, PU, E. Waheed PRD 103, 073005 (2021) Belle + non-zero recoil JLQCD

Phillip URQUIJO

Future studies

- V_{cb}: New Belle II results (inclusive Belle used only 140 fb⁻¹). Exclusive needs more data at low w (better slow **pion efficiency at Belle II**).
- V_{ub}: inclusive and exclusive are experimentally statistics limited.
- New physics:
 - **LFUV** with light leptons (improved lepton identification systematics at Belle II).

Belle II arXiv: 2008.10299, $B \rightarrow D^* l v tagged$ Belle II arXiv: 2008.07198, $B \rightarrow D^*$ l v untagged

Phillip URQUIJO

THE UNIVERSITY OF **MELBOURNE**

WEK

Loop Decays

 (c^2) LHCb 220 + Data 9 fb⁻¹ 500 **Z** 180 - Total fit Combinatorial

$([1.0, 6.0]{ m GeV^2})$	26%	፝ ₂₅	10%		3.2°_{2}
$(> 14.4 {\rm GeV^2})$	24%	20	9.2%		2.8°_{\prime}
$([1.0, 6.0]{ m GeV^2})$	32%	15	12%		4.0°_{\prime}
$(> 14.4 {\rm GeV^2})$	28%	10 5	11%		3.4°_{\prime}
		5			
ip URQUIJO		0 _8	-6 -4 16 2 0	2 4	6 8

Belle Σ Exclusive: Phys. Rev. D 93, 032008 (2016)

Belle II 2021

Tagged Dilepton Inclusive

 Novel Belle II studies based on tagging to inclusively reconstruct the X system (in progress).

Σ Exclusive projections	Belle 0.71 ab^{-1}	Belle II $5 ab^{-1}$	Belle II 50 ab^{-1}
$Br(B \to X_{s}\ell^{+}\ell^{-}) ([1.0, 3.5] \text{GeV}^{2})$	29%	13%	6.6%
$Br(B \to X_{s}\ell^{+}\ell^{-}) ([3.5, 6.0] \text{GeV}^{2})$	24%	11%	6.4%
$Br(B \to X_{s}\ell^{+}\ell^{-}) (>14.4 \text{GeV}^{2})$	23%	10%	4.7%
$A_{\rm CP}(B \to X_{s}\ell^{+}\ell^{-}) \ ([1.0, 3.5] {\rm GeV^{2}})$	26%	9.7%	3.1%
$A_{\rm CP}(B \to X_{s}\ell^{+}\ell^{-}) \ ([3.5, 6.0] {\rm GeV^{2}})$	21%	7.9%	2.6%
$A_{\rm CP}(B \to X_{s}\ell^{+}\ell^{-}) \ (>14.4 {\rm GeV^{2}})$	21%	8.1%	2.6%
$A_{\rm FB}(B \to X_{s}\ell^{+}\ell^{-}) \ ([1.0, 3.5] \text{GeV}^{2})$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_{s}\ell^{+}\ell^{-}) \ ([3.5, 6.0] \text{GeV}^{2})$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_{s}\ell^{+}\ell^{-}) \ (>14.4 \text{GeV}^{2})$	19%	7.3%	2.4%
$\Delta_{\rm CP}(A_{\rm FB}) \ ([1.0, 3.5] {\rm GeV^2}) \\ \Delta_{\rm CP}(A_{\rm FB}) \ ([3.5, 6.0] {\rm GeV^2}) \\ \Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 {\rm GeV^2}) $	52%	19%	6.1%
	42%	16%	5.2%
	38%	15%	4.8%

- SM $B \rightarrow K^{(*)}$ vv studies: Now 3 methods demonstrated.

 - iterations of B-full reconstruction.

Belle II 2021

or long-lived

'S		Observables	5	Belle 0.71 ab^{-1} (0.12 ab ⁻¹)	Belle II 5 ab^{-1}
! $\tilde{W}^{a\mu\nu}$.00'		$Br(B^{+} \rightarrow K)$ $Br(B^{0} \rightarrow K)$ $Br(B^{+} \rightarrow K)$ $F_{L}(B^{0} \rightarrow K)$ $F_{L}(B^{+} \rightarrow K)$ $Br(B^{0} \rightarrow \nu)$ $Br(B_{s} \rightarrow \nu)$	$(1^{+}\nu\bar{\nu})$ $(1^{*0}\nu\bar{\nu})$ $(1^{*+}\nu\bar{\nu})$ $(1^{*0}\nu\bar{\nu})$ $(1^{*+}\nu\bar{\nu})$ $(1^{*+}\nu\bar{\nu})$ $(1^{*+}\nu\bar{\nu})$ (1^{5}) $\times 10^{5}$	< 450% < 180% < 420% 	30% 26% 25%
isi	ble		10 ⁻¹	Long lived - Hi	ggs-like scalar
BaBar BaBar BaBar B	Sar mono- γ , 23/ Belle II more $\rightarrow Ka$	/fb 7 no-γ	10 ^{−2}	A. Filimonov 101, 09500 π + KK BaBar	a, et al. PRD 06 (2020) Belle II μμ
ALI Phys.R	Ps, Izaguirre et ev.Lett. 118 (20 111802	t al. 017) 11,	10 ⁻⁴		IL-LHCb
1 $M_a \; [{ m GeV}]$	1 /]	5	Ë	1 2 <i>m</i>	34 ₅ [GeV]
Phillip URQL	NIO			19	

- LFV channels, use tagging to infer recoil mass near m_{τ} .
- LF conserving channels with τ probably out of reach of SM, but good for NP sensitivity.
- Results from Belle (II) on the way (none yet).

SM prediction Br($B^+ \to K^{*+} \tau^+ \tau^-$)_{SM} = (0.99 ± 0.12) · 10⁻⁷, Br($B^0 \to K^{*0} \tau^+ \tau^-$)_{SM} = (0.91 ± 0.11) · 10⁻⁷,

 $\ell, \ell' = e, \mu, \tau$

Observables	Belle 0.71 ab^{-1}	Belle II	Belle II
$1.8 2 m_{\tau} (GeV/c^2)$	$(0.12 \mathrm{ab}^{-1})$	5 ab^{-1}	$50 {\rm ab}^{-1}$
$\operatorname{Br}(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
$Br(B^0 \rightarrow \tau^+ \tau^-) \cdot 10^5$	< 140	< 30	< 9.6
$\operatorname{Br}(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 70	< 8.1	—
${ m Br}(B^+ \to K^+ \tau^\pm e^\mp) \cdot 10^6$			< 2.1
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$			< 3.3
$\operatorname{Br}(\mathbb{A}^0 \to \eta^{\pm} \mathfrak{s} e^{\mp}) \cdot 1\mathfrak{D}^6 \qquad 2.5$	-3-	—	< 1.6
$\frac{\mathrm{Br}(B^0 \to \tau^{\pm} \mu^{\mp}) \cdot 10^6}{\mathrm{m}}$	$n_{\tau} (GeV/c^2)$		< 1.3

^{B⁺}→₱ĥ†fħp URQUIJO

• Good near term prospects for exotic searches, e.g. $\tau \rightarrow I \alpha$ (invisible), and τ decay LFUV (need to push Lepton ID systematics).

Phillip URQUIJO

Charm: SL, Forbidden

- Belle II expects to have a program of leptonic & semileptonic measurements $D_s \rightarrow Iv \text{ or } D \rightarrow vv \text{ using tag methods.}$
- Many charm forbidden or suppressed modes: most competitive with di-electron (recent updates by BaBar).

Stat limited up to 50 ab⁻¹ Most competitive on D_s

Channel	Observable	Belle/BaB	Sc	
		$\mathcal{L} \; [\mathrm{ab}^{-1}]$	Value	$5\mathrm{ab}^{-1}$
		Leptonic De	ecays	
	μ^+ events		492 ± 26	2.7k
$D_s^+ \to \ell^+ \nu$	τ^+ events	0.913	2217 ± 83	12.1k
	f_{D_s}		2.5%	1.1%
$D^+ \to \ell^+ \nu$	μ^+ events	-	_	125
	f_D	-	-	6.4%

Belle II 2021

Roadmap

2019:10 fb⁻¹

2020: ~100 fb⁻¹

2021: ~300-400 fb⁻¹ (December, **Babar 500 fb⁻¹**)

2022: ~O(1) ab⁻¹ (**Belle**). Long shutdown for PXD upgrade, $1 \rightarrow 2$ full layers.

 $2024/20255 ab^{-1}B2TiP Milestone$ PTEP 2019 (2019) 12, 123C01

2026 Possible second shutdown for high luminosity upgrades (SuperKEKB and Belle II)

Four steps: Intermediate luminosity (1-2 x 10³⁵ /cm²/sec, 5ab⁻¹); <u>High Luminosity (6.5 x 10³⁵/cm²/sec, 50 ab⁻¹) with a detector upgrade</u> Polarization Upgrade, Advanced R&D Ultra high luminosity (4 x 10³⁶/cm²/sec, 250 ab⁻¹), R&D Project

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating an upgrade program.

Observable

CKM precision, new physics in C

```
\sin 2\beta/\phi_1 \ (B \rightarrow J/\psi \ K_S)
         \gamma/\phi_3
         \alpha/\phi_2
         |V_{ub}| (Belle) or |V_{ub}|/|V_{cb}| (LHCb)
          \phi_s
         S_{CP}(B \rightarrow \eta' K_{S}, gluonic penguin)
         A_{\rm CP}({\rm B} \rightarrow {\rm K}_{\rm S} \pi^0)
         New physics in radiative & EW Po
         S_{CP}(B_d \rightarrow K^* \gamma)
         R(B \rightarrow K^* l^+ l^-) (1 \le q^2 \le 6 \text{ GeV}^2/c^2)
        R(B \rightarrow D^* \tau v)
         Br(B \rightarrow \tau v), Br(B \rightarrow K^* vv)
         Br(B_d \rightarrow \mu \mu)
          <u>Charm and \tau</u>
         \Delta A_{\rm CP}({\rm KK}-\pi\pi)
         A_{\rm CP}({\rm D}{\rightarrow}\pi^+\pi^0)
         Br(\tau \rightarrow e \gamma)
 \Rightarrow Br(\tau \rightarrow \mu \mu \mu)
```

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

Belle II 2021

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHC upgrade (300 fb
<u>P Violation</u>						
0.03	0.04	0.012	0.005	0.011	0.002	0.(
13°	5.4°	4.7°	1.5°	1.5°	0.4°	(
4°	_	2	0.6°	_	0.3°	
4.5%	6%	2%	1%	3%	<1%	
—	49 mrad	_		14 mrad		4 m
0.08	0	0.03	0.015	0	0.007	
0.15	_	0.07	0.04	—	0.02	
enguins, LFUV						
0.32	0	0.11	0.035	0	0.015	
0.24	0.1	0.09	0.03	0.03	0.01	0
6%	10%	3%	1.5%	3%	<1%	
24%, –	—	9%, 25%	4%, 9%	—	1.7%, 4%	
—	90%	—	—	34%	_	1
—	8.5×10-4	—	5.4×10-4	1.7×10-4	2×10-4	0.3×1
1.2%	_	0.5%	0.2%	—	0.1%	
<120×10-9	_	<40×10-9	<12×10-9	—	<5×10-9	
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	<5×]

• *Possible in similar channels, lower precision* -Not competitive.

- **210 fb⁻¹ collected** (most of it during Covid19 travel restrictions)
 - Selected highlights with up to 63 fb⁻¹ of 2020 data shown (major updates for EPS-HEP).
- The flavour physics (publication) program has started.
 - Semileptonic and leptonic channels are a major focus.
 - **Looking for both** high energy/mass scale NP and low mass "feeble" interactions.
- Performance generally better than Belle on lepton ID, neutral/extra calorimeter energy, K_L -ID, tracking at low momenta and B full-reconstruction (etc.).
 - Owing to better detector performance (VXD), use of more detector information (ECL waveform sampling), and better ML methods in particle reconstruction.
 - Excellent prospects for studies of missing particle channels.

Belle II 2021