Connections between hadron and lepton CPV

Morimitsu Tanimoto @ Niigata University

2nd OPEN Belle II Physics © KEK, Tsukuba, Japan October 29, 2019

Plan of my talk

- I Introduction
- 2 Quark CP violating phase in quark mass matrices
- 3 Linking leptonic CP violation to CKM CP phase
- **4** Predictions of leptonic CP violation
- 5 Summary

1 Introduction

Flavor mixing angles are much different between quarks and leptons !

PDG2018
$$|V_{CKM}| = \begin{pmatrix} 0.97446 \pm 0.00010 \\ 0.22438 \pm 0.00044 \\ 0.00896^{+0.00024} \\ 0.00896^{-0.00023} \\ 0.04133 \pm 0.00074 \\ 0.00074 \\ 0.999105 \pm 0.00032 \end{pmatrix}$$
 $0.04214 \pm 0.00076 \\ 0.04214 \pm 0.00076 \\ 0.999105 \pm 0.00032 \end{pmatrix}$
NuFIT 4.1 (2019)
 $|U|_{3\sigma}^{\text{with SK-atm}} = \begin{pmatrix} 0.797 \rightarrow 0.842 \\ 0.243 \rightarrow 0.490 \\ 0.295 \rightarrow 0.525 \\ 0.493 \rightarrow 0.688 \\ 0.618 \rightarrow 0.744 \end{pmatrix}$

Theorists could not predict two large mixing angles ! Why? Because we had not a reliable flavor theory. Is flavor mixing of quarks and leptons correlated or not?

Phenomenological suggestion

$$\theta_{13}^{\mathrm{PMNS}} \simeq \theta_{\mathrm{Cabibbo}} / \sqrt{2} = 0.16$$

Cabibbo Hase

Reactor Experiment: ~ 0.15

Cabibbo sized effect of lepton mixing

arXiv:1107.3728 Antusch, Gross, Murer, Sluk, Marzocca, Petcov, Romanino, Spinrath, arXiv:1108.0614

If this relation is not accidental, we may be able to predict J_{CP} (PMNS) from J_{CP} (CKM) $(\delta_{PMNS} \text{ from } \delta_{CKM})$. Jarlskog 1985, Krastev-Petcov 1988

Search for clear correlations of quark/lepton CP violation through "Cabibbo Haze in lepton mixing" A. Datta, L. Everett, P.Ramond, Phys.Lett.B620 (2005) 42 4

How large are CP violations of quarks and leptons ? CP violating measures J_{CP}

PDG2018 $J_{CP}^q = (3.18 \pm 0.15) \times 10^{-5} \, \delta_{CP} = (+73.5^{+4.2}_{-5.1})^\circ$ for quarksBest fit of NuFIT 4.1 $J_{CP}^l \simeq -2 \times 10^{-2} \, \delta_{CP} = -138^\circ$ for leptons

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\text{CKM}}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\text{CKM}}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\text{CKM}}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\text{CKM}}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\text{CKM}}} & c_{23}c_{13} \end{pmatrix}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$U_{\rm PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\rm CP}^{\ell}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\rm CP}^{\ell}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\rm CP}^{\ell}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\rm CP}^{\ell}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\rm CP}^{\ell}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \qquad U_{e3}U_{e1}^* + U_{\mu3}U_{\mu1}^* + U_{\tau3}U_{\tau1}^* = 0 \\ \text{Majorana Neutrinos} \end{pmatrix}$$

Can we predict the lepton CP violation ?

We try to connect to lepton CP violation and quark CP violation as well as flavor mixing angles.

We need Two steps

- Reproduce CKM matrix by using quark mass matrices
- **O** Quark-lepton unification: SU(5) GUT or Pati-Salam GUT

2 Quark CP violating phase in quark mass matrices

CKM matrix is obtained by quark mass matrices.

$$\mathcal{L}_Y = -\bar{u_L^i}(M_u)_{ij}u_R^j - \bar{d_L^i}(M_d)_{ij}d_R^j$$

$$\begin{split} V_{uL}^{\dagger}M_{u}V_{uR} &= \text{diag}(m_{u},m_{c},m_{t}) , \qquad V_{dL}^{\dagger}M_{d}V_{dR} = \text{diag}(m_{d},m_{s},m_{b}) \\ V_{\text{CKM}} &\equiv V_{uL}V_{dL}^{\dagger} \end{split}$$

We need mass matrices of up-type and down-type quarks.

Ex: Weinberg's Anzatz 1977 Vanishing (1,1) element of down mass matrix

$$M_{\rm d} = \begin{pmatrix} 0 & A \\ A & B \end{pmatrix} \Rightarrow \theta_{\rm Cabibbo} \simeq \sqrt{\frac{m_d}{m_s}} \simeq 0.2$$

Let us discuss Down-type quark mass matrix M_d in the basis of diagonal Up-type quark mass matrix

$$M_u = \begin{pmatrix} m_u & 0 & 0\\ 0 & m_c & 0\\ 0 & 0 & m_t \end{pmatrix}$$

One can take the diagonal basis in general. Then, how can we take $M_{\rm d}$?

In general, down quark mass matrix has 3x3=9 complex parameters. Among them, 5 phases are removed by rephasing of quark fields because of diagonal M_u. $2 \times 9 - 5 = 13$ parameters observables 7

"Entities should not be multiplied unnecessarily." Occam's Razor

Remove unnecessary parameters in M_d in order to reproduce CKM mixing angles and CP violation.

M.Tanimoto, T.T.Yanagida, PTEP (2016) 043B03, arXiv:1601.04459 K. Harigaya, M. Ibe, T.T. Yanagida, PRD86(2012)013002, arXiv:1205.2198

Put 3 zeros in entries of M_d

There remains 6 complex parameters in M_d. (12 real parameters)

Among them, 5 phases are removed by re-definitions of down-type left- and right-quark fields.

Finally, there remain 6 real parameter and 1 phase. It is easy to control *CP* violation due to one phase.

There are 20 patterns of mass matrices with 3 zeros.

One example:

$$M_D^{(1)} = \begin{pmatrix} 0 & a_D & 0\\ a'_D & b_D & e^{-i\phi} & c_D\\ 0 & c'_D & d_D \end{pmatrix}_{LR}$$

which is completely consistent with 4 CKM parameters and 3 down-type quark masses. However, nontrivial problem in general even if # of parameters is 7.

Eigenvalues

$$\begin{split} m_d^2 + m_s^2 + m_b^2 &= a^2 + a'^2 + b^2 + c^2 + c'^2 + d^2 \ , \\ m_d^2 m_s^2 + m_s^2 m_b^2 + m_b^2 m_d^2 &= a^2 a'^2 + a^2 (c^2 + d^2) + a'^2 (c'^2 + d^2) + c^2 c'^2 + b^2 d^2 - 2bcc' d\cos \phi \\ m_d^2 m_s^2 m_b^2 &= a^2 a'^2 d^2 \ . \end{split}$$

Eigenvectors

$$|V_{us}| \simeq \frac{ab}{m_s^2} \left| \sin \frac{\phi}{2} \right| \ , \quad |V_{cb}| \simeq \sqrt{2} \frac{c}{m_b} \left| \cos \frac{\phi}{2} \right| \ , \quad |V_{ub}| \simeq \frac{ac'}{m_b^2} \ , \quad \delta_{CP} \simeq \frac{1}{2} (\pi - \phi)$$

CP violating measure Jarlskog invariant

$$J_{CP}^{q} = \frac{1}{(m_{b}^{2} - ms^{2})(m_{s}^{2} - m_{d}^{2})(m_{b}^{2} - m_{d}^{2})} a^{2}bcc'd\sin\phi$$

$$M_D^{(1)} = \begin{pmatrix} 0 & a_D & 0\\ a'_D & b_D & e^{-i\phi} & c_D\\ 0 & c'_D & d_D \end{pmatrix}_{LR}$$

Constructiong CP violating measure

$$H_U \equiv M_U M_U^{\dagger} , \qquad H_D \equiv M_D M_D^{\dagger}$$

CP invariance leads to

$$\operatorname{Tr}\left([H_U, H_D]^3\right) = 0$$

$$\operatorname{Tr}\left([H_U, H_D]^3\right) = 6i \sum_{\alpha, \beta = u, c, t} \sum_{i, j = d, s, b} m_\alpha^4 m_\beta^2 m_i^4 m_j^2 \operatorname{Im}[V_{\alpha i} V_{\beta j} V_{\beta i}^* V_{\alpha j}^*]$$

$$|V_{us}| \simeq \frac{ab}{m_s^2} \left| \sin \frac{\phi}{2} \right| \ , \quad |V_{cb}| \simeq \sqrt{2} \frac{c}{m_b} \left| \cos \frac{\phi}{2} \right| \ , \quad |V_{ub}| \simeq \frac{ac'}{m_b^2} \ , \quad \delta_{CP} \simeq \frac{1}{2} (\pi - \phi)$$

Consistency check

	$a_D \; [\text{MeV}]$	a'_D [MeV]	$b_D \; [\text{MeV}]$	$c_D \; [\text{MeV}]$	$c'_D \; [\text{GeV}]$	$d_D \; [\text{GeV}]$	$\phi \ [o]$
$M_D^{(1)}$	15-17.5	10-15	92-104	78-95	1.65 - 2.0	2.0-2.3	37-48

13 textures with 3 zeros consistent with observed CKM

$$\begin{split} M_D^{(1)} &= \begin{pmatrix} 0 & a_D & 0 \\ a'_D & b_D & e^{-i\phi} & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(2)} &= \begin{pmatrix} a'_D & a_D & 0 \\ 0 & b_D & e^{-i\phi} & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(3)} &= \begin{pmatrix} 0 & a_D & 0 \\ 0 & b_D & e^{-i\phi} & c_D \\ a'_D & b_D & e^{-i\phi} & c_D \\ 0 & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(5)} &= \begin{pmatrix} a'_D & a_D & c'_D \\ 0 & b_D & e^{-i\phi} & c_D \\ 0 & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(5)} &= \begin{pmatrix} a'_D & a_D & c'_D \\ 0 & b_D & e^{-i\phi} & c_D \\ 0 & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(5)} &= \begin{pmatrix} 0 & a_D & e'_D \\ 0 & b_D & e^{-i\phi} & c_D \\ 0 & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(11)} &= \begin{pmatrix} 0 & a_D & e^{-i\phi} & b_D \\ 0 & 0 & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(12)} &= \begin{pmatrix} 0 & a_D & e^{-i\phi} & b_D \\ a'_D & 0 & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(12)} &= \begin{pmatrix} 0 & a_D & e^{-i\phi} & b_D \\ a'_D & 0 & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(13)} &= \begin{pmatrix} 0 & a_D & e^{-i\phi} & b_D \\ 0 & 0 & c_D \\ a'_D & c'_D & d_D \end{pmatrix}_{LR}, \ M_D^{(15)} &= \begin{pmatrix} a_D & e^{-i\phi} & a'_D & b_D \\ 0 & 0 & c_D \\ c'_D & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(16)} &= \begin{pmatrix} 0 & a_D & b_D \\ a'_D & 0 & c_D & e^{-i\phi} \\ b_D & 0 & c_D & e^{-i\phi} \\ c'_D & 0 & d_D \end{pmatrix}_{LR}, \ M_D^{(17)} &= \begin{pmatrix} a_D & a'_D & 0 \\ b_D & 0 & c_D & e^{i\phi} \\ c'_D & 0 & d_D \end{pmatrix}_{LR} \end{split}$$

There are redundancies in our textures due to unitary transformation of the right-handed quarks.

$$M_D^{(2)} \equiv M_D^{(16)} \equiv M_D^{(17)}$$
, $M_D^{(5)} \equiv M_D^{(14)}$, $M_D^{(11)} \equiv M_D^{(15)}$

$$\frac{|V_{us}|}{M_d^{(1)}, M_d^{(2)}, M_d^{(3)}, M_d^{(16)}, M_d^{(17)}} \frac{|a_b|}{m_s^2} |\sin \frac{\phi}{2}| \frac{\sqrt{2}c}{m_b} |\cos \frac{\phi}{2}| \frac{ac'}{m_b^2} \frac{1}{2}(\pi - \phi) \frac{a^2 bcc' d \sin \phi}{a^2 bcc' d \sin \phi}}{M_d^{(4)}, M_d^{(5)}, M_d^{(6)}, M_d^{(14)}} \frac{ab}{m_s^2} \frac{c}{m_b} \frac{c}{m_b} \frac{c'}{m_b} \frac{c'}{m_b} \phi \frac{abcc' d^2 \sin \phi}{abcc' d^2 \sin \phi}}{M_d^{(11)}, M_d^{(12)}, M_d^{(13)}, M_d^{(15)}} \frac{ac}{m_s^2} \frac{c'}{m_b^2} \frac{c}{m_b} \frac{b}{m_b} \pi - \phi \frac{abc^2 c' d \sin \phi}{abc^2 c' d \sin \phi}}{M_d^{(5)} = \left(\begin{pmatrix}a' & a & c' \\ 0 & b & e^{-i\phi} & c \\ 0 & 0 & d \end{pmatrix}_{LR} \right) J_{CP} = \frac{-1}{(m_b^2 - m_s^2)(m_s^2 - m_d^2)(m_d^2 - m_b^2)} (j_{CP})$$

$$\frac{\sqrt{2}c}{M_d^2} \frac{1}{9} \frac{$$

Benefit of Occam's Razor

The hierarchical mixing are naturally obtained.

Two examples

Only down quark masses are input.

Down quark masses and sin 2β are input.

Linking leptonic CP violation to CKM CP phase

$$\begin{aligned} \textbf{Derivation of } \mathbf{J}_{cp} \text{ of leptons} \\ \mathcal{L}_{M} &= -\overline{u_{L}}M_{U}u_{R} - \overline{d_{L}}M_{D}d_{R} - \frac{1}{2}\overline{\nu_{L}}M_{\nu}(\nu_{L})^{c} - \overline{e_{L}}M_{E}e_{R} + \text{h.c.} \\ H_{i} &= M_{i}M_{i}^{\dagger} \ (i = U, D, \nu, E) \\ \mathbf{M}_{\nu}^{*} \text{ in Branco et al} \\ arXiv:1111.5332 \\ \\ \mathbf{Tr}([H_{U}, H_{D}]^{3}) &= 6i\int_{CP}^{q}\Delta_{u}\Delta_{d} \\ \Delta_{u} &\equiv (m_{u}^{2} - m_{t}^{2})(m_{u}^{2} - m_{c}^{2})(m_{c}^{2} - m_{t}^{2}) < 0, \quad \Delta_{d} &\equiv (m_{d}^{2} - m_{b}^{2})(m_{d}^{2} - m_{b}^{2})(m_{s}^{2} - m_{b}^{2}) < 0. \\ \\ \mathbf{Tr}([H_{\nu}, H_{E}]^{3}) &= -6i\int_{CP}^{l}\Delta_{\nu}\Delta_{e} \\ \Delta_{\nu} &\equiv (m_{1}^{2} - m_{3}^{2})(m_{1}^{2} - m_{2}^{2})(m_{2}^{2} - m_{3}^{2}) < 0, \quad \Delta_{e} &\equiv (m_{e}^{2} - m_{\tau}^{2})(m_{e}^{2} - m_{\mu}^{2})(m_{\mu}^{2} - m_{\tau}^{2}) < 0 \\ \\ \mathbf{Im}[U_{k\alpha}U_{l\beta}U_{k\beta}U_{l\alpha}^{*}] &= J_{CP}^{l}\sum_{m,n} \varepsilon_{klm}\varepsilon_{\alpha\beta n} \quad \mathrm{Im}[V_{ij}V_{kl}V_{il}^{*}V_{kj}^{*}] &= J_{CP}^{q}\sum_{m,n} \varepsilon_{ikm}\varepsilon_{jln} \\ U_{PMNS} &= U_{E}U_{\nu}^{\dagger} \quad V_{CKM} &= V_{u}V_{d}^{\dagger} \end{aligned}$$

Simple Exercise

Suppose $M_D = M_E$ (unrealistic) in the diagonal basis of M_U and M_v

$$\operatorname{Tr}([H_U, H_D]^3) = 6iJ_{CP}^q \Delta_u \Delta_d$$

$$V_{CKM} = V_u V_d^{\dagger} \qquad U_{PMNS} = U_E U_{\nu}^{\dagger}$$

$$\operatorname{Tr}([H_{\nu}, H_E]^3) = -6iJ_{CP}^l \Delta_{\nu} \Delta_e$$

$$6iJ_{CP}^q \Delta_d = -6iJ_{CP}^l \Delta_e$$

$$J_{CP}^l = -J_{CP}^q$$

$$\delta_{CP}^\ell = -\delta_{CP}^q$$

Negative sign is preferred, however, the relative magnitude is unrealistic !

Let us consider the realistic case:

Quark mass matrices by Georgi-Jarlskog in SU(5) PLB 86B (1979) 297

$$M_{D,E} = \begin{pmatrix} 0 & 5_H & 0 \\ 5_H & 4\bar{5}_H & 0 \\ 0 & 0 & 5_H \end{pmatrix} \implies M_D = \begin{pmatrix} 0 & A & 0 \\ A' & B & 0 \\ 0 & 0 & C \end{pmatrix} \qquad M_E = \begin{pmatrix} 0 & A' & 0 \\ A & -3B & 0 \\ 0 & 0 & C \end{pmatrix}$$
$$m_b = m_\tau \ , \qquad 3m_s = m_\mu \ , \qquad m_d = 3m_e$$
$$(1)$$

$$\begin{array}{c|c} \left(-\nu_{e}\right)_{L} & \left(-d_{1} - d_{2} - d_{3} - e^{+} \right)_{L} \\ 10 \otimes 10 = \overline{5} \oplus \overline{45} \oplus \overline{50} & \text{Higgs: } \mathbf{5}_{H}, & \overline{45}_{H} \\ \overline{5} \otimes 10 = 5 \oplus 45 & \mathbf{10} \otimes \overline{5} \otimes \mathbf{5}_{H}, & \mathbf{10} \otimes \overline{5} \otimes \overline{45}_{H} \end{array}$$

Quark mass matrices by using Occam's Razor:

$$M_D^{(1)} = \begin{pmatrix} 0 & a_D & 0 \\ a'_D & b_D & e^{-i\phi} & c_D \\ 0 & c'_D & d_D \end{pmatrix}_{LR} \qquad M_U = \text{diag} \{m_u, m_c, m_t\}$$

 M_E is derived in Pati-Salam symmetry or SU(5) GUT.

Pati-Salam symmetry
$$SU(4)_{\mathcal{C}} \times SU(2)_{L} \times SU(2)_{R}$$

 $F^{i\alpha a} = (4, 2, 1)^{i} = \begin{pmatrix} u_{L}^{R} & u_{L}^{B} & u_{L}^{G} & \nu_{L} \\ d_{L}^{R} & d_{L}^{B} & d_{L}^{G} & e_{L}^{-} \end{pmatrix}^{i} \qquad H^{\alpha b} = (4, 1, 2)$
 $\bar{F}^{i}_{\alpha x} = (\bar{4}, 1, \bar{2})^{i} = \begin{pmatrix} \bar{d}^{R}_{R} & \bar{d}^{R}_{R} & \bar{d}^{G}_{R} & e_{R}^{+} \\ \bar{u}^{R}_{R} & \bar{u}^{R}_{R} & \bar{u}^{G}_{R} & \bar{\nu}_{R} \end{pmatrix}^{i} \qquad \bar{H}_{\alpha x} = (\bar{4}, 1, \bar{2})$

2C

Quark and Lepton Unification by SU(5) GUT

$$\overline{5} = \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e^- \\ -\nu_e \end{pmatrix}_L \quad 10 = \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_3^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^+ \\ -d_1 & -d_2 & -d_3 & -e^+ & 0 \end{pmatrix}_L$$

Higgs: 5_H, 24_H, 45_H, 75_H

4 Predictions of leptonic CP violation

Y.Shimizu, K.Takagi, S.Takahashi, M.Tanimoto, arXiv:1901.06146

Consider diagonal M_v No extra Dirac CP phase except for Majorana phases

$$M_D^{(1)} = \begin{pmatrix} 0 & a_D & 0\\ a'_D & b_D & e^{-i\phi} & c_D\\ 0 & c'_D & d_D \end{pmatrix}_{LR}$$

Pati-Salam symmetry

SU(5) GUT

$$M_E^{(1)} = \begin{pmatrix} 0 & a_E & 0 \\ a'_E & b_E & e^{-i\phi} & c_E \\ 0 & c'_E & d_E \end{pmatrix}_{LR} \qquad \qquad M_E^{(1)} = \begin{pmatrix} 0 & a'_E & 0 \\ a_E & b_E & e^{-i\phi} & c'_E \\ 0 & c_E & d_E \end{pmatrix}_{LR}$$

 $a_E = C_a a_D, \quad a'_E = C_{a'} a'_D, \quad b_E = C_b b_D, \quad c_E = C_c c_D, \quad c'_E = C_{c'} c'_D, \quad d_E = C_d d_D$

Suppose that the single mass operator dominates in each entry of the mass matrix like as <mark>Georgi-Jarlskog</mark>. Then, CG coefficients are determined by group theory.

Pati-Salam

$$Pati-Salam symmetry$$

$$U_{PMNS} \simeq \begin{pmatrix} X_e & \frac{a_E}{2b_E \sin \frac{\phi}{2}} X_e & \frac{a_E}{2d_E \sin \frac{\phi}{2}} e^{i\phi/2} X_e \\ -\frac{a_E b_E}{m_\mu^2} \sin \frac{\phi}{2} Y_\mu & Y_\mu & \frac{c_E}{d_E} \cos \frac{\phi}{2} Y_\mu \\ \frac{a_E c'_E}{m_\tau^2} e^{i\pi/2} Z_\tau & -\frac{b_E d_E}{m_\tau^2} Z_\tau & Z_\tau \end{pmatrix}$$

$$J_{CP}^l = \frac{1}{\Delta_e} a_E^2 b_E c_E c'_E d_E \sin \phi \qquad J_{CP}^l / J_{CP}^q = -C_a^2 C_b C_c C_c' C_d \Delta_d / \Delta_e$$

$$U_{PMNS} \simeq \begin{pmatrix} X_e & \frac{a'_E}{2b_E \sin \frac{\phi}{2}} X_e & -\frac{a'_E c'_E (b_E d_E e^{i\phi} - c_E c'_E)}{|b_E d_E - c_E c'_E e^{i\phi}|^2} e^{i(\pi - \phi)/2} X_e \\ -\frac{2a'_E b_E}{m_\mu^2} \sin \frac{\phi}{2} Y_\mu & Y_\mu & \frac{c'_E}{d_E} Y_\mu \\ \frac{a'_E b_E}{c'_E^2 - m_\tau^2} e^{-i(\pi + \phi)/2} Z_\tau & \frac{c'_E d_E}{c'_E - m_\tau^2} Z_\tau & Z_\tau \end{pmatrix}$$

$$J_{CP}^l = \frac{1}{\Delta_e} a'^2_E b_E c_E c'_E d_E \sin \phi \qquad J_{CP}^l / J_{CP}^q = -C_a^2 C_b C_c C_c' C_d \Delta_d / \Delta_e$$

Relative sign of J_{CP} is determined by CG coefficients.

CG coefficients are constrained by observed mass eigenvalues as:

GUT Scale

25

$$C_a^2 C_{a'}^2 C_d^2 = \frac{m_e^2 m_\mu^2 m_\tau^2}{m_d^2 m_s^2 m_b^2} = 1.7 - 7.3 \qquad \frac{m_\tau^2}{m_b^2} \simeq \frac{C_d^2 d_D^2 + C_{c'}^2 c_D'^2}{d_D^2 + c_D'^2} = 0.99 - 1.1$$
$$\frac{m_e^2 m_\mu^2 + m_\mu^2 m_\tau^2 + m_e^2 m_\tau^2}{m_d^2 m_s^2 + m_s^2 m_b^2 + m_d^2 m_b^2} \simeq \frac{c_E^2 c_E'^2 + b_E^2 d_E^2 - 2b_E c_E c_E' d_E \cos \phi}{c_D^2 c_D'^2 + b_D^2 d_D^2 - 2b_D c_D c_D' d_D \cos \phi} = 15-26$$

Best choice of CG's to reproduce mass ratios

Consider the case: M_v is non-diagonal

Tri-bimaximal mixing pattern for neutrinos Harrison, Perkins, Scott (2002) proposed

$$V_{\text{TBM}} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Charged lepton sector
$$U_{\text{PMNS}} = \begin{pmatrix} \cos \phi & -e^{-i\sigma} \sin \phi & 0 \\ e^{i\sigma} \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} V_{\text{TBM}}$$

$$|U_{e3}| = \left| \frac{e^{-i\sigma} \sin \phi}{\sqrt{2}} \right|$$

$$|U_{e3}| = \left| \frac{e^{-i\sigma} \sin \phi}{\sqrt{2}} \right|$$

If $\sin \Phi = \lambda$ (Cabibbo angle),
$$\theta_{13}^{\text{PMNS}} \simeq \theta_{\text{Cabibbo}} / \sqrt{2} = 0.16$$

Cabibbo Hase
Cabibbo sized effect of lepton mixing

26

Suppose

 θ_{13} (from neutrino mass matrix) is supposed to be negligible small Then, no extra Dirac CP phase except for Majorana phases

Majorana phases

$$U_{\nu} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ -\cos\theta_{23}\sin\theta_{12} & \cos\theta_{12}\cos\theta_{23} & -\sin\theta_{23}\\ -\sin\theta_{12}\sin\theta_{23} & \cos\theta_{12}\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} P$$

Pati-Salam
$$J_{CP}^{l} \simeq -\frac{1}{2\Delta_{e}}a_{E}b_{E}d_{E}^{2}(c_{E}^{\prime 2}+d_{E}^{2})\sin(2\theta_{12})\cos\theta_{23}\sin^{2}\theta_{23}\sin\phi$$

negative
SU(5)
 $J_{CP}^{l} \simeq \frac{1}{2\Delta_{e}}a_{E}^{\prime}b_{E}d_{E}\sin(2\theta_{12})(c_{E}^{\prime}\sin\theta_{23}-d_{E}\cos\theta_{23})(c_{E}^{\prime}\cos\theta_{23}+d_{E}\sin\theta_{23})^{2}\sin\phi$

In the case of Tri-bimaximal mixing $\sin \theta_{12} = 1/\sqrt{3}$ and $\sin \theta_{23} = 1/\sqrt{2}$.

28

M_v is diagonal

_

M_D	$\operatorname{Tr}([H_{\nu}, H_E]^3)_{\operatorname{Pati-Salam}}$	$Tr([H_{\nu}, H_E]^3)_{SU(5)}$
$M_D^{(1)}$	$-6ia_E^2 b_E c_E c'_E d_E \Delta_\nu \sin \phi$	$-6ia_E'^2 b_E c_E c_E' d_E \Delta_\nu \sin \phi$
$M_D^{(2)}$	$-6ia_E^2 b_E c_E c'_E d_E \Delta_\nu \sin \phi$	0
$M_D^{(3)}$	$-6ia_E^2 b_E c_E c'_E d_E \Delta_\nu \sin \phi$	$6ia_E^{\prime 2}b_Ec_Ec_E^\prime d_E\Delta_\nu\sin\phi$
$M_D^{(4)}$	$-6ia_E b_E c_E c'_E d_E^2 \Delta_\nu \sin \phi$	$-6ia_E a_E'^2 b_E c_E c_E' \Delta_\nu \sin \phi$
$M_D^{(5)}$	$-6ia_E b_E c_E c'_E d_E^2 \Delta_\nu \sin \phi$	$6ia_E a_E'^2 b_E c_E c_E' \Delta_\nu \sin \phi$
$M_D^{(6)}$	$-6ia_E b_E c_E c'_E d_E^2 \Delta_\nu \sin \phi$	0
$M_{D}^{(11)}$	$-6ia_E b_E c_E^2 c'_E d_E \Delta_\nu \sin \phi$	$-6ia_E a_E'^2 b_E c_E' d_E \Delta_\nu \sin \phi$
$M_{D}^{(12)}$	$-6ia_E b_E c_E^2 c_E' d_E \Delta_\nu \sin \phi$	0
$M_{D}^{(13)}$	$-6ia_E b_E c_E^2 c'_E d_E \Delta_\nu \sin \phi$	$6ia_E a_E'^2 b_E c_E' d_E \Delta_\nu \sin \phi$
$M_D^{(14)}$	$-6ia_E b_E c_E c'_E d_E^2 \Delta_\nu \sin \phi$	$-6ia_E a_E^{\prime 2} b_E c_E c_E^\prime \Delta_\nu \sin \phi$
$M_{D}^{(15)}$	$-6ia_E b_E c_E^2 c'_E d_E \Delta_\nu \sin \phi$	$6ia_E a_E'^2 b_E c_E' d_E \Delta_\nu \sin \phi$
$M_D^{(16)}$	$-6ia'_E b_E^2 c_E c'_E d_E \Delta_\nu \sin \phi$	0
$M_D^{(17)}$	$-6ia_E^2 b_E c_E c'_E d_E \Delta_\nu \sin \phi$	0

 $\mathrm{Tr}\left([H_{\nu}, H_E]^3\right) = -6i\Delta_{\nu}\Delta_e J_{\mathrm{CP}}^l$

M_v is non-diagonal: Tri-bimaximal

M_D	$\operatorname{Tr}\left([H_{\nu}, H_E]^3\right)_{\operatorname{Pati-Salam}}$	$Tr([H_{\nu}, H_E]^3)_{SU(5)}$
$M_D^{(1)}$	$ia_E b_E (c_E'^2 + d_E^2) d_E^2 \Delta_\nu \sin \phi$	$ia'_E b_E (c'_E + d_E) d_E (d_E^2 - c'_E^2) \Delta_\nu \sin \phi$
$M_D^{(2)}$	$ia_E b_E (c_E'^2 + d_E^2) d_E^2 \Delta_\nu \sin \phi$	$ia_E a'_E b_E c_E (c'_E + d_E)^2 \Delta_\nu \sin \phi$
$M_D^{(3)}$	$ia_E b_E (c_E'^2 + d_E^2) d_E^2 \Delta_\nu \sin \phi$	$-ia'_E b_E c_E (d_E^2 - c'_E^2)(c_E + d_E)\Delta_\nu \sin\phi$
$M_D^{(4)}$	$ia_E b_E d_E^4 \Delta_\nu \sin \phi$	$ia'_E b_E d^4_E \Delta_\nu \sin \phi$
$M_D^{(5)}$	$ia_E b_E d_E^4 \Delta_\nu \sin \phi$	$ia'_E b_E c_E (a_E - c'_E) d_E^2 \Delta_\nu \sin \phi$
$M_{D}^{(6)}$	$ia_E b_E d_E^4 \Delta_\nu \sin \phi$	$-ia'_E b_E c_E d_E^3 \Delta_\nu \sin\phi$
$M_{D}^{(11)}$	$ia_E c_E c'_E d_E (c'^2_E + d^2_E) \Delta_\nu \sin \phi$	$ia_E a'_E d_E (c'_E d_E^2 + d_E^3 - c'^3_E - c'^2_E d_E) \Delta_{\nu} \sin \phi$
$M_{D}^{(12)}$	$ia_E c_E c'_E d_E (c'^2_E + d^2_E) \Delta_\nu \sin \phi$	$-ia_E a'_E b_E c_E (c'_E + d_E)^2 \Delta_\nu \sin\phi$
$M_{D}^{(13)}$	$ia_E c_E c'_E d_E (c'^2_E + d^2_E) \Delta_\nu \sin \phi$	$-ia_E a'_E b_E (d_E^2 - c'_E^2) (c'_E + d_E) \Delta_\nu \sin \phi$
$M_{D}^{(14)}$	$ia_E b_E d_E^4 \Delta_\nu \sin \phi$	$ia_E a'_E d^4_E \Delta_\nu \sin \phi$
$M_{D}^{(15)}$	$ia_E c_E c'_E d_E (c'^2_E + d^2_E) \Delta_\nu \sin \phi$	$ia_E a'_E d_E^2 (c'_E d_E + 2c'_E^2 - d_E^2) \Delta_\nu \sin \phi$
$M_D^{(16)}$	$ib_E c_E c_E'^2 (c_E'^2 + d_E^2) \Delta_\nu \sin \phi$	$ia'_E c_E \left a'_E d_E - c_E c'_E e^{i\phi} \right ^2 \Delta_\nu \sin\phi$
$M_{D}^{(17)}$	$ia_E c_E c'_E d_E (c'^2_E + d^2_E) \Delta_\nu \sin \phi$	$-ib_E c_E \left c_E c'_E - b_E d_E e^{i\phi} \right ^2 \Delta_\nu \sin\phi$

$$\operatorname{Tr}\left([H_{\nu}, H_E]^3\right) = -6i\Delta_{\nu}\Delta_e J_{\rm CP}^l$$

5 Summary

We have connected to lepton CP violation and quark CP violation.

Choosing relevant CG's, J_{CP} (lepton) = -0.02 is obtained !

One CP violating phase controls both CP violation of quarks/leptons.

31