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Beware

This talk will not discuss anything you don’t know already.


This talk is shorter than the slot allocated for it (I only discovered yesterday night 
that my slot was 45 minutes…)


Blame me for any mistakes — my fellow SC members had no real chance to 
comment on a decent draft.
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Why

To improve the results


“Improve” isn’t universally defined — really depends on your scientific goal. 


Usually it’s intended with “reducing the variance”.


But there are cases where mild variance increase might be acceptable, if the 
combination achieves a more unbiased estimate, or a reduction of the relative 
impact of the systematic component on the total variance. 
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When

No-brainers


 independent inputs with similar uncertainties dominated by the statistical 
component, and no updates of the inputs foreseen in the near future ==> 
combine!


 inputs with similar statistical and systematic uncertainties dominated by a 
fully correlated systematic component  ==> don’t waste time in combining!


All the other cases depend on the details of the inputs, priorities, timing etc..
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Quick recap of basics / notation

 Measurement: combine observed data x into statistical model p(x|m) to infer 
the value of parameter m and its uncertainty.


 p(x|m) is called pdf when interpreted as a function of data, and likelihood 
when interpreted as a function of the parameter 


The value m̂ of the parameter m that maximizes the likelihood has optimal 
(asymptotic) properties: unbiased, efficient (smallest variance), Gaussian 
distributed. 


 In case of Gaussian likelihoods, the maximum likelihood estimator can be 
recasted in terms of the least-squares statistics (-2 ln L(m)∝χ²), which has 
attractive properties (namely, a *known* distribution) if  (i) expected values m 
are known, values of the control variable x are known, the variances of the 
observations are known, observations are Gaussian-distributed observations 
around expected values.
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Basics
In its most common incarnation, a measurement of one parameter m is 
typically a point-estimate (central values with uncertainty) xi±σi


Interpret it as single sampling from a pdf p(xi|m) = L(m), which is the assumed 
model that relates the observed quantity with the parameter to be estimated. 


Under some regularity assumptions,  L(m) approaches a Gaussian

p(xi |m) = L(m) ∝ exp [−
(xi − m)2

σ2
i ]

The maximum likelihood estimator of m is xi, with variance deviation σi2.  
Our result will be m̂ = xi ± σi Nothing new so far. Nothing has been 
combined. 


Note also that −2 ln L(m) ∝
(x − m)2

σ2

(Maximizing the likelihood in this Gaussian case amounts to minimizing the 
least-squares)
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How — many data, one parameter

Extend to N independent measurements of one parameter m. Since they are 
independent, multiply their probability densities to get the total density

m̂ = ∑
i

wixi, with wi = (1/σ2
i )/(∑

k

1/σ2
k ) and ∑

i

wi = 1

̂σ2
m̂ = 1/(∑

i

1/σ2
i ) that is, the weighted mean

p( ⃗x |m) =
N

∏
i

p(xi |m) = L(m) ∝
N

∏
i

exp [−
(xi − m)2

σ2
i ]

The maximum likelihood estimator of m is

with variance

which also minimizes the least-squares −2 ln L(m) ∝
N

∑
i

(xi − m)2

σ2
i

whose distribution approximates that of χ² if the numerators are truly Gaussian 
and the observed variances σi2 are sufficiently close to the true ones
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How — many data, many parameters
Generalize to the case of N point estimates, each of a set of n parameters. The 
optimal combined value for m⃗ is achieved by minimizing

In addition, the value of LS (m⃗), offers an approximate measure of the 
consistency of the inputs to each other, knowing that the inputs are supposed 
to be distributed as a Gaussian and therefore LS(m⃗)  approximates a χ² 
distribution

LS( ⃗m ) =
N

∑
i

( ⃗x i − ⃗m )TV−1
i ( ⃗x i − ⃗m )

uncertainty is encoded in the covariance matrix V−1 = ∑
i

V−1
i

LS( ⃗m ) =
N

∑
i

( ⃗x i − ⃗m )TV−1
i ( ⃗x i − ⃗m ) ≈ χ2( ⃗m )
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Example #1 — Heavy Flavor Averaging Group
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Example #2: Particle Data Group

Same as HFLAV, but with an important difference: the choice of the inputs, and 
the uncertainty of the combined value might be modified ad-hoc depending on 
how the LS of the combination


compares with the N-1 value expected for a chi2 distribution in case Gaussian 
distributions of uncertainties.

LS( ⃗m ) =
N

∑
i

(xi − ⃗m )TV−1
i (xi − ⃗m )

If LS(m⃗) ≦ N-1, then no modification


If LS(m⃗) > N-1, then scale the uncertainty of the combined value by S = √[χ²/(N-1)]


If LS(m⃗) ≫ N-1, no average at all.
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Complications

 The previous discussion fails if uncertainties 
are inconsistent (i.e., rely on different 
assumptions) or correlated (i.e., do not 
fluctuate independently) across inputs


The previous discussion relies on the all-
important assumption of Gaussian distribution 
of the measurements around their true values. 
If that assumption is no longer valid, the 
previous treatment fails 


The previous discussion is hard to apply to 
inputs where no point estimates are provided, 
but just confidence intervals.
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Complication #1: inconsistent/correlated uncert.

Things get hairy when the uncertainties (typically the systematic ones) are 
inconsistent or correlated. 


Usually the model p(x|m) is an approximation of p(x|m, ν) where ν is one or multiple 
auxiliary external parameters (so-called nuisance parameters).


While we are not interested to determine ν from our data, its value impacts the 
measurement as it modifies the shape p(x|m) and therefore our inference of m.  
Because of the presence of ν, the uncertainty on the inputs may get


 inconsistent, e.g., different values for such external parameter (a particle mass 
or lifetime, a decay constant, etc.) have been assumed to derive each input so 
that combining them will yield apple-with-oranges situation.


correlated, e.g., the uncertainty on the external parameter ν  introduces a 
common-mode component into the uncertainties of inputs.
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BLUE

In case of correlated uncertainties and assuming known the true variances and 
correlations, one can extract the “best linear unbiased estimate” (unbiased, 
smallest variance)                                                                                                  
Aitken, Proc. Roy. Soc. Edinburgh 55, 42 (1935); Lyons et al., NIM A 270, 110 (1988); Valassi, NIM A 500, 391 (2003) 


Two unbiased measurements of m
 m = m̂1 ± σ1 m = m̂2 ± σ2
with known variances σᵢ and correlation ρ


The BLUE estimate follows by finding the weights α, β that keep the linear 
combination m̂ = α m̂₁ + β m̂₂ unbiased while minimizing its variance 

m̂ =
m̂1(σ2

2 − ρσ1σ2) + m̂2(σ2
1 − ρσ1σ2)

σ2
1 − 2ρσ1σ2 + σ2

2
σ2

m̂ =
σ1σ2(1 − ρ2)

σ2
1 − 2ρσ1σ2 + σ2

2

Depending on correlations, weights could be negative, which might appear 
counterintuitive (without that measurement I’d get a better result).             
Generalizes to many measurements and multiple parameters

weight weight
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Similar methods
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HFLAV

Some approximations are possible if 
distributions are or approximate Gaussians.


HFLAV chooses to explicitly include the input 
dependence on the external parameters ν by 
increasing the dimensionality of the problem 
and interpreting it as a joint measurement of m 
and ν,  p(x|m)  ==>  p(x|m ν)


This way, any additional external information or 
constrain on ν is applied only once during the 
combination (typically assuming it Gaussian) m

ν σν

σm

Satisfactory approximation if things are effectively Gaussian.                             
May be very poor in other cases.
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Complication #2: venturing in non-Gaussian-land



Our findings so far assumed  -2lnL(m) distributed as a χ² distribution:


which requires that the numerator is distributed as a Gaussian and that the  
observed variances σᵢ2 approximate well the true variances


Likelihood theory tells us that maximum likelihood estimators become Gaussian 
only asymptotically (N = ∞, that is, never).


No theorem tells us when we have sufficient data for the likelihood in our 
problem to approximate the asymptotic regime.  How do we check? 


First obvious test is to look at the likelihood in your data: not uncommon to find 
any kind of wild non-Gaussianities: multiple minima, minima that modify the 
likelihood dimensionality, minima that approach the physical boundaries, you 
name it..
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Venturing in non-Gaussian-land

−2 ln L(m) ∝
N

∑
i

(xi − m)2

σ2
i

≈ χ2(m)



If the previous methods are applied in such cases, a number of unpleasant 
consequences are in order


unreliable uncertainties (no coverage)


biased combined central values �18

Venturing in non-Gaussian-land

https://doi.org/10.1103/PhysRevLett.100.161802

https://doi.org/10.1103/PhysRevLett.99.131803

https://doi.org/10.1103/PhysRevLett.96.151801
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Is my likelihood Gaussian?

So, if the likelihood in our data appears to be non Gaussian we are certainly in 
trouble.


But even if that looks Gaussian, it is not guaranteed that it will remain so for 
other sets of data or choice of true values (the ML estimator is a statistics, and 
as such it undergo fluctuations) 


When in doubt, use Monte Carlo:  generate many ensembles of data each with a 
different choice a true values and study the properties of your estimator.


When the distributions of the estimators of my inputs are clearly non-Gaussian, 
there are no shortcuts to:


 find parametrizations that make your inputs more Gaussian                              
(e.g., Appendix A in https://doi.org/10.1103/PhysRevD.99.012007 )


 Perform a combined analysis



�20

Combined analysis

The only reliable way of handling such cases is to embark into a full-fledged 
combined analysis of the input data sets. 


This is done effectively by analyzing jointly/simultaneously the data. 


Alternatively, combine (multiply) the *likelihood* functions from each analysis,  
provided that they are written as functions of the same set of physics and 
common nuisance parameters (e.g, avoiding sin(α) vs α, m2 vs m, τ vs Γ), and 
sampled on common ranges with same granularity.


This approach takes also care naturally of inputs expressed in terms of 
confidence intervals (as opposed to point estimates).


It is important to combine real likelihoods, as opposed to profiled-likelihood 
(lower-dimensional mathematical functions obtained by deriving the likelihood 
wrt some parameters) or posterior densities (lower-dimensional mathematical 
functions obtained by integrating the product of the likelihoods with other 
functions)
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Yes. And usually the properties of the combined likelihood typically improve 
over those of input likelihoods:

X =

…although it is unlikely that the combination of two non-Gaussian likelihoods 
yields a Gaussian result. 

https://doi.org/10.1103/PhysRevLett.101.241801 arXiv:0810.3229

Is it possible?

http://arxiv.org/abs/arXiv:0810.3229
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It is worth?
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It is worth?
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A minor (?) point — blindness..
It’s hard to perform combinations while fully respecting the blinding philosophy. 


While procedures can be established before knowing the combined result, one 
typically “senses” where the final result will be, since known inputs are used.


In addition, one is somewhat incentivized to combine if she suspects that the 
combined result will be more useful/exciting than the individual inputs (e.g, when 
both are close to a conventional threshold for “evidence/observation”)


(To some extent, this arbitrariness is similar to deciding what to do of the 
apparently “inconsistent” data in averages) 
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Aside: combining limits

No generally accepted and robust strategy exists to combine exclusion limits. 


It is in fact, much more straightforward to combine the corresponding point-
estimates and then derive the limit afterward, from the combined result.


Whenever the result of your measurement is an exclusion limit — please 
please please put the central value +/- uncertainty in the paper too. It will 
make combiners’ lifes much simpler down the line.
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Take home messages

Combining results can be good for you. You should be knowing what you are 
doing.


Tabulate, store, document, and publish the full *likelihood* (not the profile 
likelihood or the posterior density) of your analysis. It’s a complete summary 
of the data. It will greatly facilitate future combinations, if any.  


(Who knows? Maybe in future HEP collaborations will evolve to be less 
territorial and NASA-like data sharing will be easier)


The quality of the combination won’t exceed the quality of the inputs: rather 
than neurotizing in constructing oversophisticated combination frameworks, 
do focus on making your analysis as much robust and accurate as possible — 
that’s likely to become the most relevant contribution to any future 
combination.


Combining is not always a good idea. It’s time consuming and less fun than 
doing the real analysis — only worth if there is an obvious scientific benefit.
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Thanks for your attention


