Spin Rotator Design for the SuperKEKB High Energy Ring in a **Proposed Polarization Upgrade**

Yuhao Peng 2021.06.22

Overview of this project

- Current Status
- Technical details to be confirmed
- Beam Tracking Progress
- Future Steps

Outline

Purpose

Design a spin rotator for SuperKEKB High Energy Ring, to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

measurements; requires longitudinal polarization at the IP

 Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak

Rotator Magnet

- Follows Uli Wienands's idea and direction:
- replace some existing ring dipoles near the IP with the solenoid-dipole combined function magnets and maintain the original dipole strength
 - Install 6 skew-quadruple on top of each rotator section to compensate for the x-y plane coupling caused by solenoids

direction

Left rotator(L-Rot) is to rotate the longitudinal back to vertical

Spin rotator

Right rotator(R-Rot) is to rotate the vertical spin to the longitudinal

Constraints of the Design

- twiss parameters (α, β, γ), and dispersion function
- Maintain the Beam quality: Make the **Emittance** as low as possible
- Maintain the overall machine feature
 - Maintain the original **Chromaticity** $\xi =$

• Maintain the original **Tune Value** $Q = -\frac{1}{2\pi}$

Technical constraints: All new magnets must be manufacturable and installable

• Need to maintain the original optical functions outside of the rotator region, such as

$$\frac{\Delta Q}{\Delta p/p}$$

$$\Delta \Psi$$

Procedure of Design and Maintaining Transparency

• Design:

• Find the appropriate dipoles to replace

- Fit the strength of solenoids
- •Transparency: • Decouple the x-y plane with skew quads

 - Tune the chromaticity with ring sextupoles
 - Maintain the Tune value Q

•Rematch the optics by tuning ring quads near/in the rotator region

Main Difficulties

- •To make the vertical emittance as small as possible, need to add extra constraints on the vertical dispersion function when performing the decoupling with skew-quads, which requires strong skew-quads
- •The stronger skew-quads are, the more they change the optical functions, which needs strong ring quads to do the optical rematch

Lattice Comparison at L-Rot Tuning Region

Lattice Comparison at R-Rot Tuning Region

Longitudinal spin alignment

• The spin track result shows a longitudinal spin alignment >99.99% with the rotator installed in the High Energy Ring

Spin Component	Spin at the entrance of the Rotator	Spin at the IP	Spin at the exit of the Rotator
X	0.00139185	0.00094458	-0.00284127
Y	0.99999508	-0.00115044	0.99999508
Ζ	0.00281270	0.99999889	-0.00133075

Chromaticity $\xi_{tot} = \frac{1}{4\pi} \oint \left| m(s)D(s) + k(s) \right| \beta(s) ds$

- quadrupole strength; β is the beta function
- strength, and the slope is proportional to the product of D and β

• Where m is the strength of the sextupole; D is the dispersion function; k is the

There exists a linear relationship between the chromaticity and the sextupole

Linear Relationship Between the Chromaticity and the Sextupole Strength

$$\begin{cases} \xi_x = \sum_i m_i x_i + x_0 \\ \xi_y = \sum_i n_i x_i + y_0 \\ i \end{cases}$$

- Where ξ_{χ} , ξ_{ν} is the first order chromaticity
- x_i is the strength of sextupole
- m_i , n_i only depends on local optics
- x_0, y_0 is the chromaticity when all tuning sextupoles are turned off

Comparison of the Ring Property After Chrom Tuning

)	x I		Y		
	Model	Design	Model	Design		
Q	45.529986	45.529986	43.569032	43.569032	! Tune	
Chrom	3.953515	3.953515	6.595477	6.595477	! dQ/(dE/E)	Origin
J_damp	1.000065	0.999667	1.001851	1.001851	! Damping Partition #	00
Emittance	4.43516E-09	4.43705E-09	1.87884E-12	1.87783E-12	! Meters	
Spin Tune:	9.77416E-02	9.77416E-02	! Spin Tur	ne on Closed	Orbit (Units of 2pi)	

		x		Y	
	Model	Design	Model	Design	
Q	46.424717	46.424717	43.919945	43.919945	! Tune
Chrom	3.953515	3.953515	6.595477	6.595477	! dQ/(dE/E)
J_damp	1.247909	1.243933	1.006355	1.006161	! Damping Partition #
Emittance	3.57009E-09	3.57935E-09	7.74755E-12	7.68478E-12	! Meters
Spin Tune:	-1.84712E-01	-1.84712E-01	! Spin Tun	e on Closed	Orbit (Units of 2pi)

Rotator Installed

al

Quadrupole Strength Comparison

Quadrupole	Length (m)	Original (T/m)	L-Rot (T/m)	Original k1L (1/m)	L-Rot k1L (1/m)
qla6le	0.826	5.881	5.401	0.208	0.191
qla7le	0.826	-5.601	-5.221	-0.198	-0.184
qla8le	0.570	13.941	26.613	0.340	0.649
qla9le	0.826	-4.315	-6.600	-0.153	-0.233
qla10le	0.826	5.414	6.784	0.1913	0.24
qf4e	1.015	0.805	0.309	0.0349	0.013
qd3e	0.826	-4.948	-5.244	-0.175	-0.185
qf2e	0.557	8.050	1.456	0.192	0.035
qd1e	1.015	-5.868	-0.764	-0.255	-0.033

• If new Qla8le is too strong?

• Can it be built and installed?

University Victoria

16

Answer to the Questions Thanks Mika Masuzawa for answering these questions:

• the current limit of QLA8LE is ~17T/m, K1~0.4 with a new power supply of 700A max

- If we use q quadrupole of different type and run it with class), K1 ~ 0.6 is possible
- For now we assume new magnet for QLA8LE

higher currents (meaning, need a new power supply of 1000A

Sextupole Strength

	length (m)	b2(Original)	K2L(Original)	b2 (0%Sx 1.7%Sy)	K2L (0%Sx 1.7%Sy)
SD5TLE	1.03	-0.4056	-0.8112	-4.075	-8.150
SF6TLE	0.334	0.181	0.362	1.936	3.873
SD7TLE	1.03	-3.473	-6.945	-4.073	-8.147
SD7TRE	1.03	-4.767	-9.533	-4.072	-8.145
SD5TRE	1.03	-2.095	-4.191	-4.070	-8.141

•In order to tune the first order chromaticity, strength of Sly magnets is increased by 1.7%

• Are SLy sextupoles touchable at 1.7% level?

•Are these SD sextupoles the same type of magnet?

Long_Term_Tracking

PTC: tracking element by element (slow)

Map: Taylor series (fast)

we are using PTC

Map does work well when spin tracking, radiation damping, and stochastic effect are turned on (David Sagan mentioned it), so

Long_Term_Tracking Progress

- Bunch centre at 0 and setting the energy spread to be 6.3E-4
- the rotator lattice (Bunch repetition rate is 50 Hz)
- The spin polarization is well preserved in 2000 turns

• Tracking 100 particles by running 2000 turns (20ms in lab frame), all particle are alive in the original lattice (sher5780); lost 2 particles in

Future Steps

- the beam lifetime(explore turning Touschek on)
- Maintain the Tune value Q and tune the spin tune
- Calculate the longitudinal spin polarization lifetime

Continue multi-turn beam tracking studies with BMAD to see

The normalized integrated multipole K_nL can be used when specifying magnetic multipole components

 K_nL

eV/c)

In our case, K_nL can be approximated

Appendix

$$\equiv \frac{qB_nL}{P_0}$$

where q is the charge of the reference particle (in units of the elementary charge), L is the element length, and P_0 is the reference momentum (in units of

Quadrupole	Length (m)	Original (T/m)	R-rot (T/m)	Original K1L (1/m)	R-rot K1L (1/m)
qd5e	0.826	-5.074	-6.079	-0.179	-0.215
qeae	0.826	5.178	5.490	0.183	0.194
qf4e	1.015	0.805	0.627	0.0349	0.027
qd3e	0.826	-4.948	-6.475	-0.175	-0.229
qf2e	0.557	8.050	6.497	0.192	0.155
qd1e	1.015	-5.867	-6.679	-0.255	-0.29
qla10re	0.826	5.848	6.142	0.207	0.217
qla9re	0.826	-8.794	-8.557	-0.311	-0.302
qla8re	0.557	11.457	12.264	0.273	0.292
qla7re	0.826	-5.078	-5.125	-0.179	-0.181
qla6re	0.826	5.319	5.409	0.188	0.191
qla5re	0.826	-3.792	-3.923	-0.134	-0.139

Table 1: Quadrupole comparison at R-rot Region

Name	s at exit (m)	length(m)	b2	K2L	Beta.a	Beta.b	Eta.x	Eta.y	Phase .a	Pł
SLYTLE	28.102	0.6	4.201	8.402	3.20	2263.099	-0.172	-0.00000432	2.780	4
SLYTLE#1	54.694	0.3	2.101(scaled)	4.201	3.226	2279.808	-0.166	0.000182	5.828	7
SLYTLE#2	54.994	0.3	2.101(scaled)	4.201	3.308	2296.587	-0.160	0.000183	5.920	7
SLYTRE	2961.822	0.6	-4.530	-9.061	1.762	2212.504	0.160	-0.0000926	280.138	26
SLYTRE#1	2988.613	0.3	-2.265 (scaled)	-4.530	1.617	2371.518	0.151	-0.00000272	283.101	269
SLYTRE#2	2988.913	0.3	-2.265 (scaled)	-4.530	1.586	2536.041	0.142	-0.00000267	283.290	26

Table 2: Sly sextupole information

Spin Rotator Component	Solenoid	Length (m)	Strength (T)	
	BLA4LE	5.902	4.526	
L-rot	BLA4LE	5.902	4.526	
	B2E	5.902	0.799	
D rot	B2E	5.902	-3.778	
R-rot	B2E	5.902	-3.778	

Table 3: Solenoid Information

Simulation Tool

- **Bmad** is an open-source software library (aka toolkit)created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays. Étienne Forest's "Polymorphic Tracking Code" (PTC) is incorporated into it.
- **Tao** is a user-friendly interface to Bmad which gives general purpose simulation, based upon Bmad.
- Bmad via the Tao interface is a powerful and user-friendly tool used for viewing lattices, doing Twiss and orbit calculations, and performing nonlinear optimization on lattices
- Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear University functions by a modification of the Levenberg-Marquardt algorithm of Victoria