

Charged Particle ID in Belle II

October 28, 2019

Jan Strube

PNNL is operated by Battelle for the U.S. Department of Energy

- Background
 - How to measure particle ID
- PID Detectors in Belle II
- Hands-on session
 - Reconstruction of D* decays and study of PID performance

The Belle II detector

For **heavy** particles (m $>> m_e$):

Density correction:

Density dependent polarization effect ... Shielding of electrical field far from particle path; effectively cuts of the long range contribution ... More relevant at high y

$-\beta^2$ –	$-\frac{\delta(\beta\gamma)}{2}$
	U. Tamponi — eletrons — muons — kaons — protons — deutons
3	4 5

Separation power of dE/dx in Belle II

Using a sample of single particles, we can measure the degree of separation between different particle species

U. Tamponi

									l I
			К/п	se	ера	rat	ion		
			K/p	se	ера	rat	ion		
			р/ <i>п</i>	se	ера	rat	ion		
			e/π	se	ера	rat	ion		
_									
	\times								
				\sim					
		2	0		2	5		R	0
/	c]	۷.	0		۷.,			Э.	6
									0

Integrate over sensitivity range: [for typical Photomultiplier] $\frac{dN}{dx} = \int_{350 \text{ nm}}^{550 \text{ nm}} d\lambda \frac{d^2N}{d\lambda dx}$

 $=475 z^2 \sin^2 \theta_C$ photons/cm

 $d\lambda$

 \overline{dE}

 $\frac{d^2N}{dEdx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c = \frac{\alpha^2 z^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2(E)} \right)$

Endcap Particle ID

- Aerogel Ring Imaging Cherenkov Detector
- Two aerogel layers with different refractive indices (1.045/1.055) result in a sharper image
- K/ π separation for a wide momentum range (0.7 GeV 4.0 GeV)

5) V)

Coverage of the tracking detectors + ARICH

ARICH reconstruction

• Likelihood is based on the comparison of expected photon patterns for a given particle type with the measured photon patterns.

 $\mathcal{L}^h = \begin{bmatrix} p_i^h \\ p_i^h \end{bmatrix}$ $i \in \text{pixels}$

 $p'_{i}(m_{i}) = \exp(-n_{i})n_{i}^{m_{i}}/m_{i}!$

Poissonian probability for a pixel with n_i average hits to show m_i hits for this track

In our case, the pixel is either hit $(m_i=1)$ or not hit (m_i=0) $p_i(0) = \exp(-n_i)$ $p_i(1) = 1 - p_i(0) = 1 - \exp(-n_i)$

 $n_1 n_2$

ARICH expected number of hits

Expected number of photons emitted from layer r

Implementation of ARICH probabilities

We reconstruct (θ_i, ϕ_i) of each photon hit in the track coordinate system (taking into account refractions)

Then we apply ray tracing from the emission point at the angle $(\theta^{h}_{c}, \phi_{i})$ to the detection plane.

 $\int_{\Omega_i} \frac{1}{2\pi} G(\theta, \theta_h^r, \sigma_h^r) \mathrm{d}\theta \mathrm{d}\phi$ $\int_{S_i} G(x, 0, \sigma_x) \mathrm{d}x \mathrm{d}y$

ARICH hit patterns

Detection efficiency

 $N = \epsilon_{\rm acc} \epsilon_{\rm det} (N^1 + N^2) + N_{\rm bg}$

background

Ring acceptance Number of photons from 1st and 2nd layer, respectively

Geometric acceptance of the ϵ_{acc} Cherenkov ring

After propagating 200 "dummy photons" at the expected θ^{h}_{c} and uniformly distributed in ϕ , we can just count how many fall on HAPDs

> Expected number of photons in Cherenkov ring for 3 GeV pions vs. track position on the aerogel plane

The expected number of photons depends on the particle hypothesis

From photon times to particle ID

Pacific

Northwest

10k K (red) and π (blue) with otherwise equal properties

The different reflections in the bar on the bar – in different photon arrival times in each channel

measured photons is the input to the PID

result – for a given incident position

October 28, 2019

An example of a Likelihood analysis in the iTOP

Coverage of the tracking detectors and Cerenkov detectors (most of the PID system)

Pacific

Northwest

Electromagnetic interactions

Electrons

The signal processing in the ECL improved between Belle and Belle II

Pacific

Northwest

Different stages of reconstruction in the ECL

Particle ID in the ECL

- Particles with low transverse momentum (pt < 0.5 GeV/c) do not reach our muon system:
 - → Baseline particle identification depends on E/p and is very poor
 - → Clustering itself difficult, since these particles leave long, charge dependent, trails in the calorimeter

Deep learning methods to improve the PID in the ECL

- Approach under study:
 - No clustering
 - Extrapolate tracks to calorimeter
 - Analyse 5×5 pixel calorimeter images around impact crystal using convolutional networks

The K⁰_L – Muon detector (KLM)

Barrel KLM: Inner 2 layers: Scintillator strips Outer 13 layers: RPC (glass, not bakelite)

Angular resolution of hit from the IP: better than 10 mrad (4 cm)

October 28, 2019

Coverage of the detectors in the Belle II experiment

Pacific Northwest NATIONAL LABORATOR

Particle ID in Belle II analyses

Current implementation:

- Each subdetector measures the likelihoods for 6 basic species
 - Electron
 - Muon
 - Pion
 - Kaon
 - Proton
 - Deuteron
- Particle ID for a given species is the combination for all detectors

 $\log \mathcal{L}_{\pi} = \log \mathcal{L}_{\pi}^{\text{SVD}} + \log \mathcal{L}_{\pi}^{\text{CDC}} + \log \mathcal{L}_{\pi}^{\text{TOP}} + \log \mathcal{L}_{\pi}^{\text{ARICH}} + \log \mathcal{L}_{\pi}^{\text{ECL}} + \log \mathcal{L}_{\pi}^{\text{KLM}}$

Pacific Northwest

Performance characterization

- Two basic concepts to characterize the performance of a detector
 - Efficiency
 - Purity
 - Usually the likelihoods overlap, so deciding on a cut is always a trade-off between the two
- Some people like to quote a "fake-rate". I find this confusing and will use only efficiencies
 - The efficiency to correctly identify a particle of type A in a sample of mostly As
 - The efficiency to erroneously identify a particle of type B in a sample of mostly As
 - ✓ This latter term is sometimes called "fake rate"
 - ✓ Except by people who confuse A and B...

Hands-on session

- In the hands-on session you will follow the steps to reconstruct the decay $D^* \rightarrow D0 (K \pi) \pi$
- The Kaons and pions can be very cleanly reconstructed without using particle ID, so this is a good channel to test the PID performance
- The notebook is making a couple of plots you can use to study the performance of the different detectors

Acknowledgements

- Thank you to
 - Umberto Tamponi
 - Erika Garutti
 - Torben Ferber
 - Leo Piilonen
 - Luka Santelij

• For preparing excellent slide decks that made my job easier

Thank you

Backup

PNNL is operated by Battelle for the U.S. Department of Energy

KLM

 \rightarrow Muons do not interact that much (why?)

 \rightarrow Muons are more likely than any other particle to survive the solenoid and the steel plates

ECL

- \rightarrow Electrons are showering as photons are (why?)
- \rightarrow Hadrons may leave distinctive signatures (hadronic showers)

· · · · · ·

Pulse-Shape Discrimination (PSD)

- Online FPGA waveform fits use photon $T_{\text{ShaperDSP}}(t) = templates only and provide time and amplitude fit results (2 variables)$
- New: Exploit the fact that hadronic and electromagnetic scintillation components are different
 - If crystal energy E > 30 MeV: Store waveform data (31 variables) and repeat fit offline with different templates.
- Third information from a crystal: PSD

A very simple example: a magic universe where only pions and kaons exist.

We observe a "kaon-like" signal. What's the probability for that particle to be a kaon?

Binary or global PID?

(

The likelihood value is actually a proxy (i.e. is proportional) exactly to the conditional probability!

$$P(\text{S is from K}) = \frac{L(K) \cdot P(K)}{L(K) \cdot P(K) + L(\pi) \cdot P(\pi)}$$
$$P(A) = \frac{L_A}{L_e + L_\mu + L_\pi + L_K + L_p + L_d}$$

 \rightarrow Global and binary PID are simply different priors schemes \rightarrow Non-trivial priors are not implemented yet

Performances

Few metrics are used to characterize the performances of a PID detector

- → Efficiency: ability to correctly assign the ID $\epsilon(K) = N(K \text{ identified as } K)/N(\text{real } K)$ Equal, by definition, to the "probability of a kaon to be called kaon"
- → Mis-ID probability: ability not to assign the incorrect ID Mis-ID(K) = N(non-K identified as K)/N(non K) Equal, by definition, to the "probability for a non-kaon to be called kaon"
- → Fake rate: fraction of particles with the wrong ID F(K) = N(non-K identified as K)/N(identified as K)Equal, by definition, to the "fraction of non-kaons in my collection of kaons"

stituto Nazionale di Fisica Nucleare Sezione di Torino