ALSO WITH

Mixing CPV Decays

EXPERIMENTAL CHARM PHYSICS

BOSTJAN GOLOB UNIVERSITY OF LJUBLJANA/ JOZEF STEFAN INSTITUTE

University of Ljubljana

BELLE

"Jozef Stefan" Institute INTRODUCTION

FACILITIES

SPECTROSCOPY

MIXING

CPV

(RARE) DECAYS

2ND OPEN BELLE II PHYSICS WEEK KEK 28TH OCT - 1ST NOV 2019

Belle T

Belle Phys. Week, KEK, Oct 2019

Introduction
Facilities
Spectroscopy

Mixing CPV Decays

DISCLAIMER

OVERVIEW OF EXPERIMENTAL METHODS (NOT EXHAUSTIVE) WITH SELECTED EXAMPLES

CHOICE OF SUBJECTS, AND ESPECIALLY EXAMPLES, HAD TO BE MADE;

SPEAKER IS TO BE BLAMED FOR NOT SHOWING YOUR FAVORITE MEASUREMENT

FREQUENTLY USED REFERENCES:

- PDG: M. TANABASHI ET AL. (PARTICLE DATA GROUP), PHYS. REV. D 98, 030001 (2018).
- HFLAV: HEAVY FLAVOR AVERAGING GROUP, HTTPS://HFLAV.WEB.CERN.CH/
- PBF: THE PHYSICS OF THE B FACTORIES, A. BEVAN, B. GOLOB, T. MANNEL. S. PRELL, B. YABSLEY EDS., EUR. PHYS. J. C 74 (2014).
- BIIPB: E. KOU, P. URQUIJO ETN AL. (BELLE II COLL.), ARXIV:1808.10567

Mixing CPV Decays

INTRODUCTION

SETTING THE SCENE

K. TRABELSI ????

1964: CPV in Kaon System

 $K_{l} \rightarrow 45 (2\pi) / 23 \cdot 10^{3} (3\pi)$

ON DEPUTY SPOKESPERSON'S REQUEST:

1999 - 2010: BEAUTY IS THE NEW STRANGE LARGE CPV IN B^{O} SYSTEM (2001) WITH ~7 \cdot 10² $B^{O} \rightarrow J/\psi K_{S}$

2015 - CHARM IS THE NEW BEAUTY CPV IN D^{O} decays (2019) WITH $1.4 \cdot 10^7 D^0 \rightarrow \pi\pi$

SOME EXPLANATION OF THIS DIFFERENT DATA SIZES P. 58

J. Cronin, V<u>. Fitch</u>, 1980

> M. Kobayashi, T. MASKAWA, 2008

PRECISE CHARM MEASUREMENTS REQUIRE LARGE DATA SAMPLES AND GOOD CONTROL OF SYSTEMATIC UNCERTAINTIES

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 3/56

WHY (NOT) CHARM PHYSICS?

- CHARM QUARK:
- UPLIKE

PROCESSES WITH CHARM HADRONS ARE PROBING POTENTIAL NEW PHYSICS IN UPLIKE SECTOR

- SEMI-HEAVY

PROCESSES WITH CHARM HADRONS ARE SUBJECT TO RELATIVELY LARGE HADRONIC UNCERTAINTIES ($\sim 1 / m_c$)

- SUPPRESSED FCNC (LOOP PROCESSES) HEAVILY SUPPRESSED

- BACKGROUND FREE SAMPLES

- TAGGING (SINGLE MESON RECONSTRUCTION,

BOTH MESONS RECONSTRUCTION)

 $-\varepsilon \sim O(10\%)$

Belle Phys. Week, KEK, Oct 2019

Mixing CPV Decays

FACILITIES

LHCB@LHC

$$\begin{array}{lll} \sigma(pp \to D^0 X) &=& 2072 \pm 2 \pm 124 \, \mathrm{\mu b}, \\ \sigma(pp \to D^+ X) &=& 834 \pm 2 \pm \ 78 \, \mathrm{\mu b}, \\ \sigma(pp \to D_s^+ X) &=& 353 \pm 9 \pm \ 76 \, \mathrm{\mu b}, \\ \sigma(pp \to D^{*+} X) &=& 784 \pm 4 \pm \ 87 \, \mathrm{\mu b}, \end{array}$$

R. AAIJ ET AL.. (LHCB COLL.), JHEP 03 (2016) 159

 $\int Ldt = 9 \text{ FB}^{-1}$ ~ 10^{10} D*+

- COMPLICATED TRIGGERS, VTXING - $\varepsilon \sim O(0.1\%)$

R. SEUSTER ET AL.. (BELLE COLL.), PHYS.REV. D73, 032002 (2006)

- FULL RECONSTRUCTION (TAGGING) POSSIBLE - $\varepsilon \sim O(1\%)$

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	FACILITIES
BELLE (II) @ (Su	JPER)KEKB	
PRODUCTION IN $B \rightarrow$	$h_c X$	
h _c	<n(<i>h_c)>/<i>B</i> dec</n(<i>	AY
$D^0 \to K^- \pi^+$	0.644 ± 0.003 =	$\pm 0.024 \pm 0.021$
$D^+ \rightarrow K^- \pi^+ \pi^+$	0.248 ± 0.004 =	$\pm 0.033 \pm 0.020$
$D_s^+ o \phi \pi^+$	0.122 ± 0.015 =	$\pm 0.033 \pm 0.030$
$\Lambda_c^+ \to p^+ K^- \pi^+$	0.042 ± 0.011 =	$\sim 1.05 \ n_c \ / \ B \ \text{DECAY}$
$D^{*0} \to D^0 \pi^0$	0.217 ± 0.014 =	$\sim 0.020 \pm 0.018 \qquad \sim 8 \cdot 10^8 B \rightarrow D^0 X$
$D^{*+} \rightarrow D^0 \pi^+$	0.218 ± 0.007 =	IN BELLE DATASET
$\rightarrow D^+ \pi^0$	0.202 ± 0.014 =	$\pm 0.022 \pm 0.018$

R. SEUSTER ET AL.. (BELLE COLL.), PHYS.REV. D73, 032002 (2006)

LHCB @ LHC ALSO CASCADE PRODUCTION R. AAIJ ET AL.. (LHCB COLL.), JHEP 12 (2017) 026 $\sigma(pp \rightarrow B^{\pm}X, \sqrt{s} = 7 \text{ TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7 \,\mu\text{b},$ $\sigma(pp \rightarrow B^{\pm}X, \sqrt{s} = 13 \text{ TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4 \,\mu\text{b},$ $\rightarrow \sim 8.10^{11} B \rightarrow h_c X$

B. GOLOB, CHARM EXP'S 8/56

Introduction	
Facilities	
Spectroscopy	

Mixing CPV Decays

SPECTROSCOPY CONVENTIONAL

CONVENTIONAL MESONS

QUARK MODEL FOR *U*, *d*, *s*

Belle Phys. Wekk, KEK, Oct 2019

Introduction	
Facilities	
Spectroscopy	

Mixing CPV Decays

SPECTROSCOPY CONVENTIONAL

CONVENTIONAL MESONS

QUARK MODEL FOR *u*, *d*, *s* + *c*

BELLE PHYS. WEKK, KEK, OCT 2019

Mixing CPV Decays

SPECTROSCOPY CONVENTIONAL

CONVENTIONAL BARYONS

QUARK MODEL FOR *U*, *d*, *s*

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 11/56

Mixing CPV Decays

SPECTROSCOPY CONVENTIONAL

CONVENTIONAL BARYONS

LONGSTANDING PUZZLE ABOUT Ξ_{cc} P. 61 R. Aaij et al.. (LHCb Coll.), PRL 119,112001 (2017) OBSERVED ONLY IN 2017

QUARK MODEL FOR *u*, *d*, *s* + *c*

CHARM QUARKS ENRICH SPECTRUM OF CONVENTIONAL HADRONS AND ENABLE TESTS OF QUARK MODEL AND QCD FOR (SEMI)HEAVY HADRONS

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 12/56

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 13/56

Mixing CPV Decays

SPECTROSCOPY BR

ABSOLUTE^{*} BR MEASUREMENTS

 $\begin{array}{l} {\rm Br}(\varXi_{cc}{}^{++}\to \varXi_{c}{}^{+}\pi^{+}) \ {\rm POSSIBLE} \\ {\rm BECAUSE} \ {\rm Br}(\varXi_{c}{}^{+}\to \varXi{}^{-}\pi^{+}\pi^{+}) \ {\rm KNOWN} \end{array}$

1) BR($B \rightarrow \Xi_c^+ \Lambda_c^-$)

HADRONIC TAGGING (FEI @ BELLE II)

* AS OPPOSED TO RELATIVE W.R.T. SOME OTHER DECAY

Y. B. LI ET AL.. (BELLE COLL.), PRD 100, 031101(R) (2019)

Mixing CPV Decays

SPECTROSCOPY BR

ABSOLUTE^{*} BR MEASUREMENTS

- BR($\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$) POSSIBLE BECAUSE BR($\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$) KNOWN
- 1) BR($B \rightarrow \Xi_c^+ \Lambda_c^-$)
- 2) $BR(B \rightarrow \Xi_c^+ \Lambda_c^-) \cdot BR(\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+)$
- HADRONIC TAGGING (FEI @ BELLE II)

B. GOLOB, CHARM EXP'S 15/56

Introduction Mixing Facilities CPV Spectroscopy Decays	SPECTROSCOPY BR
ABSOLUTE BR MEASUREN	A. ZUPANC ET AL (BELLE COLL.), PRL 113, 042002 (2014
$BR(\Lambda_c^+ \to p \ K^- \ \pi^+)$	2000 (a) RS sample M _{rec}
e^{-} e^{+} π^{+} Λ_{c}^{+} M_{rec}	0 2000 (b) WS sample 1000 0 2 2.1 2.2 2.3 2.4 2.5 M _{miss} (D ^(*) pπ) (GeV/c ²)

BELLE PHYS. WEKK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 17/56

Introduction	
Facilities	
Spectroscopy	

Mixing CPV Decays

SPECTROSCOPY LQCD

COMPARISON TO LQCD

CHARMED BARYONS

S. Prelovsek, Beauty 2019

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 18/56

Introduction	
Facilities	
Spectroscopy	

Mixing CPV Decays

SPECTROSCOPY LQCD

COMPARISON TO LQCD

CHARMED BARYONS

S. PRELOVSEK, BEAUTY 2019

R. AAIJ ET AL.. (LHCB COLL.), PRL 119,112001 (2017)

TEST OF LQCD METHODS

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 19/56

addition of the balle bille bille 3200 3300 $m(\Xi_c^+K^-)$ [MeV]

R. AAIJ ET AL.. (LHCB COLL.), PRL118, 182001 (2017)

LHCb

J. YELTON ET AL.. (BELLE COLL.), PRD 97, 051102 (2018)

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 20/56

Introduction	
Facilities	
Spectroscopy	

Mixing

CPV Decays

Spectroscopy \varOmega_c

COMPARISON TO LQCD

Excited $arOmega_{\!C}$

QUANTUM NUMBERS NOT MEASURED

M. PADMANATH, N. MATHUR, PRL 119, 042001 (2017)

Mixing CPV Decays

UNCONVENTIONAL HADRONS

QCD: NO APRIORI LIMITATIONS ON HADRONS BEING COMPOSED ONLY AS $|q_1\overline{q_2}\rangle$ OR $|q_1q_2q_3\rangle$

HADRONS WITH OTHER COMPOSITION: EXOTIC EXPLANATION ABOUT EXOTICS P. 62 FIRST EXAMPLE: X(3872)

 $B^{+} \rightarrow K^{+} J / \psi \left(\ell^{+} \ell^{-} \right) \pi^{+} \pi^{-}$ $\Delta M = M(\pi^{+} \pi^{-} \ell^{+} \ell^{-}) - M(\ell^{+} \ell^{-})$

 $B^{+} \rightarrow K^{+} X(\rightarrow J/\psi (l^{+} l^{-}) \pi^{+} \pi^{-})$ MOST PROBABLY MIXTURE OF $c\overline{c} \& c\overline{q}\overline{c}q \qquad why? P. 63$ X(3872) on lattice p. 64 Belle Phys. Werk, KEK, Oct 2019

S.-K. Choi et al. (Belle Coll.), PRL 91, 262001 (2003) (most cited Belle paper!)

B. GOLOB, CHARM EXP'S 22/56

Mixing CPV De<u>cays</u>

SPECTROSCOPY $Z^+(4430)$

S.-K. CHOI ET AL. (BELLE COLL.), PRL 100,142001 (2008)

UNCONVENTIONAL HADRONS

IF cqcq, why not cucd ?

 $B \rightarrow K \psi (2\mathbf{S}) \pi^{+}$ more exotic states, including PQ's p.66

FOR NEW STATES: ANGULAR ANALYSIS TO DETERMINE SPIN & PARITY! E.G.: X(3915) IN $B \rightarrow K_{\odot} J/\psi$ IS IT $\chi_{c}(2P)(2^{++})$ OR SOMETHING ELSE BELLE PHYS. WEKK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 23/56

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	SPECTROSCOPY Z ⁺ (4430)
UNCONVENTION	AL HADRONS	SK. Choi et al. (Belle Coll.), PRL 100,142001 (2008)
$B \rightarrow K \psi (2\mathbf{S}) \pi^+$	$\frac{Br(B^0}{\Gamma} = (45)$	$ \rightarrow K^{\mp}Z^{\pm})Br(Z^{\pm} \rightarrow \pi^{\pm}\psi') = (4.1 \pm 1.0 \pm 1.4) \cdot 10^{-5} $ +18+30 -13-13) MeV
	SYST MAJO	T. UNCERTAINTY DOMINATED BY BKG.; ORITY OF BKG. COMBINATORIAL FROM B
121 ± 30 Z+(4430) sid	GNAL EVTS FROM 60	25 FB ⁻¹

200 ± 40 Z+(4430) SIGNAL EVTS / AB-1

AT CERTAIN POINT NEED TO REDUCE BKG. (FOR LOWER SYST. UNCERTAINTY) \rightarrow LOWERING ε (LARGER STAT. UNCERTAINTY) FEI!

SOME TRIVIAL STATISICS P. 65

ASSUMING *P* with FEI improved by $6x \& \varepsilon_{\text{FEI}} \sim 1\%$: NEED *L* ~ 15 AB⁻¹ to reach same stat. Uncertainty as at 605 fB⁻¹ (and presumably much lower syst. Uncertainty)

Mixing CPV Decays

SPECTROSCOPY ISR

ISR PRODUCTION

 $e^+e^- \rightarrow J/\psi \pi^+ \pi^- \gamma_{ISR}$ and $\psi(2S)\pi^+\pi^- \gamma_{ISR}$

γ_{ISR} MAY BE RECONSTRUCTED (TAGGED ANALYSIS) OR NOT (UNTAGGED, PROCESS IDENTIFIED THROUGH MISSING MASS)

C.Z. YUAN ET AL. (BELLE COLL.), PRL 99, 182004 (2007)

ISR PRODUCTION P. 67

X.L. WANG ET AL. (BELLE COLL.), PRL 99, 142002 (2007)

B. GOLOB, CHARM EXP'S 25/56

BELLE PHYS. WEKK, KEK, OCT 2019

Introduction Facilities Spectroscopy		Mixing CPV Decays		SPECTROSCOPY EXOTIC
OTIC ZC				
CONSTRUC B→XK	CTED IN	e+e- →	$\gamma_{ISR} X$	
State	J^{PC}	State	J^{PC}	
X(3872)	1++	Y(4260)	1	
Y(3940)	J^{P+}	V(4350)	1	
Z(3930)	2^{++}	V(4660)	1	
Y(4140)	J^{P+}		1	
X(4160)	0^{P+}			
Y(4260)	1			
X(4350)	J^{P+}			
Y(4350)	1			
V(4660)	1			

SPECTROSCOPY OF CHARMED HADRONS REPRESENTS A TESTBED FOR (L)QCD; SEVERAL UNCONVENTIONAL STATES REPRESENT A CHALENGE FOR THEORETICAL DESCRIPTION

Belle Phys. Wekk, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 26/56

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 27/56

PBF

Mixing CPV Decays

D^O MIXING

OSCIL	LATIONS	$M^{O} \leftrightarrow$	M^{O}

Meson	Discovery year and place	Mixing parameter
K^0	1950 Caltech	
Mixing	1956 Columbia	$x \approx 1, y \approx 1$
B_d^0	1983 CESR	
Mixing	1987 DESY	$x pprox 0.8, y \sim 0$
B_s^0	1992 LEP	
Mixing	2006 Fermilab	$x \approx 26, y \sim 0.05$
D^0	1976 SLAC	
Mixing	2007 KEK, SLAC	$x \sim 0.01, y \sim 0.02$

PBF

$$\frac{|\operatorname{Introduction} \\ \operatorname{Spectroscopy} \\ OP \\ \operatorname{Decays} \\ \mathcal{D}^{O} \\ \operatorname{Mixing} \\ \mathcal{D}^{O} \\ \mathcal{W}^{+} \\ \mathcal{V}^{-}_{ci} \\ \mathcal{V}^{+}_{ui} \\ \mathcal{V}^{-}_{cj} \\ \mathcal{V}^{+}_{ui} \\ \mathcal{V}^{-}_{ui} \\ \mathcal{V}$$

D^o MIXING PARAMETERS ARE DRIVEN BY DIFFICULT TO CALCULATE LONG-DISTANCE EFFECTS. NO LQCD CALCULATIONS EXIST (YET).

 $\langle \overline{D}^0 | \overline{u} \gamma_\mu (1 - \gamma^5) c \overline{u} \gamma^\mu (1 - \gamma^5) c | D^0 \rangle$.

 m_c^4

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 29/56

Mixing CPV Decays

D^O MIXING PHENOMENOLOGY

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\overline{D}^{0}\right\rangle$$

TIME EVOLUTION FLAVOR STATES ≠ (DEFINED FLAVOR)

SM: $|x|, |y| \le O(10^{-2})$ |x|, |

D

PHENOMENOLOGY

 ${
m H_{eff}}$ eigenstates: (defined $m_{1,2}$ and $\Gamma_{1,2}$)

$$|P^{0}(t)\rangle = \left[\left| D^{0} \right\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{q}{p} \left| \overline{D}^{0} \right\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) \right] e^{-i\overline{m}t - \frac{\overline{\Gamma}}{2}t}$$

 $\frac{dN(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left\langle f \left| D^{0} \right\rangle \right| 1 - \frac{q}{p} \frac{\left\langle f \left| D^{0} \right\rangle}{\left\langle f \left| D^{0} \right\rangle} \frac{ix + y}{2} \overline{\Gamma}t \right|$

 $\frac{dN(\overline{D}^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left\langle f \left| \overline{D}^{0} \right\rangle \right| 1 - \frac{p}{q} \frac{\left\langle f \left| D^{0} \right\rangle}{\left\langle f \left| \overline{D}^{0} \right\rangle} \frac{ix + y}{2} \overline{\Gamma}t \right|$

$$|Y| << 1 \Rightarrow$$

$$x \equiv \frac{m_1 - m_2}{\overline{\Gamma}}; y \equiv \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}};$$

$$\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

"MASTER" FORMULAE
FOR
$$t$$
-DEPENDENT RATES
(UP TO $O(x,y)$)

```
MORE DETAILS P. 68
```

Mixing CPV Decays

D^O MIXING PHENOMENOLOGY

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\overline{D}^{0}\right\rangle$$

TIME EVOLUTION FLAVOR STATES

PHENOMENOLOGY

(DEFINED FLAVOR)

≠ H_{EFF} EIGENSTATES: (DEFINED $m_{1,2}$ AND $Γ_{1,2}$)

$$D^{0}(t) \rangle = \left[\left| D^{0} \right\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{q}{p} \left| \overline{D}^{0} \right\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) \right] e^{-i\overline{m}t - \frac{\Gamma}{2}t}$$

 $\left|\frac{dN(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \langle f | D^{0} \rangle \right| 1 - \frac{q}{p} \frac{\langle f | D^{0} \rangle}{\langle f | D^{0} \rangle} \frac{ix + y}{2} \overline{\Gamma}t \right|$

 $\frac{dN(\overline{D}^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left\langle f \left| \overline{D}^{0} \right\rangle \right| 1 - \frac{p}{a} \frac{\left\langle f \left| D^{0} \right\rangle}{\left\langle f \left| \overline{D}^{0} \right\rangle} \frac{ix + y}{2} \overline{\Gamma}t \right|$

$$x \equiv \frac{m_1 - m_2}{\overline{\Gamma}}; y \equiv \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}};$$

$$\lambda_f = rac{q}{p} rac{\overline{A}_f}{A_f}$$

"MASTER" FORMULAE FOR t-dependent rates (up to O(x,y))

MORE DETAILS P. 68

DECAY TIME DISTRIBUTION OF EXPERIMENTALLY ACCESSIBLE STATES D^{o} , \overline{D}^{o} SENSITIVE TO MIXING PARAMETERS **X** AND **Y**, DEPENDING ON FINAL STATE

Belle Phys. Week, KEK, Oct 2019

SM: $|\mathbf{x}|, |\mathbf{y}| \leq \mathcal{O}(10^{-2}) |\mathbf{x}|, |\mathbf{y}| \ll 1 \Longrightarrow$

B. GOLOB, CHARM EXP'S 31/56

Mixing CPV Decays

D^O MIXING EXP. METHODS

GENERAL FEATURES OF MEAS'S

TAGGING (BELLE, LHCB) $D^{*+} \rightarrow D^{0}\pi_{s}^{+}$ CHARGE OF $\pi_{s} \Rightarrow$ FLAVOR OF D^{0} ; $\Delta M = M(D^{0}\pi_{s}) - M(D^{0})$ (or $q = \Delta M - m_{\pi}$) \Rightarrow BACKGROUND REDUCTION $\mathcal{E}_{D^{*}} \sim 80\%, \omega_{D^{*}} \sim 0.2\%$

RESTOFEVENT (BELLE) $\varepsilon_{D^*} \sim 27\%, \omega_{D^*} \sim 13\%$ 3x more produced D^O 's

 $\sigma(A_{CP})$ reduced by ~15% Using also ROE

BSEMIL. DECAYS (LHCB) $b \rightarrow Q \mu \overline{V}$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 32/56

Mixing CPV Decays

D^O MIXING EXP. METHODS

GENERAL FEATURES OF MEAS'S

DECAY TIME (BELLE): D^0 DECAY PRODUCTS VERTEX; D^0 MOMENTUM & INT. REGION; BELLE $\sigma(t_{D0}) \sim 270$ FS BELLE II: $\sigma(t_{D0}) \sim 100$ FS (LHCB): PRIMARY VTX, B DECAY VTX, D DECAY VTX; $\sim 2x$ BETTER $\sigma(t_{D0})$

B. GOLOB, CHARM EXP'S 33/56

BIIPB

D^{O} MIXING EXP. METHODS

GENERAL FEATURES OF MEAS'S

Belle $p^*(D^*) > 2.5 \text{ GeV/c}$ ELIMINATES D^0 FROM $b \rightarrow c$

LHCB

CAN SEPARATE PROMPT AND CASCADE PRODUCTION USING VTXING

R. SEUSTER ET AL.. (BELLE COLL.), PHYS.REV. D73, 032002 (2006)

$$x_p = \frac{p^*}{\sqrt{s/4 - m_h^2}}$$

Mixing CPV Decays

D^{O} MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

CPV will be addressed later; in charm system (and SM) CPV is small \Rightarrow discuss mixing w/o CPV (i.e. $q=p=1/\sqrt{2}$)

IF NO CPV: $CP |D_1 > = |D_1 >$ $|D_1 >$ is CP even state (PHASE CONVENTION AS IN PDG P. 69);

$$\left| D^{0} \right\rangle = \frac{1}{\sqrt{2}} \left[\left| D_{1} \right\rangle + \left| D_{2} \right\rangle \right]$$
$$\left| \overline{D}^{0} \right\rangle = \frac{1}{\sqrt{2}} \left[\left| D_{1} \right\rangle - \left| D_{2} \right\rangle \right]$$

 $\begin{array}{l} CP \; |K^+K^-, \; \pi^+\pi^-> = + \; | \; K^+K^-, \; \pi^+\pi > \\ < f_{CP}^+ |D^0> = < \; f_{CP}^+ \; |D_1> = < f_{CP}^+ |\overline{D}^0> \\ < f_{CP}^- |D^0> = < \; f_{CP}^- \; |D_2> = - \; < f_{CP}^- |\overline{D}^0> \end{array}$

ONLY $|D_1>$ COMPONENT OF $D^0/\overline{D^0}$ DECAYS TO $K^+K^-/\pi^+\pi^-$; MEASURING LIFETIME IN THESE DECAYS $\Rightarrow \tau = 1/\Gamma_1$; MEASURING LIFETIME IN FLAVOR SPECIFIC FINAL STATE $\Rightarrow \tau = 1/\overline{\Gamma_1}$;

$$\frac{dN(D^{0}(\overline{D}^{0}) \to f_{CP}^{+})}{dt} \propto e^{-\overline{\Gamma}t} \Big[1 - y\overline{\Gamma}t\Big] \approx e^{-\overline{\Gamma}t} e^{-y\overline{\Gamma}t} = e^{-(1+y)\overline{\Gamma}t}$$

MORE ON TIME EVOLUTION

B. GOLOB, CHARM EXP'S 35/56

Mixing CPV Decays

D^{O} MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

BY MEASURING EFFECTIVE LIFETIMES IN $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ AND IN $D^0 \rightarrow K^- \pi^+$ ONE CAN DETERMINE y $y_{CP} = \frac{\tau (I)}{-\tau (I)}$

$$y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1$$

M. STARIC ET AL., (BELLE COLL.), PRL 98, 211803 (2007)

Mixing CPV Decays

D^{O} MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

BY MEASURING EFFECTIVE LIFETIMES IN $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ AND IN $D^0 \rightarrow K^- \pi^+$ ONE CAN DETERMINE y $y_{CP} = \frac{\tau (I)}{-\tau (I)}$

$$y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1$$

M. STARIC ET AL., (BELLE COLL.), PRL 98, 211803 (2007)

D^O MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

BY MEASURING EFFECTIVE LIFETIMES IN $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ AND IN $D^0 \rightarrow K^- \pi^+$ ONE CAN DETERMINE y $y_{CP} = \frac{\tau(I)}{\tau(I)}$

$$y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1$$

Mixing

CPV

Decays

M. STARIC ET AL., (BELLE COLL.), PRL 98, 211803 (2007)

D^{O} MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

BY MEASURING EFFECTIVE LIFETIMES IN $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ AND IN $D^0 \rightarrow K^- \pi^+$ ONE CAN DETERMINE **y**

$$y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1$$

Mixing

CPV

Decays

 χ^2 /ndf=

(ndf=289)

1.084

M. STARIC ET AL., (BELLE COLL.), PRL 98, 211803 (2007)

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 39/56

Mixing CPV Decay<u>s</u>

D^{O} MIXING CP EIGENSTATES

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

BY MEASURING EFFECTIVE LIFETIMES IN $D^0 \rightarrow K^+K^-, \pi^+\pi^-$ AND IN $D^0 \rightarrow K^-\pi^+$ ONE CAN DETERMINE *Y*

Moriond's new cocktail: the DDbar mix

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 40/56

 $D^0
ightarrow \phi K_{
m s}$, $\omega K_{
m s}$

CP-ODD STATES LOWER STAT. PRECISION

Averaging

 $y_{CP} = (0.715 \pm 0.111)\%$

 D^{o} mesons, like other M^{o} , do mix, with the lowest probability of All*

*ACTUALLY, *t* - INTEGRATED MIXING PROBABILITY P. 69

$$p(D^0 \to \overline{D}^0) = \frac{x^2 + y^2}{2(1 + x^2)}$$

Belle Phys. Week, KEK, Oct 2019

$D^0 \rightarrow K^+ \pi^-$

DCS DECAYS

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \frac{1}{r} e^{i(\delta_{f} + \varphi)} \qquad f = K^{+} \pi$$

 $\delta_{K\pi}$: (UNKNOWN) PHASE DIFFERENCE BETWEEN A_f and $\overline{A_f}$ $|A_f / \overline{A_f}| = r << 1$

$$\frac{dN(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left[r^{2} - ry'\overline{\Gamma}t + \frac{x'^{2} + y'^{2}}{4} (\overline{\Gamma}t)^{2} \right]$$
$$\frac{dN(\overline{D}^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left[1 - ry\cos(\delta_{K\pi})\overline{\Gamma}t + ... \right]$$

Mixing

CPV

Decays

$$y' = y \cos(\delta_{K\pi}) - x \sin(\delta_{K\pi})$$
$$x' = x \cos(\delta_{K\pi}) + y \sin(\delta_{K\pi})$$

 D^{O} Mixing Hadronic WS

 A_{f}

B. GOLOB, CHARM EXP'S 42/56

D^{O} MIXING HADRONIC WS

RESULT USING PRIMARY D^* 'S (REQUIRING D^* VTX CONSISTENT WITH PRIMARY) MAIN SYTS. UNCERTAINTY (~1/2 OF STAT.) FROM REMAINING SECONDARY D^* S (a)B-FACTORIES: NOT RATIO BUT INDIVIDUAL *t*-DEPENDENT RATES FI

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 43/56

Mixing CPV Decays

D^O MIXING HADRONIC WS

$D^0 \rightarrow K^+ \pi^-$

$\delta_{\kappa\pi}$ can be determined using quantum correlated $D^0 \overline{D}^0$ pairs at BES III;

HOWEVER, CURRENTLY ONLY CLEO-C MEAS. EXISTS, AND $\delta_{K\pi}$ is more precisely determined BY COMBINATION OF **y**', **y** and **x** meas's.

BELLE II EXPECTATIONS:

D. ASNER ET AL., (CLEO-C COLL.), PRD 86, 112001 (2012)

$$\cos \delta_{K\pi} = 0.81^{+0.22} - 0.18^{+0.07} - 0.05$$

BIIPB

5 ab⁻¹ 20 ab⁻¹ 50 ab⁻¹ Current best $\sigma(x^{2}) [10^{-5}]$ 10 5 3 2.7 *σ*(*y*[']) [%] 0.15 0.07 0.05 0.05 BIIPB HFLAV INCLUDING 20% AND 12% ADDITIONAL UNCERTAINTY DUE TO BKG. & SYSTEMATICS, RESPECTIVELY (?)

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 44/56

Mixing CPV Decays

D^O MIXING DALITZ

MULTI-BODY SELF CONJUGATED STATES $D^0 \rightarrow K_{S} \pi^+ \pi^-$

DIFFERENT TYPES OF INTERM. STATES:

- CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_s$
- IF $f = \overline{f} \Rightarrow$ POPULATE SAME DALITZ PLOT: **RELATIVE PHASES DETERMINED** (UNLIKE $D^0 \rightarrow K^+\pi^-$);

 $D^0 \rightarrow K_{\rm s} \pi^+ \pi^-$

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays		<i>D</i> ⁰ MIX	KING DALITZ	Z
Multi-body sel $D^0 \rightarrow K_S \pi^+ \pi^-$	F CONJUGATEI	D STATES $D^0 \rightarrow K_s$	5 π + π	² / ² / ₅	, t
DIFFERENT TYPES OF STATES; CF: $D^0 \rightarrow K^{*-}\pi$ DCS: $D^0 \rightarrow K^{*+}\pi$ CP: $D^0 \rightarrow \rho^0 K$	INTERM. , + , s	GeV ² /c ⁴)	GeV ² /c ⁴)	3	2/1c ⁴
IF $f = \overline{f} \Rightarrow$ POPULATE SAPLOT; RELATIVE PHASES DET (UNLIKE $D^0 \rightarrow K^+\pi^-$);	ame Dalitz Termined	E T	1	1 2 m ² (GeV ² /c ⁴	$\frac{2}{3}$ $\frac{3}{3}$

SPECIFIC REGIONS OF DALITZ PLANE \rightarrow SPECIFIC ADMIXTURE OF INTERM. STATES \rightarrow SPECIFIC *t* DEPENDENCE *f* (*x*, *y*);

Mixing CPV Decays

D^O MIXING DALITZ

Multi-body self conjugated states $D^0 \rightarrow K_S \pi^+ \pi^-$

t-dependent decay ampl. depends on Dalitz variables; contains D^0 and \overline{D}^0 part (due to mixing) that propagate differently in time, $\lambda_{1,2}=f(x,y);$

INSTANTANEOUS AMPLITUDE:

SUM OF INTERMEDIATE STATES WITH (UNKNOWN) RELATIVE STRONG PHASES $m_{\pm}^{2} = m^{2}(K_{S}\pi^{\pm});$

$$\mathcal{M}(\underline{m}_{-}^{2}, \underline{m}_{+}^{2}, t) \equiv \left\langle K_{S} \pi^{+} \pi^{-} \left| D^{0}(t) \right\rangle = \\ = \frac{1}{2} \mathcal{A}(\underline{m}_{-}^{2}, \underline{m}_{+}^{2}) \left[e^{-i\lambda_{1}t} + e^{-i\lambda_{2}t} \right] + \\ + \frac{1}{2} \overline{\mathcal{A}}(\underline{m}_{-}^{2}, \underline{m}_{+}^{2}) \left[e^{-i\lambda_{1}t} - e^{-i\lambda_{2}t} \right]$$

BY STUDYING THE DECAY TIME EVOLUTION OF DALITZ PLANE \rightarrow ACCESS DIRECTLY *X*, *Y*

$$\begin{aligned} \mathcal{A}(m_{-}^{2}, m_{+}^{2}) &= \\ &= \sum a_{r} e^{i\Phi_{r}} B(m_{-}^{2}, m_{+}^{2}) + a_{NR} e^{i\Phi_{NR}} \\ \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) &= \\ &= \sum a_{r} e^{i\Phi_{r}} B(m_{+}^{2}, m_{-}^{2}) + a_{NR} e^{i\Phi_{NR}} \end{aligned}$$

B. GOLOB, CHARM EXP'S 47/56

T. PENG ET AL., (BELLE COLL.), PRD 89, 091103 (2014)

Introduction

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	D^{C}	⁾ Mixing E	ALITZ	
MULTI-BODY SELF	CONJUGATE	O STATES			BIIPB
$D^0 \rightarrow K_S \pi^+ \pi^-$	0.14				
Belle II:	0.12		<i>σ</i> (x)[10 ⁻²]	
SYST. UNCERTAINTY					
DOMINATES @ FEW AB-1	\ ^{0.10} E				
	0.08				
IN TURN, SYST. UNCERTA					
DOMINATED BY THE MOL			$\sigma(y)$	[10 ⁻²]	
UNCLIVIAINTI	0.04				
CAN THIS BE EVADED?	0.02				
	0.02				
BY MEASURING STRONG	and the first state of the	1 <u></u>	<u> (</u>	<u></u>	
PHASE VARIATION ACRO	SS 10	20	30	40	50
DALITZ PLANE USING					L [ab ⁻]
COHERENT $D^0 D^0$ PAIRS ()	BES III)				

$$\begin{aligned} & \underset{\text{Spectroscopy}}{\text{Poccus}} & \underset{\text{D}^{O}}{\text{Poccus}} & \underset{\text{D}^{O} \text{MIXING DALITZ}}{\text{MULTI-BODY SELF CONJUGATED STATES}} \\ & \underset{\text{D}^{O} \rightarrow \mathcal{K}_{S} \pi^{+} \pi^{-}}{\text{D}^{O} (m_{S}^{2}, \pi^{+} \pi^{-})} & \underset{\text{A. BONDAR, A. POLIEKTOX AND V. VOROBELY, PRD 68, 034013 (2000)}{\text{A. GRE, Y. GROSSMAN, A. SOFTER, AND J. ZUPAN, PRD 68, 034013 (2000)} \\ & \underset{\text{MODEL INDEPENDENT METHOD}{\text{DALITZ- AND f DEPENDENT METHOD EUP TO } O(x^{2}, y^{2}) & \underset{\text{NOTATION:}}{\text{NOTATION:}} & \underset{p}{q} = r_{CP} e^{i\alpha_{CP}} \\ & \underset{\text{P}D^{0}(m_{12}^{2}, m_{13}^{2}, t) = \Gamma e^{-\Gamma t} \left[a_{12,13}^{2} + r_{CP} a_{12,13} a_{13,12} \Gamma t \left\{ y_{D} \cos(\delta_{12,13} - \delta_{13,12} - \alpha_{CP}) \right\} \\ & \underset{\text{INTEGRATING OVER DALITZ- AND fBIN}{\text{MULT} Mathematical Mathmatical Mathematical Mathematical Mathematical Mathematical Math$$

Mixing CPV Decays

D^O MIXING DALITZ

MULTI-BODY SELF CONJUGATED STATES $D^0 \rightarrow K_S \pi^+ \pi^-$

MODEL INDEPENDENT METHOD

BINNING OF DALITZ PLANE BASED ON A. POLUEKTOV ET AL. (BELLE COLL.), PR D 81, 112002 (2010) $(\Delta \delta \sim CONST. ACROSS BIN)$

RESULTS USING L=0.8 FB⁻¹

i	C_i	Si
	Equal Δ	δ_D Belle
i	c_i	s_i
1	$0.710 \pm 0.034 \pm 0.038$	$-0.013 \pm 0.097 \pm 0.031$
2	$0.481 \pm 0.080 \pm 0.070$	$-0.147\pm0.177\pm0.107$
3	$0.008 \pm 0.080 \pm 0.087$	$0.938 \pm 0.120 \pm 0.047$
4	$-0.757 \pm 0.099 \pm 0.065$	$0.386 \pm 0.208 \pm 0.067$
5	$-0.884 \pm 0.056 \pm 0.054$	$-0.162\pm0.130\pm0.041$
6	$-0.462 \pm 0.100 \pm 0.082$	$-0.616 \pm 0.188 \pm 0.052$
7	$0.106 \pm 0.105 \pm 0.100$	$-1.063 \pm 0.174 \pm 0.066$
8	$0.365 \pm 0.071 \pm 0.078$	$-0.179 \pm 0.166 \pm 0.048$

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

t-DEPENDENCE OF DALITZ

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

Method p. 76

UNCERTAINTIES ON c_i , s_i propagate to measured variables (as syst. Uncertainty); Still stat. dominated \rightarrow BESIII has 3 fb⁻¹ of data, planning to record 10 fb⁻¹ more

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 51/56

(IN ADDITION TO EXISTING

 $9 \, \text{FB}^{-1}$

0.14

0.10

80.0

Mixing CPV Decays

 D^{O} Mixing Dalitz

MULTI-BODY SELF CONJUGATED STATES $D^0 \rightarrow K_{S} \pi^+ \pi^-$

MODEL INDEPENDENT METHOD

T. PENG ET AL., (BELLE COLL.), PRD 89, 091103 (2014) $1.33 \cdot 10^6 \text{ D}^* \text{ tagged } D^0 \rightarrow K_S \pi^+ \pi^- / \text{AB}^{-1}$

: 100 · 10⁶ D * TAGGED $D^0 \rightarrow K_{S}\pi^+\pi^-$: C. THOMAS, G. WILKINSON, JHEP 2012:185 $\sigma(\mathbf{x}) = [\pm 0.017 \pm 0.076(\mathbf{c}_i, \mathbf{s}_i)] \ 10^{-2}$ LHCB SAME STAT. CLEO-C (0.8 FB^{-1}) $\sigma(y) = [\pm 0.019 \pm 0.087(c_i, s_i)] 10^{-2}$ **UNCERTAINTY WITH** ~additional 1 FB^{-1}

27 · 10⁶ D^* TAGGED $D^0 \rightarrow K_S \pi^+ \pi^-$ (Belle II @20 AB⁻¹) $\sigma(\mathbf{x}) = [\pm 0.032 \pm 0.039(c_i, s_i)] \ 10^{-2}$ BESIII (3 FB⁻¹) . Bediaga et al. (LHCb Coll.), LHCB-<u>PUB-2018-0(</u> $\sigma''(y) = [\pm 0.036 \pm 0.045(c_i, s_i)] 10^{-2}$ (JUST NAIVE SCALING WITH L)

 $\sigma(x@20 ab^{-1}) \sim 0.12$

Mixing CPV Decays

D^{O} Mixing Average

HFLAV

WHERE DO WE STAND?

INPUTS TO FIT

УСР	$(0.715 \pm 0.111)\%$	<u>World average (COMBOS combination)</u> of $D^0 \rightarrow K^+ K^- / \pi^+ \pi^- / K^+ K^- K^0$
x (no CPV) y (no CPV)	$\begin{array}{c} 0.56 \pm 0.19 \ ^{+0.067} \ _{-0.127} \\ 0.30 \pm 0.15 \ ^{+0.050} \ _{-0.078} \end{array}$	
x (no CPV) y (no CPV)	$(-0.86 \pm 0.53 \pm 0.17)\%$ $(0.03 \pm 0.46 \pm 0.13)\%$	<u>LHCb</u> $D^0 \rightarrow K^0{}_S \pi^+\pi^-$ results using 1 fb ⁻¹ ($\sqrt{s} = 7$ TeV) Correlation coefficient = +0.37, no CPV.
x y x y	$\begin{array}{l} (0.16\pm 0.23\pm 0.12\pm 0.08)\%\\ (0.57\pm 0.20\pm 0.13\pm 0.07)\%\\ (1.5\pm 1.2\pm 0.6)\%\\ (0.2\pm 0.9\pm 0.5)\% \end{array}$	<u>BaBar</u> $D^0 \rightarrow K^0{}_S \pi^+\pi^-$ and $D^0 \rightarrow K^0{}_S K^+ K^-$ combined; Correlation coefficient = +0.0615, no CPV. <u>BaBar</u> $D^0 \rightarrow \pi^0 \pi^+\pi^-$ Correlation coefficient = -0.006, no CPV.
$(x^2 + y^2)/2$	$(0.0130 \pm 0.0269)\%$	<u>World average (COMBOS combination)</u> of $D^0 \rightarrow K^+l^- \nu$ results
x" y"	$(2.61^{+0.57}_{-0.68} \pm 0.39)\%$ $(-0.06^{+0.55}_{-0.64} \pm 0.34)\%$	$\frac{\text{BaBar}}{\text{Note: } \mathbf{x}'' = \mathbf{x} \cos \delta_{K\pi\pi} + \mathbf{y} \sin \delta_{K\pi\pi}, \mathbf{y}'' = \mathbf{y} \cos \delta_{K\pi\pi} - \mathbf{x} \sin \delta_{K\pi\pi}.$
R_{D} x^{2} y $\cos \delta$ $\sin \delta$	$\begin{array}{c} (0.533 \pm 0.107 \pm 0.045)\% \\ (0.06 \pm 0.23 \pm 0.11)\% \\ (4.2 \pm 2.0 \pm 1.0)\% \\ 0.81 {}^{+0.22} _{-0.18} {}^{+0.07} _{-0.05} \\ -0.01 \pm 0.41 \pm 0.04 \end{array}$	$ \begin{array}{c c} \underline{\text{CLEO-c}} & \Psi(3770) \text{ results; correlation coefficients:} \\ 1 & 0 & 0 & -0.42 & 0.01 \\ & 1 & -0.73 & 0.39 & 0.02 \\ & 1 & -0.53 & -0.03 \\ & 1 & 0.04 \\ & 1 \end{array} $

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 53/56

Introduction	
Facilities	
Spectroscopy	

INPUTS TO FIT

Mixing CPV Decays

D^O MIXING AVERAGE

WHERE DO WE STAND?

HFLAV

CDF $K^+\pi^-$ results for 9.6 fb⁻¹. Correlation coefficients: RD $(0.351 \pm 0.035)\%$ $1 \quad 0.90 \quad -0.97$ x'² $(0.008 \pm 0.018)\%$ 0.90 1 -0.98 $(0.43 \pm 0.43)\%$ y' -0.97 -0.98 1 LHCb $K^+ \pi^-$ results for 5.0 fb⁻¹ ($\sqrt{s} = 7, 8$ TeV) R_D^+ Correlation coefficients: $(0.3454 \pm 0.0045)\%$ $(0.0061 \pm 0.0037)\%$ 1 0.843 -0.935 x'²⁺ $(0.501 \pm 0.074)\%$ 0.843 1 -0.963 v' + -0.935 -0.963 1 <u>LHCb</u> $K^+ \pi^-$ results for 5.0 fb⁻¹ ($\sqrt{s} = 7, 8$ TeV) R_D^- Correlation coefficients: $(0.3454 \pm 0.0045)\%$ 0.846 -0.935 x' 2 - $(0.0016 \pm 0.0039)\%$ 1 $(0.554 \pm 0.074)\%$ 0.846 1 -0.964 v' --0.935 -0.964 1

Introduction	
Facilities	
Spectroscopy	

Mixing CPV Decays

D^{O} Mixing Average

WHERE DO WE STAND?

HFLAV

INPUTS TO FIT

R _D x' ²⁺ y' ⁺	$\begin{array}{c} (0.303 \pm 0.0189)\% \\ (-0.024 \pm 0.052)\% \\ (0.98 \pm 0.78)\% \end{array}$	$\begin{array}{c c} \underline{BaBar} & K^{+} \pi^{-} \text{ results; correlation coefficients:} \\ & 1 & +0.77 & -0.87 \\ & +0.77 & 1 & -0.94 \\ & -0.87 & -0.94 & 1 \end{array}$
A _D x' ^{2 –} y' [–]	$(-2.1 \pm 5.4)\%$ $(-0.020 \pm 0.050)\%$ $(0.96 \pm 0.75)\%$	<u>BaBar</u> $K^+ \pi^-$ results; correlation coefficients same as above.
R _D x' ² y'	$\begin{array}{c} (0.353\pm 0.013)\%\\ (0.009\pm 0.022)\%\\ (0.46\pm 0.34)\%\end{array}$	Belle K ⁺ π^- no-CPV results using 976 fb ⁻¹ . Correlation coefficients: 1 +0.737 -0.865 +0.737 1 -0.948 -0.865 -0.948 1
$(x^2 + y^2)/4$	$(0.0048 \pm 0.0018)\%$	<u>LHCb</u> 3.0 fb ⁻¹ pp collisions at $\sqrt{s} = 7, 8$ TeV D ⁰ $\rightarrow K^+ \pi^- \pi^+ \pi^-$

Mixing CPV Decays

D^O MIXING AVERAGE

WHERE DO WE STAND?

NO MIXING POINT

$$x = (0.50 \pm {}^{0.13}_{0.14})\%$$
$$y = (0.62 \pm 0.07)\%$$

REPEAT FROM P. 29, W/O ANY DISCLAIMER:

 D^{o} MESONS, LIKE OTHER M^{o} , DO MIX, WITH THE LOWEST PROBABILITY OF ALL

 $P(D^{O} \rightarrow \overline{D^{O}}) \sim 3.10^{-5}$

D^{O} MIXING IS DATA DRIVEN FIELD (N.B. X, YNEEDED FOR CPV PREDICTIONS)

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 56/56

ADDITIONAL MATERIAL

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 57/56

Mixing CPV Decays

SOME STATISTICS

UNCERTAINTIES

$$A = \frac{N - \overline{N}}{N + \overline{N}} \Longrightarrow \frac{\sigma_A}{A} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & \sigma_N \\ A & N \end{pmatrix}$$
$$r = \frac{N'}{N} \Longrightarrow \frac{\sigma_r}{r} = \sqrt{2} \frac{\sigma_N}{N}$$

ASYMMETRY (B^{O} , D^{O})

RATIO (K_L)

<u>BACK</u>

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 58/56

Mixing CPV Decays

FACILITIES - BES III

BESIII Experiment

Beijing Electron Positron Collider II(BEPCII)

- Double ring e^+e^- collider
- $E_{cm}: 2 \sim 4.6$ GeV, operated since 2008
- Designed Luminosity : 10³³ cm⁻²s⁻¹ was achieved in April 2016!
- Beam crossing angle: 22 mrad

BACK

(Beijing Spectrometer III) BESIII

- MDC: $\sigma_p/p = 0.5\%$ at 1 GeV
- EMC: $\sigma_E/E = 2.5\%$ at 1 GeV
- ToF: $\sigma = 80$ ps (110 ps) in barrel (endcap)
- 9 layer RPC Muon System
- Superconducting Solenoid: 1 T

L. ZHANG, BEAUTY 2019

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 59/56

Introduction
Facilities
Spectroscopy

Mixing CPV Decays

~ 1.3 NB IS σ FOR TWO COURKS \rightarrow AT LEAST TWO CHARMED HADRONS

 $\sigma(e^+e^- \rightarrow X_c Y)$ given in the table are not independent (e.g. $\sigma(e^+e^- \rightarrow D Y)$ includes $\sigma(e^+e^- \rightarrow D^* Y)$ with $D^* \rightarrow D$); Hence we include only $\sigma(e^+e^- \rightarrow D Y)$ in the sum

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 60/56

Mixing CPV Decays

Spectroscopy Σ_{cc}

M. MATTSON ET AL. (SELEX COLL.), PRL 89, 112001 (2002)

Selex: Σ^{-} beam on target; production of charm hadrons; Fermilab

 $\begin{array}{l} \mbox{Hypotetical} \\ \mbox{${\cal E}_{cc}$}^{\,\prime} \rightarrow \Lambda_c{}^{\,\prime} K^{\, \star} \pi^{\prime} \end{array}$

NEVER CONFIRMED BY BABAR, Belle or LHCB

Belle Phys. Week, KEK, Oct 2019

EXOTIC MESONS

STATES OTHER THAN $q_1 \underline{q}_2$, $q_1 q_2 q_3$ NOT FORBIDDEN IN SM; EXOTIC J^{PC} (e.g. 0⁺⁻, 1⁻⁺, 2⁺⁻,... FORBIDDEN FOR $q\underline{q}$); EXOTIC DECAY MODES (NOT POSSIBLE FROM $q\underline{q}$); STRANGE PROPERTIES (WIDTHS,...);

PENTAQUARKS: $q_1q_2q_3q_4q_5$; HYBRIDS: $c\underline{c} + \underline{g's}$; TETRAQUARKS: DIQUARK-ANTIDIQUARK, $[c\underline{q}][\underline{c}q]$ MOLECULES: $M(c\underline{q})M(\underline{c}q)$, LOOSELY BOUND MESONS

BACK

Mixing CPV Decays

SINCE $m(X(3872)) \sim m(D) + m(D^*)$ $\rightarrow DD^*$ MOLECULE?

SUCH A MOLECULE IS IDEAL MIXTURE OF ISOSPIN COMPONENTS: $|I,I_3 > = |0,0 > + |1,I_3 >;$ X(3872) DECAYS TO $J/\psi \rho (\pi\pi) (I=1)$ and $J/\psi \omega (\pi\pi\pi) (I=0);$ DUE TO LIMITED PHASE SPACE FOR $J/\psi \omega$ IT WOULD DECAY PREFERENTIALLY (STRONGLY) TO $J/\psi \rho;$ EXPERIMENT: $Br(J/\psi \rho) \sim Br(J/\psi \omega);$ ISOSPIN VIOLATION? \Rightarrow NEW MODELS WITH ADDITION OF $c\bar{c} (I=0)$

<u>BACK</u>

<u>BACK</u>

ntroduction	
Facilities	
pectroscopy	

SPECTROSCOPY $Z^+(4430)$

APPROXIMATE DEPENDENCE OF RELATIVE ACCURACY OF YIELD ON LUMINOSITY AND PURITY

$$\frac{\sigma_{Ns}}{N_s} = \frac{\sqrt{N_s + N_b}}{N_s}; \quad P = \frac{N_s}{N_s + N_b}, \quad \frac{\sigma_{Ns}}{N_s} = \sqrt{\frac{L_0}{N_{s0}}} \frac{1}{\sqrt{LP}} \left(= \sqrt{\frac{L_0}{L}} \left(\frac{\sigma_{Ns}}{N_s} \right)_0 \right)$$
$$\left(P = 1 \Rightarrow \frac{\sigma_{Ns}}{N_s} = \sqrt{\frac{1}{N_s}} \right)$$

INTRODUCING FEI WITH EFF. $\varepsilon \sim 1\%$, IMPROVING PURITY TO $P' \sim 0.5$

Mixing

CPV Decays

$$\frac{\sigma_{Ns}}{N_s} = \sqrt{\frac{L_0}{N_{s0}}} \frac{1}{\sqrt{\varepsilon LP'}}$$

REQUIRING SAME STAT.

$$\frac{\sigma_{Ns}}{N_s} = \left(\frac{\sigma_{Ns}}{N_s}\right)_0$$

UNCERTAINTY

BACK

Mixing CPV Decays

Spectroscopy P_c

 $P_c^+ \rightarrow J/\psi p$ uudcc

R. AAIJ ET AL. (LHCB COLL.), PRL 115, 072001 (2015)

LQCD: P_c does not appear in $J/\psi p \rightarrow P_c^+ \rightarrow J/\psi p$ SCATTERING, DECOUPLED FROM OTHER CHANNELS

U. SKERBIS, S. PFRELOVSEK, PRD 99, 094505 (2019)

R. AAIJ ET AL. (LHCB COLL.), PRL 122, 222001 (2019)

<u>BACK</u>

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 66/56

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	Specte	ROSCOPY <i>ISR</i>
ISR PRODUCTIO	DIFF. CROSS SEC ON FOR ISR PRODUC	CTION CTION	CROSS SECTION FOR $e^+e^- \rightarrow f$ PRODUCTION
x = 2E	$E_{\gamma_{ISR}} / \sqrt{s} \qquad \frac{\sigma_f(s)}{da}$	$\frac{x,x)}{x} = W(s,x)$ PROBAB. FOR γ_{ISR} B	$\sigma_f(s(1-x))$ EMISSION
EFFECTIVE LUM	1INOSITY (KNOWN TO BETTE	r than 1%)
300	0		AT L=50 AB ⁻¹
250	0	2024	WE WILL HAVE 2 FB ⁻¹ LUMINOSITY TO
Ž 200	0 Belle	11,50/ob,202	PRODUCE ISR EVENT
/ _L -qd)	0		$\sqrt[4]{S'} \in [4 \text{ GeV} - 5 \text{ MeV}]$
<u> </u> 100	0	10 (ab. 2020	4 GEV+5 MEV]
50	Belle	11, 10/00, 202	
	0 3 3.5 4	, 1/ab, 2010 <u> </u>	
	Ecm (Ge	V)	B2PB BACK

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 67/56

Mixing CPV Decays

D^{O} Mixing Time evolution

$$\left|\psi(t=0)\right\rangle = a(0)\left|P^{0}\right\rangle + b(0)\left|\overline{P}^{0}\right\rangle \quad \left|\psi(t)\right\rangle = a(t)\left|P^{0}\right\rangle + b(t)\left|\overline{P}^{0}\right\rangle + \dots$$

$$i\frac{\partial}{\partial t}\left[\begin{vmatrix}P^{0}(t)\rangle\\|\overline{P}^{0}(t)\rangle\end{vmatrix}\right] = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right)\left[\begin{vmatrix}P^{0}(t)\rangle\\|\overline{P}^{0}(t)\rangle\end{vmatrix}\right]\left|P_{1,2}\rangle = p\left|P^{0}\right\rangle \pm q\left|\overline{P}^{0}\right\rangle$$

$$\begin{bmatrix} M - i\frac{\Gamma}{2} & M_{12} - i\frac{\Gamma_{12}}{2} \\ M_{12}^* - i\frac{\Gamma_{12}}{2} & M - i\frac{\Gamma}{2} \end{bmatrix} \begin{bmatrix} p \\ \pm q \end{bmatrix} = \lambda_{1,2} \begin{bmatrix} p \\ \pm q \end{bmatrix}$$

$$\lambda_{1,2} = M - i\frac{\Gamma}{2} \pm \frac{q}{p} \left[M_{12} - i\frac{\Gamma_{12}}{2} \right] \equiv m_{1,2} - i\frac{\Gamma_{1,2}}{2}, \quad \left(\frac{q}{p}\right)^2 = \frac{M_{12} * -i\frac{\Gamma_{12}}{2}}{M_{12} - i\frac{\Gamma_{12}}{2}}$$

$$|P_{1,2}(t)\rangle = e^{-i\lambda_{1,2}t}|P_{1,2}(t=0)\rangle$$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 68/56

<u>BACK</u>

$$\begin{aligned} & \text{Introduction} \\ & \text{Facilities} \\ & \text{Spectroscopy} \end{aligned} \qquad D^{O} \text{ MIXING PHASE CONVENT.} \\ & \left| D_{1,2} \right\rangle = p \left| D^{0} \right\rangle \pm q \left| \overline{D}^{0} \right\rangle \\ & \hat{C} \hat{P} \left| D^{0} \right\rangle = + \left| \overline{D}^{0} \right\rangle \\ & \text{NO CPV:} \quad \hat{C} \hat{P} \left| D_{1,2} \right\rangle = \left| \overline{D}^{0} \right\rangle \pm \left| D^{0} \right\rangle = \pm \left| D_{1,2} \right\rangle \end{aligned}$$

TIME EVOLUTION:

$$\begin{split} \left| D^{0}(t) \right\rangle &= \left[\left| D^{0} \right\rangle \cosh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) - \frac{q}{p} \right| \overline{D}^{0} \right\rangle \sinh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) \right] e^{-i\overline{n}t - \frac{\overline{\Gamma}}{2}t} \\ \left| \overline{D}^{0}(t) \right\rangle &= \left[\left| \overline{D}^{0} \right\rangle \cosh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) - \frac{p}{q} \right| D^{0} \right\rangle \sinh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) \right] e^{-i\overline{n}t - \frac{\overline{\Gamma}}{2}t} \\ \left| \left\langle \overline{D}^{0} \right| D^{0}(t) \right\rangle \right|^{2} &= \left| \frac{q}{p} \right|^{2} \left| \sinh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) \right|^{2} e^{-\overline{\Gamma}t} \left| \left\langle D^{0} \right| D^{0}(t) \right\rangle \right|^{2} &= \left| \cosh\left(\frac{ix+y}{2}\,\overline{\Gamma}t\right) \right|^{2} e^{-\overline{\Gamma}t} \\ r &= \int_{0}^{\infty} \left| \left\langle \overline{D}^{0} \right| D^{0}(t) \right\rangle \right|^{2} dt \left| \int_{0}^{\infty} \left| \left\langle \overline{D}^{0} \right| D^{0}(t) \right\rangle \right|^{2} dt + \int_{0}^{\infty} \left| \left\langle D^{0} \right| D^{0}(t) \right\rangle \right|^{2} dt = \frac{x^{2}+y^{2}}{2(1+x^{2})} \end{split}$$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 69/56

<u>BACK</u>

Mixing CPV Decays

$D^{\!\mathcal{O}}\,MIXING$ Time evolution

TIME EVOLUTION:

$$\begin{aligned} x|,|y| &< 1 \Rightarrow \frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \left\langle f \left| D^0 \right\rangle - \frac{q}{p} \frac{ix + y}{2} \left\langle f \left| \overline{D}^0 \right\rangle \overline{\Gamma}t \right|^2 \right| \\ |x|,|y| &< 1 \Rightarrow \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \left\langle f \left| \overline{D}^0 \right\rangle - \frac{p}{q} \frac{ix + y}{2} \left\langle f \left| D^0 \right\rangle \overline{\Gamma}t \right|^2 \right| \\ \frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| A_f \right|^2 \left| 1 - \lambda_f \frac{ix + y}{2} \overline{\Gamma}t \right|^2 \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - \lambda_f^{-1} \frac{ix + y}{2} \overline{\Gamma}t \right|^2 \\ \frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| A_f \right|^2 \left| 1 - y \operatorname{Re}(\lambda_f) \overline{\Gamma}t + x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Re}(\lambda_f) \overline{\Gamma}t + x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Re}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\lambda_f) \overline{\Gamma}t - x \operatorname{Im}(\lambda_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t - x \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t - x \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t - x \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_f \right|^2 \left| 1 - y \operatorname{Im}(\overline{A}_f) \overline{\Gamma}t \right| \\ \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| 1 - y \operatorname{Im}(\overline$$

B. GOLOB, CHARM EXP'S 70/56

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	<i>D⁰</i> M	IIXING EXP. METH	HODS
Spectroscopy	Events / (0.0005 GeV/c ²) Events / (0.0005 GeV/c ²) 5.	SANDILYA ET AL. (BELLI $\alpha = 1.426 \pm 0.045$ $\beta = 227.0 \pm 7.5$ $\mu = 0.1454425 \pm 0.0000031$ $\sigma = 0.0004325 \pm 0.0000033$ $N_{bkg} = 16518 \pm 162$ $N_{sig} = 27091 \pm 192$ Belle II 2019 Phase III data proc9+buc7	E II COLL.), B2GM OCT 2019 (10^{3} 16 14 12 10 10 10 10 10 10 10 10 10 10	$\mu = 1.863961 \pm 0.000038$ $\sigma = 0.005167 \pm 0.000037$ $c0 = -0.2392 \pm 0.012$ $c1 = -0.3025 \pm 0.014$ $nbkg = 20007 \pm 171$ $nsig = 27269 \pm 191$ Belle II 2019 Phase III data proc9+buc7
	0.14 0.142 0.144 0.146 0.	148 0.15 0.152 0.154 ΔM (GeV/c ²)	2 0 1.8 1.82 1.84 1.86 1.8	8 1.9 1.92 1.94 M[D ⁰] (GeV/c ²)
		0		

M. STARIC ET AL. (BELLE COLL.), PRL 98, 211803 (2007)

<u>BACK</u>

D^O MIXING EXP. METHODS

DECAY TIME

BELLE II $D^* \rightarrow D^0(K\pi)\pi$ $<\sigma_t > \sim 100 \text{ FS}$

LHCB $B_{\rm s} \rightarrow J/\psi \phi$ $<\sigma_t > \sim 40 \, {\rm FS}$

Mixing

CPV

Decays

G. DE MARINO, G. CASAROSA ET AL. (BELLE II COLL.), B2GM OCT 2019

R. AAIJ ET AL. (LHCB COLL.), INT. J. MOD. PHYS. A 30, 1530022 (2015)

B. GOLOB, CHARM EXP'S 72/56

BACK
$$\lambda_{f} = \frac{q}{p} \eta_{f}$$
$$\left|A_{f}\right| = \left|\overline{A}_{f}\right| = \left|A\right|$$
$$\phi_{f} = \arg(\lambda_{f}) = \arg(\frac{q}{p}) \equiv \phi$$

 η_f =+1 CP even states η_f =-1 CP odd states

D^{O} MIXING CP EIGENSTATES

$$\begin{split} \left\langle f_{CP} \left| D^{0} \right\rangle &= \frac{1}{\sqrt{2}} \left[\left\langle f_{CP} \left| D_{1} \right\rangle + \left\langle f_{CP} \left| D_{2} \right\rangle \right] \right] \\ \left\langle f_{CP} \left| \overline{D}^{0} \right\rangle &= \frac{1}{\sqrt{2}} \left[\left\langle f_{CP} \left| D_{1} \right\rangle - \left\langle f_{CP} \left| D_{2} \right\rangle \right] \right] \\ \left\langle f_{CP}^{+} \left| D^{0} \right\rangle &= \frac{1}{\sqrt{2}} \left\langle f_{CP}^{+} \left| D_{1} \right\rangle = \left\langle f_{CP}^{+} \left| \overline{D}^{0} \right\rangle \\ \left\langle f_{CP}^{-} \left| D^{0} \right\rangle &= \frac{1}{\sqrt{2}} \left\langle f_{CP}^{-} \left| D_{2} \right\rangle = -\left\langle f_{CP}^{-} \left| \overline{D}^{0} \right\rangle \right] \end{split}$$

$$\frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A|^2 \left[1 - \eta_f y \left| \frac{q}{p} \right| \cos \phi \overline{\Gamma}t + \eta_f x \left| \frac{q}{p} \right| \sin \phi \overline{\Gamma}t \right]$$
$$\frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A|^2 \left[1 - \eta_f y \left| \frac{p}{q} \right| \cos \phi \overline{\Gamma}t - \eta_f x \left| \frac{p}{q} \right| \sin \phi \overline{\Gamma}t \right]$$

Mixing

CPV Decays

BACK

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 73/56

Introduction Facilities Spectroscopy

 D^{O} MIXING CP EIGENSTATES

$$\frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A|^2 \left[1 - \eta_f y \left| \frac{q}{p} \right| \cos \phi \overline{\Gamma}t + \eta_f x \left| \frac{q}{p} \right| \sin \phi \overline{\Gamma}t \right]$$

Mixing

CPV

Decays

$$\frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A|^2 \left[1 - \eta_f y \left| \frac{p}{q} \right| \cos \phi \overline{\Gamma}t - \eta_f x \left| \frac{p}{q} \right| \sin \phi \overline{\Gamma}t \right]$$

$$\frac{dN(D^0 \to f)}{dt} + \frac{dN(\overline{D}^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A|^2 \left[1 - y_{CP}\overline{\Gamma}t\right]$$

$$\mathcal{Y}_{CP} \underset{\substack{q=p\\Af=\overline{A}f}}{=} \mathcal{Y}$$

y_{CP} TAKING INTO ACCOUNT CPV IS GIVEN IN 2ND PART OF LECTURES

 K^+K^- , $\pi^+\pi^-$: CP even states $K_S \phi$, $K_S \omega$: CP odd states

<u>BACK</u>

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 74/56

$$\frac{dN(D^{0} \rightarrow f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_{K+\pi-} \right|^{2} \left[1 - ry \frac{p}{q} \right| \cos(\delta_{K\pi} + \phi) \overline{\Gamma}t + rx \frac{p}{q} \sin(\delta_{K\pi} + \phi) \overline{\Gamma}t \right]$$

NEGLECTING CPV (AND GOING TO 2^{ND} order in x, y):

$$\frac{dN(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \overline{A}_{K+\pi-} \right|^2 \left[r^2 - ry' \overline{\Gamma}t + \frac{x'^2 + y'^2}{4} (\overline{\Gamma}t)^2 \right]$$
$$y' = y \cos(\delta_{K\pi}) - x \sin(\delta_{K\pi})$$
$$x' = x \cos(\delta_{K\pi}) + y \sin(\delta_{K\pi})$$

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 75/56

BACK

ntroduction	
Facilities	
pectroscopy	Γ

METHOD OF STRONG PHASE DIFFERENCE $D^{\circ} \nearrow \overline{D}^{\circ}$ DETERM. USING COHERENT PRODUCTION OF D MESON PAIRS J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

/lixing

CPV ecavs

 $\psi(3770) (CP = +1) \rightarrow D_1 D_2;$

if $D_1 \rightarrow CP + \Rightarrow D_2$ is CP-; (CP-TAGGED)

if $D_1 \rightarrow D^0 \rightarrow f_{flav} \Rightarrow D_2$ is D^0 (FLAVOR-TAGGED)

$$CP = CP(D_1)CP(D_2)(-1)^{\ell=1}$$

EVTS IN BIN *i* FOR FLAVOR TAGGED (D^0) DECAY:

$$K_{i} = A_{D} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})|^{2} dm_{+}^{2} dm_{-}^{2} = A_{D} F_{i}, \quad (\text{SAME FOR } \overline{D}^{0} \text{ with } m_{+} \leftrightarrow m_{-})$$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 76/56

Introduction Facilities Spectroscopy Mixing CPV Decays

D^O MIXING DALITZ

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

DALITZ DIST. FOR CP TAGGED (CP+, CP-) DECAYS

$$f_{CP\pm}(m_{+}^{2}, m_{-}^{2}) = \frac{1}{\sqrt{2}}[f_{D}(m_{+}^{2}, m_{-}^{2}) \pm f_{D}(m_{-}^{2}, m_{+}^{2})]$$

EVTS IN BIN *i* FOR CP TAGGED (CP+, CP-) DECAY:

$$M_i^{\pm} = h_{CP\pm}(K_i) \pm 2c_i \sqrt{K_i K_{-i} + K_{-i}},$$

FLAVOR-TAGGED:

$$K_i = A_D \int_i |f_D(m_+^2, m_-^2)|^2 dm_+^2 dm_-^2 = A_D F_i$$

$$c_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \cos[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2},$$

$$s_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \sin[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2},$$

BACK

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 77/56

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 78/56