# Inclusive $B \rightarrow X_{s, d} \ell^{+} \ell^{-}$:getting ready for $50 \mathrm{ab}^{-1}$ 

Enrico Lunghi Indiana University

T. Huber, EL, M. Misiak, D.Wyler hep-ph/05I2066 (NPB)
T. Huber, T. Hurth, EL I503.04849 (JHEP)
T. Huber, T. Hurth, J. Jenkins, EL, Q. Qin, K.Vos 1908.07507 (JHEP)
T. Huber, T. Hurth, J. Jenkins, EL, Q. Qin, K.Vos in preparation

## Outline

- Introductory remarks
short distance physics, NP contributions, typical spectrum
- Anomalies in exclusive modes
global fits
open theoretical issues (form factors, power corrections, resonances)
- Theory of inclusive decays

OPE and its breakdown
Krüger-Sehgal description of $u \bar{u}$ and $c \bar{c}$ resonances in the singlet channel Resonant octet contributions [work in progress]
Non-local power corrections
Cascades
$m_{X}$ cuts
QED radiation, Monte Carlo study and experiment/theory interplay

- Phenomenology

SM predictions, New Physics reach, comparison with exclusive

## Introduction: operators

SM operator basis:
$\mathcal{L}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]$

- Magnetic \& chromo-magnetic

$$
\begin{aligned}
Q_{7} & =\frac{e}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
Q_{8} & =\frac{g}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

## - Semileptonic

$$
\begin{aligned}
Q_{9} & =\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
Q_{10} & =\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

Everything is known very well ( $V_{u b} V_{u q}$ contribution is small for $b \rightarrow$ sl $\ell$ but important for $b \rightarrow d \ell \ell)$

- To address $b \rightarrow s \mu \mu$ anomalies, the lepton universality breaking operators $Q_{9,10}^{e e}$ and $Q_{9,10}^{\mu \mu}$ have been considered as well

Introduction: SM vs New Physics

SM contributions:


NP contributions:


## Introduction: typical spectrum



- Intermediate charmonium resonances contribute via:

$$
B \rightarrow\left(K, K^{*}, X_{s}\right) \psi_{\bar{c} c} \rightarrow\left(K, K^{*}, X_{s}\right) \ell^{+} \ell^{-}
$$

- Contributions of and have to be dropped
- Theory at low- $q^{2}$ and high- $q^{2}$ presents different challenges


## Exclusive modes: anomalies

## Branching Ratios:







Angular observables:


## LFUV ratios:




## Exclusive modes: global fits

- $\left[C_{9}^{b s \mu \mu}, C_{10}^{b s \mu \mu}\right]=[-0.73,0.40]$ pull $=6.3 \sigma$

- $\left[C_{9}^{b s \mu \mu}, C_{9}{ }^{\text {bs } s \mu \mu}\right]=[-1.06,0.47]$
pull $=6.0 \sigma$

[Aebischer et al, 1903.I0434]


## Exclusive modes: theoretical frameworks

- The central problem is the calculation of matrix elements:

$$
\left\langle K^{(*)} \ell \ell\right| O(y)|B\rangle \approx\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle
$$

- At low- $q^{2}$ the $K^{(*)}$ has large energy (large recoil):



## Soft-Collinear Effective Theory

The large energy of the $\mathrm{K}^{(*)}$ introduces three scales: $m_{b}^{2}, \Lambda m_{b}$ and $\Lambda^{2}$ :
$\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle \sim C \times\left[\right.$ Form Factor $\left.+\phi_{B} \star J \star \phi_{\left.K^{( }\right)}\right]+O\left(\Lambda / m_{b}\right)$

- At high-q $q^{2}$ the $K^{(*)}$ does not recoil:


$$
\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle \sim C \times[\text { Form Factor }]+O\left(\Lambda / m_{b}\right)
$$

## Exclusive modes: issues

- Form factors
- lattice QCD (high-q²): $B \rightarrow K$ complete, $B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi$ ongoing
- LCSR (low-q) : some uncertainties have to be ball-parked (power corrections, ...) but get access to all form factors (including baryons)
- Power corrections
- Presently incalculable
- In global fits they are taken into account via nuisance parameters
- If no form factors relations are used, their impact is not sizable because they are essentially confined to the the matrix element $\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}} O_{2}|B\rangle$
[Fermilab/MILC and EL, 1903.10434]
- If form factors relations are used $\Rightarrow$ construct "clean observables" (e.g. $P_{5}^{\prime}$ )


## Exclusive modes: issues

- Resonances at high-q²
- Unsurprisingly naive factorization fails to reproduce the resonant pattern observed in $B \rightarrow K \mu \mu$ at high- $q^{2}$
- The OPE and quark-hadron duality lead to a reliable prediction for the integrated high-q ${ }^{2}$ branching ratio [Beylich, Buchalla]
- Within naive factorization the contribution of the "wiggles" is non-negligible
- This has led to some uneasiness about our ability to use the high- $q^{2}$ region
 effectively
- All these anomalies need confirmation at Belle II
- different systematics
- access to more observables (inclusive modes)


## Inclusive theory: observables

- $B \rightarrow$ Kll

$$
\frac{d^{2} \Gamma^{K}}{d q^{2} d \cos \theta_{\ell}}=a+b \cos \theta_{\ell}+c \cos \theta_{\ell}^{2}
$$

- In the SM $b$ is suppressed by the lepton mass
- $B \rightarrow X_{s} \ell$

$$
\begin{aligned}
\frac{d^{2} \Gamma^{X_{s}}}{d q^{2} d \cos \theta_{\ell}} & =\frac{3}{8}\left[\left(1+\cos ^{2} \theta_{\ell}\right) H_{T}+2\left(1-\cos ^{2} \theta_{\ell}\right) I\right. \\
H_{T} & \sim 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2}{\hat{s}} C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{L} & \sim(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{A} & \sim-4 \hat{s}(1-\hat{s})^{2} \operatorname{Re}\left[C_{10}\left(C_{9}+2 \frac{m_{b}^{2}}{q^{2}} C_{7}\right)\right]
\end{aligned}
$$




- In the SM $H_{A}$ is not suppressed by the lepton mass
- There are similar contributions from non-SM operators but there is no interference between $\mathrm{V}+\mathrm{A}$ and V -A structures
- At low $q^{2}(\hat{s}<0.3) H_{T}$ is suppressed $\left(C_{7}<0\right)$


## Inclusive theory: observables

- $B \rightarrow K^{*} \ell \ell \rightarrow K \pi \ell \ell$

$$
\left.\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{P}}=\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}\right.
$$

 $+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{l}$
$-F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi$
$+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi$
$+\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{l}+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi$
$\left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]$
"clean ratios"

$$
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}}
$$



## Inclusive theory: OPE



$$
\begin{aligned}
p_{X_{s}}^{2} & =\left(p_{b}-q\right)^{2}=m_{b}^{2}+q^{2}-2 m_{b} q_{0} \\
& <m_{b}^{2}+q^{2}-2 m_{b} \sqrt{q^{2}}=\left(m_{b}-\sqrt{q^{2}}\right)^{2}
\end{aligned}
$$

OPE is an expansion in $\Lambda_{\mathrm{QCD}} /\left(m_{b}-\sqrt{q^{2}}\right)$ and breaks down at $q^{2} \sim m_{b}^{2}$

## Inclusive theory: OPE

- The breakdown of the OPE at high- $q^{2}$ results in large power corrections:
- power corrections account for the almost totality of the high-q² integrated branching ratio
- the poorly known matrix elements required to evaluate $1 / m_{b}^{3}$ power corrections are responsible for the large uncertainty
- Power corrections proportional to $C_{9,10}^{2}$ are identical to the power corrections which appear in $\bar{B}^{0} \rightarrow X_{u} \ell \nu$
- Introduce a new observable obtained by normalizing the rate to the semileptonic rate with the same $\mathrm{q}^{2}$ cut [Ligeti et al]:

$$
\mathscr{R}\left(s_{0}\right)=\frac{\int_{\hat{0}_{0}}^{1} d \hat{s} \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}}{\int_{\hat{s}_{0}}^{1} d \hat{s} \frac{\left.\mathrm{~d} \mathrm{\Gamma( } \mathrm{\bar{B}^{0}} \rightarrow X_{u} \ell L\right)}{d \hat{s}}}
$$

$$
\left[\hat{s}=s / m_{b}^{2}=q^{2} / m_{b}^{2}\right]
$$

## Inclusive theory: $m_{X}$ cuts

- $m_{X}$ cuts are required to suppress background from double semileptonic decays (both same side and opposite side):
- $B \rightarrow\left(X_{c} \rightarrow X_{s} \ell^{+} \nu\right) \ell^{-} \bar{\nu}=X_{s} \ell \ell+$ missing energy
- ee $\rightarrow\left(B \rightarrow\left(X_{c} \rightarrow X_{s}\right) \ell^{-} \bar{\nu}\right)\left(\bar{B} \rightarrow\left(X_{c} \rightarrow X_{s}\right) \ell^{+} \nu\right)=X_{s} \ell \ell+$ missing energy
- These cuts introduce sensitivity to a hard collinear scale (of order 2 GeV ) and the rate becomes dependent on the $B$ meson shape function

- The high- $q^{2}$ region is unaffected
- Current BaBar and Belle analyses correct using a Fermi motion model
- Better modeling can be achieved within SCET and by using $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{u} \ell \nu$ data to extract the shape function


## Inclusive theory: $m_{X}$ cuts

- Kinematics:

$X$ is hard-collinear:
$\Lambda^{2} \ll m_{X}^{2} \sim \Lambda m_{b} \ll m_{b}^{2}$
- The impact of the cuts is universal $\left(\eta=\Gamma_{\mathrm{cut}} / \Gamma\right)$ : [Lee, Ligeti, Stewart, Tackmann]

- Since the universality of the cuts extends to $B \rightarrow X_{u} \ell \nu$, the following ratio is minimally sensitive to the shape function modeling:

$$
\frac{\Gamma\left(B \rightarrow X_{s} \ell \ell\right)_{\mathrm{cut}}}{\Gamma\left(B \rightarrow X_{u} \ell \nu\right)_{\mathrm{cut}}}
$$

## Inclusive theory: $m_{X}$ cuts

- Current status of shape function modeling:
[Lee, Ligeti, Stewart, Tackmann; Bell,Beneke,Huber,Li]


The same-color curves correspond to a sampling of potential shape functions

## Inclusive theory: resonances

- Optical theorem:
[Beneke, Buchalla, Neubert, Sachrajda]


$$
\mathrm{BR}\left(B \rightarrow X_{s}\right) \sim 10^{-2}
$$

$$
\operatorname{BR}\left(B \rightarrow X_{s}\left(J / \psi, \psi^{\prime}\right) \rightarrow X_{s} \ell \ell\right) \sim 10^{-4} \longrightarrow \text { Experimental cuts }
$$

$$
\mathrm{BR}\left(B \rightarrow X_{s} \ell \ell\right) \sim 10^{-6} \longrightarrow \begin{aligned}
& \text { Need to control charmonium } \\
& \text { contamination away from } \psi(1 s, 2 s)
\end{aligned}
$$

## Inclusive theory: resonances

- The charmonium in $B \rightarrow X_{s}\left(\psi_{c c} \rightarrow \ell \ell\right)$ can be produced by an underlying color singlet and color octet quark transition:
- the color singlet contribution is modeled exactly over the whole $q^{2}$ spectrum using $R_{\text {had }}$ data for both on- and off-shell charmonium (Krüger-Sehgal mechanism)
- off-shell color octet effects at high-q $q^{2}$ are taken into account by $1 / m_{c}^{2}$ corrections [Voloshin; Buchalla, Isidori, Rey]
- off-shell color octet effects at low-q² can be described within SCET and yield socalled resolved contributions which at present can only be estimated [Voloshin; Buchalla, Isidori, Rey]
- on-shell color octet effects at high-q2 ${ }^{2}$ are under study (at low- $q^{2}$ there is no onshell charmonium)
- Cascade decays $B \rightarrow X_{s}\left(\psi_{c c} \rightarrow X_{s}^{\prime} \ell \ell\right):$
- on-shell effects do not interfere and can be measured and subtracted from the experimental measurement or added to the theory prediction (luckily they turn out to have negligible impact)


## Inclusive theory: resonant color singlet production

- Kruger-Sehgal mechanism:

$$
\begin{aligned}
R_{\text {had }}^{c \bar{c}} & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}} \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& =\underbrace{e^{-}}_{e^{+}} \rightarrow\left\langle O_{2}\right\rangle=c \bar{c} e^{e^{+}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Im}\left[h_{c}\right]=\frac{\pi}{3} R_{\text {had }} \\
& \operatorname{Re}\left[h_{c}\right]=\operatorname{Re}\left[h_{c}\left(s_{0}\right)\right]+\frac{s-s_{0}}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im}\left[h_{q}(t)\right]}{(t-s)\left(t-s_{0}\right)} d t \\
& \quad \downarrow
\end{aligned}
$$

$$
\text { perturbative for } s_{0} \sim-\mu_{b}^{2}
$$

- We can include NLO effects [separation of two-loop perturbative functions provided by de Boer]



## Inclusive theory: resonant color singlet production

- Using updated R ${ }_{\text {had }}$ data [BESII, BaBar,ALEPH; Keshavarzi, Nomura, Teubner] and perturbation theory (program rhad) for asymptotically large $s$ [Harlander, Steinhauser]


- Impact at low- $\mathrm{q}^{2}$ is small (about $2 \%$ ): perturbation theory and dispersive approaches agree because below threshold we are mostly sensitive to the total integral over $\mathrm{R}_{\text {had }}$ which is well described in perturbation theory
- Impact at high-q² region is large (about -10\%): details of the resonant structure matters


## Inclusive theory: resonant color singlet production

- For $B \rightarrow X_{d} \ell \ell$ we need to include $u \bar{u}$ resonant effects
- Considerable complications arise because we need to estimate $\left\langle J_{q} J_{q^{\prime}}\right\rangle$ correlators with $q, q^{\prime}=u, d, s$ whose relative size at low- $q^{2}$ is not described by perturbation theory at all

- Using both Isospin $\operatorname{SU}(2)$ and $\operatorname{SU}(3)$ we were able to express the $u \bar{u}, d \bar{d}$ and $s \bar{s}$ KS functions in terms of $\mathrm{R}_{\text {had }}$ and $\tau$ decay data only



## Inclusive theory: resonant color singlet production

- For $B \rightarrow X_{d} \ell \ell$ we need to include $u \bar{u}$ resonant effects





Very good asymptotic agreement with perturbation theory

## Inclusive theory: non-resonant color octet

- Non-resonant color octet effects at high- $q^{2}$ can be calculated in perturbation theory and it scales as $\Lambda_{\mathrm{QCD}}^{2} / q^{2}$ [Buchalla, Isidori, Rey]:

- At low- $q^{2}$ and with a cut on $m_{X}$ the charm loop is hard-collinear and needs to be treated using SCET [Hurth, Benzke, Fickinger, Turczyk]:

- Power corrections stay non-local after $m_{X}$ cut is released $\Rightarrow$ so-called resolved contributions
- Depend on mostly unknown subleading B shape functions
- Work in progress on explicit estimate [Benzke, Hurth,Turczyk]
- For the time being, we use rough estimates to asses an irreducible uncertainty of about 5\%


## Inclusive theory: cascades

- Cascade decays $B \rightarrow X_{1}\left(\psi \rightarrow X_{2} \ell \ell\right)$ constitute another long distance effect [Buchalla, Isidori, Rey; Beneke, Buchalla, Neubert, Sachrajda]
- Effects are potentially very large:

|  | $\mathcal{B} \times 10^{3}$ |  | $\mathcal{B} \times 10^{5}$ |
| :--- | :--- | :--- | :--- |
| $\bar{B} \rightarrow X_{s} \psi$ | $7.8 \pm 0.4$ | $\psi \rightarrow \eta \ell^{+} \ell^{-}$ | $1.43 \pm 0.07$ |
| $\bar{B} \rightarrow X_{s} \psi^{\prime}$ | $3.07 \pm 0.21$ | $\psi \rightarrow \eta^{\prime} \ell^{+} \ell^{-}$ | $6.59 \pm 0.18$ |
| $\bar{B} \rightarrow X_{s} \chi_{c 1}$ | $3.09 \pm 0.22$ | $\psi \rightarrow \pi^{0} \ell^{+} \ell^{-}$ | $0.076 \pm 0.014$ |
| $\bar{B} \rightarrow X_{s} \chi_{c 2}$ | $0.75 \pm 0.11$ | $\psi^{\prime} \rightarrow \eta^{\prime} \ell^{+} \ell^{-}$ | $0.196 \pm 0.026$ |
| $\bar{B} \rightarrow X_{s} \eta_{c}$ | $4.88 \pm 0.97[111]$ |  |  |
| $\bar{B} \rightarrow X_{s} \chi_{c 0}$ | $3.0 \pm 1.0[112]$ |  |  |
| $\bar{B} \rightarrow X_{s} h_{c}$ | $2.4 \pm 1.0^{\dagger}[53]$ |  |  |
| $\bar{B} \rightarrow X_{s} \eta_{c}^{\prime}$ | $0.12 \pm 0.22^{\dagger}[113]$ |  |  |



- For instance, the $\eta^{\prime}$ contribution alone yields a contribution which is of the same order as the short distance $b \rightarrow s \ell \ell$ :
$\operatorname{BR}\left(B \rightarrow X_{s} J / \psi\right) \operatorname{BR}\left(J / \psi \rightarrow \eta^{\prime} \ell \ell\right)=5.1 \times 10^{-7}$


## Inclusive theory: cascades

- Even though the inclusive process $J / \psi \rightarrow X \ell \ell$ has not be studied yet, we can study cascade effects as sum over exclusive
- This background is concentrated at low-q2:



- After imposing $m_{X}<2 \mathrm{GeV}$ this background becomes $\ll 1 \%$ !


## QED radiation: theory vs experiment

- Photons emitted by the final state leptons (especially electrons) should be technically included in the X s system:

- This implies large $\alpha_{e m} \log \left(m_{e} / m_{b}\right)$ at low and high- $q^{2}$
- The logs cancel in the total rate that is however inaccessible (resonances)
- At BaBar and Belle most but not all of these photons are included in the Xs system
- Need Monte Carlo studies (EVTGEN+PHOTOS) to find the correction factor:

$$
\frac{\left[\mathcal{B}_{e e}^{\text {low }}\right]_{q=p_{e^{+}}+p_{e^{-}}+p_{\gamma_{\text {coll }}}}}{\left[\mathcal{B}_{e e^{\text {low }}}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=1.65 \%
$$

$$
\frac{\left[\mathcal{B}_{e e^{\text {high }}}^{\text {h }}\right]_{q=p_{e}+p_{e}-+}+p_{\gamma_{\text {coll }}}}{\left[\mathcal{B}_{e e^{\text {high }}}\right]_{q=p_{e}++p_{e}-}}-1=6.8 \%
$$

## QED radiation: size of the effect

- Impact of collinear photon radiation is huge on some observables
- Cross check with Monte Carlo study (EVTGEN + PHOTOS)


|  | $q^{2} \in[1,6] \mathrm{GeV}^{2}$ |  |  | $q^{2} \in[1,3.5] \mathrm{GeV}^{2}$ |  |  | $q^{2} \in[3.5,6] \mathrm{GeV}^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$ | $\frac{\Delta O_{[1,6]}}{\mathcal{B}_{1,6]}}$ | $\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$ | $\frac{O_{[1,3,5]} \mathcal{B}_{[1,5]}}{}$ | $\frac{\Delta O_{11}}{\mathcal{B}_{11,6}}$ | $\frac{\Delta O_{[1,3.5]}}{O_{[1,3.5]}}$ | $\frac{O_{[3,5,6]}}{\mathcal{B}_{[1,6]}}$ | $\frac{\Delta O_{13}}{\mathcal{B}_{11}}$ | $\frac{\Delta O_{[3.5,6]}}{O_{[3,5,6]}}$ |
| $\mathcal{B}$ | 100 | 5.1 | 5.1 | 54.6 | 3.7 | 6.8 | 45.4 | 1.4 | 3.1 |
| $\mathcal{H}_{T}$ | 19.5 | 14.1 | 72.5 | 9.5 | 8.8 | 92.1 | 10.0 | 5.4 | 53.6 |
| $\mathcal{H}_{L}$ | 80.0 | -8.7 | -10.9 | 44.7 | -4.7 | -10.6 | 35.3 | -4.0 | -11.3 |
| $\mathcal{H}_{A}$ | -3.3 | 1.4 | -43.6 | -7.2 | 0.8 | -10.7 | 4.0 | 0.6 | 16.2 |

## QED radiation: size of the effect

- We calculated the effect of collinear photon radiation and found large effects on some observables


Size of QED contributions to the $H_{T}$ and $H_{L}$ is similar

|  | $q^{2} \in[1,6] \mathrm{GeV}^{2}$ |  |  | $q^{2} \in[1,3.5] \mathrm{GeV}^{2}$ |  |  | $q^{2} \in[3.5,6] \mathrm{GeV}^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$ | $\frac{\Delta O_{[1,6}}{\mathcal{B}_{(1,6]}}$ | ${ }^{31} \frac{\Delta O_{[1,6]}}{O_{[1,6]}}$ | $\frac{o_{[1,3,5]}^{\mathcal{B}_{[1,5]}}}{}$ | $\frac{\Delta O_{[1,3,5]}}{\mathcal{B}_{[1,5]}}$ | $\frac{\Delta O_{[1,3.5]}}{O_{[1,3.5]}}$ | $\frac{O_{[3.5,6]}}{\mathcal{B}_{(1,6]}}$ | $\frac{\Delta O_{13}}{\mathcal{B}_{11}}$ | $\frac{\Delta O_{33.5}}{O_{[3,5,6}}$ |
| $\mathcal{B}$ | 100 | 5.1 | 5.1 | 54.6 | 3.7 | 6.8 | 45.4 | 1.4 | 3.1 |
| $\mathcal{H}_{T}$ | 19.5 | 14.1 | 72.5 | 9.5 | 8.8 | 92.1 | 10.0 | 5.4 | 53.6 |
| $\mathcal{H}_{L}$ | 80.0 | -8.7 | -10.9 | 44.7 | -4.7 | -10.6 | 35.3 | -4.0 | -11.3 |
| $\mathcal{H}_{A}$ | -3.3 | 1.4 | -43.6 | -7.2 | 0.8 | -10.7 | 4.0 | 0.6 | 16.2 |

## QED radiation: Monte Carlo check

- EM effects have been calculated analytically and cross checked against Monte Carlo generated events (EVTGEN + PHOTOS)
[Many thanks to K. Flood, O. Long and C. Schilling]






## QED radiation: Monte Carlo check

- The Monte Carlo study reproduces the main features of the analytical results




Analytical:

|  | $q^{2} \in[1,6]$ |  |  |
| :---: | :--- | :--- | :--- |
|  | $\frac{O_{[1,6]}}{\mathcal{B e V}_{[1,6]}}$ | $\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$ | $\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$ |
| $\mathcal{B}$ | 100 | 5.1 | 5.1 |
| $\mathcal{H}_{T}$ | 19.5 | 14.1 | 72.5 |
| $\mathcal{H}_{L}$ | 80.0 | -8.7 | -10.9 |

## QED radiation: Monte Carlo check

- The Monte Carlo study reproduces the main features of the analytical results:


- Take home points on QED radiation and treatment of photons:
- Large impact (up to $70 \%$ for $H_{T}$ )
- Strong dependence on the observable (e.g. $H_{T}$ ) and on the shape of the spectrum (as shown by the comparison between theory and EVTGEN+PHOTOS)
- Experimental strategies:
- be as inclusive as possible (i.e. include photons in $X_{s}$ system)
" "remove" collinear photons effects with PHOTOS (be wary of dependence on the shape of the EVTGEN generated spectrum)


## Inputs

$$
\begin{aligned}
& \alpha_{s}\left(M_{z}\right)=0.1181(11) \\
& \alpha_{e}\left(M_{z}\right)=1 / 127.955 \\
& s_{W}^{2} \equiv \sin ^{2} \theta_{W}=0.2312 \\
& \left|V_{t s}^{*} V_{t b} / V_{c b}\right|^{2}=0.96403(87)[118] \\
& \left|V_{t s}^{*} V_{t b} / V_{u b}\right|^{2}=123.5(5.3)[118] \\
& \left|V_{t d}^{*} V_{t b} / V_{c b}\right|^{2}=0.04195(78)[118] \\
& \left|V_{t d}^{*} V_{t b} / V_{u b}\right|^{2}=5.38(26)[118] \\
& \mathcal{B}\left(B \rightarrow X_{c} e \bar{\nu}\right)_{\exp }=0.1065(16)[121] \\
& m_{B}=5.2794 \mathrm{GeV} \\
& M_{Z}=91.1876 \mathrm{GeV} \\
& M_{W}=80.379 \mathrm{GeV} \\
& \mu_{b}=5_{-2.5}^{+5} \mathrm{GeV} \\
& f_{\mathrm{NV}}=(0.02 \pm 0.16) \mathrm{GeV}^{3} \\
& f_{\mathrm{V}}-f_{\mathrm{NV}}=(0.041 \pm 0.052) \mathrm{GeV}^{3} \\
& {[\delta f]_{S U(3)}=(0 \pm 0.04) \mathrm{GeV}^{3}} \\
& {[\delta f]_{S U(2)}=(0 \pm 0.004) \mathrm{GeV}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& m_{e}=0.51099895 \mathrm{MeV} \\
& m_{\mu}=105.65837 \mathrm{MeV} \\
& m_{\tau}=1.77686 \mathrm{GeV} \\
& \bar{m}_{c}\left(\bar{m}_{c}\right)=1.275(25) \mathrm{GeV} \\
& m_{b}^{1 S}=4.691(37) \mathrm{GeV}[119,120] \\
& \left|V_{u s}^{*} V_{u b} /\left(V_{t s}^{*} V_{t b}\right)\right|=0.02022(44)[118] \\
& \arg \left[V_{u s}^{*} V_{u b} /\left(V_{t s}^{*} V_{t b}\right)\right]=115.3(1.3)^{\circ}[118] \\
& \left|V_{u d}^{*} V_{u b} /\left(V_{t d}^{*} V_{t b}\right)\right|=0.420(10) \\
& \arg \left[V_{u d}^{*} V_{u b} /\left(V_{t d}^{*} V_{t b}\right)\right]=-88.3(1.4)^{\circ} \\
& m_{t, \mathrm{pole}}=173.1(0.9) \mathrm{GeV} \\
& C=0.568(7)(10)[122] \\
& \mu_{0}=120_{-60}^{+120} \mathrm{GeV}^{\text {eff }}=0.130(21) \mathrm{GeV}^{2}[48] \\
& \lambda_{2}^{\text {eff }}=0.2 \\
& \lambda_{1}=-0.267(90) \mathrm{GeV}^{2}[48] \\
& \rho_{1}=0.038(70) \mathrm{GeV}^{3}[48]
\end{aligned}
$$

Dominant uncertainties at high-q ${ }^{2}$

## Inputs: HQET matrix elements

- Power corrections affects mainly high $-q^{2}$ where the OPE breaks down:

$$
\begin{aligned}
\lambda_{1} & \equiv \frac{1}{2 m_{B}}\langle B| \bar{h}_{v}(i D)^{2} h_{v}|B\rangle \\
\lambda_{2} & \equiv \frac{1}{12 m_{B}}\langle B| \bar{h}_{v}\left(-i \sigma_{\mu \nu}\right) G^{m u \nu} h_{v}|B\rangle \\
\rho_{1} & \equiv \frac{1}{2 m_{B}}\langle B| \bar{h}_{\nu} i D_{\mu}(i v \cdot D) i D^{\mu} h_{v}|B\rangle \\
\rho_{2} & \equiv \frac{1}{6 m_{B}}\langle B| \bar{h}_{v} i D^{\mu}(i v \cdot D) i D^{\nu} h_{v}\left(-i \sigma_{\mu \nu}\right)|B\rangle \\
f_{q}^{0, \pm} & \equiv \frac{1}{2 m_{B}}\left\langle B^{0, \pm}\right| Q_{1}^{q}-Q_{2}^{q}\left|B^{0, \pm}\right\rangle \\
Q_{1}^{q} & =\bar{h}_{v} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{q} \gamma^{\mu}\left(1-\gamma_{5}\right) h_{v}, \\
Q_{2}^{q} & =\bar{h}_{v}\left(1-\gamma_{5}\right) q \bar{q}\left(1+\gamma_{5}\right) h_{v} .
\end{aligned}
$$

from moments of the $B \rightarrow X_{c} \ell \nu$ spectrum [Gambino, Healey, Turczyk]

- Converted to the pole scheme
- In $b \rightarrow$ sel $\lambda_{2}$ and $\rho_{2}$ appear in the combination $\lambda_{2}^{\text {eff }} \equiv \lambda_{2}-\frac{\rho_{2}}{m_{b}}$
- Weak annihilation contributions ( $q=u, d, s$ is the flavor of the spectator quark)


## Inputs:Weak Annihilation

- In the isospin $\operatorname{SU}(3)$ limit there are only two WA matrix elements:

$$
\begin{aligned}
f_{\mathrm{V}} & \equiv f_{u}^{ \pm} \stackrel{S U(2)}{=} f_{d}^{0} \\
f_{\mathrm{NV}} & \equiv f_{u}^{0} \stackrel{S U(2)}{=} f_{d}^{ \pm} \stackrel{S U(3)}{=} f_{s}^{0} \stackrel{S U(2)}{=} f_{s}^{ \pm}
\end{aligned}
$$

- Numerically we adopt upper limits extracted from $D^{0, \pm}$ and $D_{s}$ decays rescaled by a factor $m_{B} f_{B}^{2} /\left(m_{D} f_{D}^{2}\right)$ [following the analysis of Gambino, Kamenik]
- We found that $f_{\mathrm{NV}}$ and $f_{\mathrm{NV}}-f_{\mathrm{V}}$ are mostly uncorrelated
- We estimate $\operatorname{SU}(2)$ and $\mathrm{SU}(3)$ breaking effects following [Ligeti,Tackmann]
- Taking into account the adopted normalizations, we need:

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) & \Longrightarrow\left\{\begin{array}{l}
f_{s}=f_{\mathrm{NV}} \\
f_{u}=\left(f_{\mathrm{V}}+f_{\mathrm{NV}}\right) / 2
\end{array}\right. \\
\mathcal{R}\left(s_{0}, B \rightarrow X_{s} \ell^{+} \ell^{-}\right) & \Longrightarrow\left\{\begin{array}{l}
\left(f_{s}+f_{u}^{0}\right) / 2=f_{\mathrm{NV}} \\
f_{s}-f_{u}^{0}=[\delta f]_{S U(3)}
\end{array}\right. \\
\mathcal{B}\left(B \rightarrow X_{d} \ell^{+} \ell^{-}\right) \text {and } \mathcal{R}\left(s_{0}, B \rightarrow X_{d} \ell^{+} \ell^{-}\right) & \Longrightarrow\left\{\begin{array}{l}
\left(f_{d}+f_{u}\right) / 2=\left(f_{\mathrm{V}}+f_{\mathrm{NV}}\right) / 2 \\
f_{d}-f_{u}=[\delta f]_{S U(2)}
\end{array}\right.
\end{aligned}
$$

## $B \rightarrow X_{s} \ell \ell:$ experimental status and SM predictions

- Branching ratios
- World averages from BaBar ( $424 \mathrm{fb}^{-1}$ ) and Belle ( $140 \mathrm{fb}^{-1}$ ):

$$
\begin{array}{rlrl}
\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell \ell\right)_{l o w}^{\exp } & =(1.58 \pm 0.30) \times 10^{-6} & \delta_{\exp }=23 \% & q^{2} \in[1,6] \mathrm{GeV}^{2} \\
\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell \ell\right)_{\text {high }}^{\exp }=(4.8 \pm 1.0) \times 10^{-7} & \delta_{\exp }=21 \% & q^{2}>14.4 \mathrm{GeV}^{2}
\end{array}
$$

-SM predictions [preliminary]:

$$
\begin{aligned}
\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell \ell\right)_{\text {low }}^{\mathrm{SM}} & =(1.75 \pm 0.13) \times 10^{-6} \quad \delta_{\exp }=7.4 \% \quad q^{2} \in[1,6] \mathrm{GeV}^{2} \\
\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell \ell\right)_{h i g h}^{\mathrm{SM}} & =(2.21 \pm 0.68) \times 10^{-7} \quad \delta_{\exp }=31 \%
\end{aligned} q^{2}>14.4 \mathrm{GeV}^{2} .
$$

- Forward-backward asymmetry (non-optimal binning)

Belle: $\bar{A}_{\mathrm{FB}}^{\exp }= \begin{cases}0.34 \pm 0.24 \pm 0.02 & q^{2} \in[0.2,4.3] \mathrm{GeV}^{2} \\ 0.04 \pm 0.31 \pm 0.05 & q^{2} \in[4.3,7.3(8.1)] \mathrm{GeV}^{2}\end{cases}$

- SM: $\quad \bar{A}_{\mathrm{FB}}^{\mathrm{SM}}= \begin{cases}-0.077 \pm 0.006 & q^{2} \in[0.2,4.3] \mathrm{GeV}^{2} \\ 0.05 \pm 0.02 & q^{2} \in[4.3,7.3(8.1)] \mathrm{GeV}^{2}\end{cases}$ with new inputs]


## $B \rightarrow X_{s} \ell \ell:$ complete SM predictions

- Branching ratios [preliminary]

$$
\begin{aligned}
\mathscr{B}[1,6]_{e e}= & \left(1.78 \pm 0.08_{\text {scale }} \pm 0.02_{m_{t}} \pm 0.04_{C, m_{c}} \pm 0.02_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.002_{\mathrm{CKM}} \pm 0.03_{\mathrm{BR}_{s}}\right. \\
& \left. \pm 0.01_{\lambda_{2}} \pm 0.09_{\text {resolved }}\right) \cdot 10^{-6} \\
= & 1.78(1 \pm 7.5 \%) \cdot 10^{-6} \\
\mathscr{B}[1,6]_{\mu \mu}= & 1.73(1 \pm 7.4 \%) \cdot 10^{-6} \\
\mathscr{B}[>14.4]_{e e}= & \left(2.04 \pm 0.28_{\text {scale }} \pm 0.02_{m_{t}} \pm 0.03_{C, m_{c}} \pm 0.19_{m_{b}} \pm 0.002_{\mathrm{CKM}} \pm 0.03_{\mathrm{BR}_{\mathrm{s}}}\right. \\
& \left. \pm 0.01_{\alpha_{s}} \pm 0.13_{\lambda_{2}} \pm 0.57_{\rho_{1}} \pm 0.54_{f_{t_{u}, s}}\right) \cdot 10^{-7} \\
= & 2.04(1 \pm 46 \%) \cdot 10^{-7} \\
\mathscr{B}[>14.4]_{\mu \mu}= & 2.38(1 \pm 36 \%) \cdot 10^{-7}
\end{aligned}
$$

- Scale uncertainties and resolved contributions dominate at low-q2

Scale uncertainties and power corrections dominate at high- $q^{2}$

## $B \rightarrow X_{s} \ell \ell:$ complete SM predictions

- $H_{T}$ and $H_{L}\left(\mathrm{BR}=H_{T}+H_{L}\right)$ and $([1,3.5],[3.5,6]) \mathrm{GeV}^{2}$ breakdown

$$
\begin{array}{rlrl}
\mathscr{B}[1,3.5]_{e e} & =0.982(1 \pm 6.8 \%) \cdot 10^{-6} & \mathscr{B}[1,3.5]_{\mu \mu} & =0.944(1 \pm 6.7 \%) \cdot 10^{-6} \\
\mathscr{B}[3.5,6]_{e e} & =0.798(1 \pm 8.4 \%) \cdot 10^{-6} & \mathscr{B}[3.5,6]_{\mu \mu} & =0.785(1 \pm 8.4 \%) \cdot 10^{-6} \\
\mathscr{B}[1,6]_{e e} & =1.78(1 \pm 7.5 \%) \cdot 10^{-6} & \mathscr{B}[1,6]_{\mu \mu} & =1.73(1 \pm 7.4 \%) \cdot 10^{-6} \\
H_{T}[1,3.5]_{e e} & =2.91(1 \pm 6.5 \%) \cdot 10^{-7} & H_{T}[1,3.5]_{\mu \mu} & =2.09(1 \pm 5.7 \%) \cdot 10^{-7} \\
H_{T}[3.5,6]_{e e} & =2.43(1 \pm 8.2 \%) \cdot 10^{-7} & H_{T}[3.5,6]_{\mu \mu} & =1.94(1 \pm 8.2 \%) \cdot 10^{-7} \\
H_{T}[1,6]_{e e} & =5.34(1 \pm 7.1 \%) \cdot 10^{-7} & H_{T}[1,6]_{\mu \mu} & =4.03(1 \pm 6.9 \%) \cdot 10^{-7} \\
H_{L}[1,3.5]_{e e} & =6.35(1 \pm 5.5 \%) \cdot 10^{-7} & H_{L}[1,3.5]_{\mu \mu} & =6.79(1 \pm 5.3 \%) \cdot 10^{-7} \\
H_{L}[3.5,6]_{e e} & =4.97(1 \pm 5.8 \%) \cdot 10^{-7} & H_{L}[3.5,6]_{\mu \mu} & =5.34(1 \pm 5.9 \%) \cdot 10^{-7} \\
H_{L}[1,6]_{e e} & =1.13(1 \pm 5.3 \%) \cdot 10^{-6} & H_{L}[1,6]_{\mu \mu} & =1.21(1 \pm 5.8 \%) \cdot 10^{-6}
\end{array}
$$

Error breakdown is similar to the branching ratio one

## $B \rightarrow X_{s} \ell \ell:$ complete SM predictions

- $H_{A}$ and zero-crossing $\left(q_{0}^{2}\right)\left[\bar{A}_{\mathrm{FB}}=\frac{3}{4} \frac{H_{A}}{H_{T}+H_{L}}\right]$

$$
\begin{aligned}
H_{A}[1,3.5]_{e e}= & \left(-1.03 \pm 0.04_{\text {scale }} \pm 0.01_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.02_{m_{b}}\right. \\
& \left. \pm 0.01_{\alpha_{s}} \pm 0.003_{\mathrm{CKM}} \pm 0.01_{\mathrm{BR}_{\mathrm{s}}}\right) \cdot 10^{-7} \\
= & -1.03(1 \pm 4.9 \%) \cdot 10^{-7} \\
H_{A}[3.5,6]_{e e}= & \left(+0.73 \pm 0.11_{\text {scale }} \pm 0.01_{m_{t}} \pm 0.04_{C, m_{c}} \pm 0.05_{m_{b}}\right. \\
& \left. \pm 0.02_{\alpha_{s}} \pm 0.002_{\mathrm{CKM}} \pm 0.01_{\left.\mathrm{BR}_{\mathrm{s}}\right)}\right) \cdot 10^{-7} \\
= & 0.73(1 \pm 16 \%) \cdot 10^{-7} \\
H_{A}[1,3.5]_{\mu \mu}= & -1.10(1 \pm 11 \%) \cdot 10^{-7} \\
H_{A}[3.5,6]_{\mu \mu}= & 0.67(1 \pm 18 \%) \cdot 10^{-7} \\
\left(q_{0}^{2}\right)_{e e}= & \left(3.46 \pm 0.10_{\text {scale }} \pm 0.001_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.06_{m_{b}} \pm 0.02_{\alpha_{s}}\right) \mathrm{GeV}^{2} \\
= & 3.46(1 \pm 3.2 \%) \mathrm{GeV}^{2} \\
\left(q_{0}^{2}\right)_{\mu \mu}= & 3.58(1 \pm 3.4 \%) \mathrm{GeV}^{2}
\end{aligned}
$$

Error breakdown is similar to the branching ratio one

## $B \rightarrow X_{s} \ell \ell:$ SM predictions

- $\mathscr{R}\left(s_{0}\right)=\Gamma_{s>s_{0}}\left(\bar{B} \rightarrow X_{s} \ell \ell\right) / \Gamma_{s>s_{0}}\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right):$

$$
\begin{aligned}
\mathscr{R}(14.4)_{e e}= & \left(2.25 \pm 0.12_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.20_{\mathrm{CKM}}\right. \\
& \left. \pm 0.02_{\lambda_{2}} \pm 0.14_{\rho_{1}} \pm 0.08_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & 2.25(1 \pm 14 \%) \cdot 10^{-3} \\
\mathscr{R}(14.4)_{\mu \mu}= & \left(2.62 \pm 0.09_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.23_{\mathrm{CKM}}\right. \\
& \left. \pm 0.0002_{\lambda_{2}} \pm 0.09_{\rho_{1}} \pm 0.04_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & 2.62(1 \pm 11 \%) \cdot 10^{-3}
\end{aligned}
$$

- Impact of $m_{b}^{-2,-3}$ power corrections $\left(\lambda_{2}, \rho_{1}\right)$ and weak annihilation $\left(f_{q}^{a}\right)$ is reduced:
$\delta_{m_{b}^{-2}, m_{b}^{-3}}: 29 \% \rightarrow 6 \%$
$\delta_{\mathrm{WA}}: 27 \% \rightarrow 6 \%$
- The largest source of uncertainty is $V_{u b}$


## $B \rightarrow X_{s} \ell \ell$ : new observables

- At leading order in QED and at all orders in QCD, the double differential width is a quadratic polynomial: $\Gamma \sim a \cos ^{2} \theta+b \cos \theta+c$
- $\Gamma$ receives non polynomial log-enhanced QED corrections
- We can build new observables by projecting out with Legendre polynomials:

$$
\begin{array}{ll}
H_{I}\left(q^{2}\right)=\int_{-1}^{1} \frac{d^{2} \Gamma}{d q^{2} d z} W_{I}(z) d z & W_{T}=\frac{2}{3} P_{0}(z)+\frac{10}{3} P_{2}(z) \\
& W_{L}=\frac{1}{3} P_{0}(z)-\frac{10}{3} P_{2}(z) \\
& W_{A}=\frac{4}{3} \operatorname{sign}(z) \\
& W_{3}=P_{3}(z) \quad \text { new observables } \\
W_{4}=P_{4}(z) \quad \text { new }
\end{array}
$$

## $B \rightarrow X_{s} \ell \ell:$ lepton flavor universality violation

$$
\begin{aligned}
\mathscr{B}[1,6]_{e e} & =1.78(1 \pm 0.075) \cdot 10^{-6} \\
\mathscr{B}[>14.4]_{e e} & =2.04(1 \pm 0.46) \cdot 10^{-7} \\
H_{T}[1,6]_{e e} & =5.34(1 \pm 0.07) \times 10^{-7} \\
H_{L}[1,6]_{e e} & =1.13(1 \pm 0.05) \times 10^{-6} \\
H_{A}[1,3.5]_{e e} & =-1.03(1 \pm 0.05) \times 10^{-7} \\
H_{A}[3.6,6]_{e e} & =0.73(1 \pm 0.16) \times 10^{-7} \\
H_{3}[1,6]_{e e} & =8.92(1 \pm 0.13) \times 10^{-9} \\
H_{4}[1,6]_{e e} & =8.41(1 \pm 0.09) \times 10^{-9}
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{B}[1,6]_{\mu \mu} & =1.73(1 \pm 0.074) \cdot 10^{-6} \\
\mathscr{B}[>14.4]_{\mu \mu} & =2.38(1 \pm 0.36) \cdot 10^{-7} \\
H_{T}[1,6]_{\mu \mu} & =4.03(1 \pm 0.07) \times 10^{-7} \\
H_{L}[1,6]_{\mu \mu} & =1.21(1 \pm 0.06) \times 10^{-6} \\
H_{A}[1,3.5]_{\mu \mu} & =-1.10(1 \pm 0.05) \times 10^{-7} \\
H_{A}[3.6,6]_{\mu \mu} & =0.67(1 \pm 0.18) \times 10^{-7} \\
H_{3}[1,6]_{\mu \mu} & =3.71(1 \pm 0.13) \times 10^{-9} \\
H_{4}[1,6]_{\mu \mu} & =3.50(1 \pm 0.09) \times 10^{-9}
\end{aligned}
$$

- Scale uncertainties dominate at low- $q^{2}$
- Power corrections and scale uncertainties dominate at high- $\mathrm{q}^{2}$
- Log-enhanced QED corrections at low and high- $\mathrm{q}^{2}$ are correlated


## $B \rightarrow X_{d} \ell \ell:$ SM predictions

## - Branching ratios

$\mathscr{B}[1,6]_{e e}=\left(7.81 \pm 0.37_{\text {scale }} \pm 0.08_{m_{t}} \pm 0.17_{C, m_{c}} \pm 0.08_{m_{b}} \pm 0.04_{\alpha_{s}} \pm 0.15_{\mathrm{CKM}}\right.$ $\pm 0.12_{\mathrm{BR}_{\mathrm{s}}} \pm 0.05_{\lambda_{2}} \pm 0.39_{\text {resolved }} \cdot 10^{-8}$
$=7.81(1 \pm 7.8 \%) \cdot 10^{-8}$
$\mathscr{B}[1,6]_{\mu \mu}=7.59(1 \pm 7.8 \%) \cdot 10^{-8}$
$\mathscr{B}[>14.4]_{e e}=\left(0.86 \pm 0.12_{\text {scale }} \pm 0.01_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.08_{m_{b}} \pm 0.02_{\mathrm{CKM}} \pm 0.02_{\mathrm{BR}_{\mathrm{s}}}\right.$ $\left.\pm 0.06_{\lambda_{2}} \pm 0.25_{\rho_{1}} \pm 0.25_{f_{u . l}}\right) \cdot 10^{-8}$
$=0.86(1 \pm 45 \%) \cdot 10^{-8}$
$\mathscr{B}[>14.4]_{\mu \mu}=1.00(1 \pm 39 \%) \cdot 10^{-8}$
\& Scale and resolved uncertainties dominate at low-q2 (hard to improve)
\& Power corrections and scale uncertainties dominate at high-q ${ }^{2}$

## $B \rightarrow X_{d} \ell \ell:$ SM predictions

- Ratio $\mathscr{R}\left(s_{0}\right)$

$$
\begin{aligned}
\mathscr{R}(14.4)_{e e}= & \left(0.93 \pm 0.02_{\text {scale }} \pm 0.01_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.002_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.05_{\mathrm{CKM}}\right. \\
& \left. \pm 0.004_{\lambda_{2}} \pm 0.06_{\rho_{1}} \pm 0.05_{f_{u, d}}\right) \times 10^{-4} \\
= & 0.93(1 \pm 9.7 \%) \times 10^{-4} \\
\mathscr{R}(14.4)_{\mu \mu}= & 1.10(1 \pm 6.4 \%) \times 10^{-4}
\end{aligned}
$$

- Forward-backward asymmetry and zero-crossing

$$
\begin{aligned}
H_{A}[1,3.5]_{e e} & =-0.41(1 \pm 9.8 \%) \cdot 10^{-8} \\
H_{A}[3.5,6]_{e e} & =0.40(1 \pm 18 \%) \cdot 10^{-8} \\
H_{A}[1,3.5]_{\mu \mu} & =-0.44(1 \pm 9.1 \%) \cdot 10^{-8} \\
H_{A}[3.5,6]_{\mu \mu} & =0.37(1 \pm 19 \%) \cdot 10^{-8} \\
\left(q_{0}^{2}\right)_{e e}= & 3.28 \pm 0.11_{\text {scale }} \pm 0.001_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.05_{m_{b}} \\
& \pm 0.03_{\alpha_{s}} \pm 0.004_{\mathrm{CKM}} \pm 0.001_{\lambda_{2}} \pm 0.06_{\text {resolved }}=3.28 \pm 0.14 \\
\quad\left(q_{0}^{2}\right)_{\mu \mu}= & 3.39 \pm 0.14
\end{aligned}
$$

## Wilson coefficients fits

- $95 \% \mathrm{CL}$ constraints in the $\left[R_{9}, R_{10}\right]$ plane $\left(R_{i}=C_{i}\left(\mu_{0}\right) / C_{i}^{S \mathrm{M}}\left(\mu_{0}\right)\right)$ :

- Note that $C_{9}^{\mathrm{SM}}\left(\mu_{0}\right)=1.6$ and $C_{9}^{\mathrm{SM}}\left(\mu_{0}\right)=-4.3$
- Best fits from the exclusive anomaly translate in $R_{9} \sim-0.45$ and $R_{10} \sim-0.09$


## Belle II reach

- Projected reach with $50 \mathrm{ab}^{-1}$ of integrated luminosity

$$
\begin{aligned}
& \mathcal{O}_{\exp }=\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} W[\hat{s}, z] d \hat{s} d z, \\
& \left.\delta \mathcal{O}_{\exp }=\left[\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} \underset{\text { weight (Legendre polynomial) }}{W} \underset{\sim}{W}, z\right]^{2} d \hat{s} d z\right]^{\frac{1}{2}}
\end{aligned}
$$




## Belle II reach






## Inclusive/exclusive interplay

[Ishikawa, Virto, Huber, Belle II physics book, I808.I056, sec. 9.4.5]


