Introduction to CP-violation in beauty and charm: charm physics

Table of Contents:

- Introduction
- Indirect CP-violation
- Direct CP-violation

Alexey A. Petrov Wayne State University

- How can CP-violation be observed in charm system?
 - can be observed by comparing CP-conjugated decay rates in various ways, both with and w/out time dependence

$$a_{\rm CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

- can manifest itself in charm $\Delta C=1$ transitions (direct CP-violation)

$$\Gamma(D \to f) \neq \Gamma(CP[D] \to CP[f])$$
 dCPV

- or in $\Delta C=2$ transitions (indirect CP-violation): mixing $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D^0}\rangle$

$$R_m^2 = |q/p|^2 = \left|\frac{2M_{12}^* - i\Gamma_{12}^*}{\Delta m - (i/2)\Delta\Gamma}\right|^2 = 1 + A_m \neq 1$$
 CPVmix

– or in the interference b/w decays ($\Delta C=1$) and mixing ($\Delta C=2$)

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} = R_m e^{i(\phi + \delta)} \left| \frac{A_f}{A_f} \right|$$
CPVint

Introduction: charm-specific lingo

\star We shall concentrate on SCS decays. Why is that?

★ Generic expectation is that CP-violating observables in the SM are small $\Delta c = 1$ amplitudes allow to reach third -generation quarks!

"Penguin" amplitude/contraction

★ The Unitarity Triangle relation for charm:

$$V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

~ λ ~ λ ~ λ^5

With b-quark contribution neglected: only 2 generations contribute ⇒ real 2x2 Cabibbo matrix

Any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

60

d, s

q

* Fundamental problem: observation of CP-violation in up-quark sector!

★ "Charmed" CKM triangle is very squashed in the Standard Model

\star ... with very small angles, e.g.

$$\chi' = \arg\left(\frac{V_{ud}^* V_{cd}}{V_{us}^* V_{cs}}\right) \simeq A^2 \lambda^4 \eta \simeq 1.6 \cdot 10^{-3} \eta$$

2. Indirect CP-violation

* Indirect CP-violation manifests itself in DD-oscillations

★ "Experimental" mass and lifetime differences of mass eigenstates...

$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

 \star ...can be calculated as real and imaginary parts of a correlation function

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$

bi-local time-ordered product

$$x_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Re} \left[2\langle \overline{D^0} | H^{|\Delta C|=2} | D^0 \rangle + \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle \right]$$

local operator
(b-quark, NP): small?

★ Theoretically, y_D is dominated by long-distance SM-dominated effects
 ★ CP-violating phases can appear from subleading local SM or NP operators

Why is D-mixing different (from B-mixing)?

$\frac{\overline{t},\overline{c},\overline{u}}{\sum_{i}\sum_{j\in I}} \overline{d}$	$\overline{D^0} - D^0$ mixing	$\overline{B^0} - B^0$ mixing
$d \xrightarrow{W}_{t,c,u} \xrightarrow{W}_{tb} b$ $B-\overline{B} \text{ mixing}$	 intermediate down-type quarks SM: b-quark contribution is negligible due to V_{cd}V_{ub}* 	 intermediate up-type quarks SM: t-quark contribution is dominant
$\overline{c} \xrightarrow{\overline{d}, \overline{s}, \overline{b}} \overline{u}$	• $rate \propto f(m_s) - f(m_d)$ (zero in the SU(3) limit) Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002 2 nd order effect!!!	• $rate \propto m_t^2$ (expected to be large)
u c d,s,b D-D mixing	 Sensitive to long distance QCD Small in the SM: New Physics! (must know SM x and y) 	1. Computable in QCD (*) 2. Large in the SM: CKM!

(*) up to matrix elements of 4-quark operators

Indirect CP-violation

Note that if $|M_{12}| < |\Gamma_{12}|$: $x/y = 2 |M_{12}/\Gamma_{12}| \cos \phi_{12}$,

Bergmann, Grossman, Ligeti, Nir, AAP PL B486 (2000) 418

CPV is suppressed even if M₁₂ is all NP!!!

Indirect CP-violation

 \star Indirect CP-violation manifests itself in DD-oscillations

- see time development of a D-system:

$$irac{d}{dt}|D(t)
angle = \left(M - rac{i}{2}\Gamma
ight)|D(t)
angle$$
 $\langle D^0|\mathcal{H}|\overline{D^0}
angle = M_{12} - rac{i}{2}\Gamma_{12}$
 $\langle \overline{D^0}|\mathcal{H}|D^0
angle = M_{12}^* - rac{i}{2}\Gamma_{12}^*$

★ Define "theoretical" mixing parameters

$$y_{12} \equiv |\Gamma_{12}|/\Gamma, \quad x_{12} \equiv 2|M_{12}|/\Gamma, \quad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12})$$

★ Assume that direct CP-violation is absent (Im $(\Gamma_{12}^* \bar{A}_f / A_f) = 0$, $|\bar{A}_f / A_f| = 1$) - can relate x, y, φ , |q/p| to x₁₂, y₁₂ and φ_{12}

"superweak limit"

$$xy = x_{12}y_{12}\cos\phi_{12}, \qquad x^2 - y^2 = x_{12}^2 - y_{12}^2,$$

$$(x^2 + y^2)|q/p|^2 = x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin\phi_{12},$$

$$x^2\cos^2\phi - y^2\sin^2\phi = x_{12}^2\cos^2\phi_{12}.$$

* Four "experimental" parameters related to three "theoretical" $\frac{x}{y} = \frac{1 - |q/p|}{\tan \phi} = -\frac{1}{2} \frac{A_m}{\tan \phi}$

\star Comparing to experimental value of x, obtain constraints on NP models

- assume x is dominated by the New Physics model
- assume no accidental strong cancellations b/w SM and NP

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^{2}} \sum_{i=1}^{8} z_{i}(\mu)Q_{i}^{\prime} \qquad \qquad \begin{aligned} Q_{1}^{cu} &= \bar{u}_{L}^{\alpha}\gamma_{\mu}c_{L}^{\alpha}\bar{u}_{L}^{\beta}\gamma^{\mu}c_{L}^{\beta}, \\ Q_{2}^{cu} &= \bar{u}_{R}^{\alpha}c_{L}^{\alpha}\bar{u}_{R}^{\beta}c_{L}^{\beta}, \\ Q_{3}^{cu} &= \bar{u}_{R}^{\alpha}c_{L}^{\beta}\bar{u}_{R}^{\beta}c_{L}^{\alpha}, \end{aligned} + \begin{cases} L \\ \uparrow \\ R \end{cases} + \begin{cases} Q_{4}^{cu} &= \bar{u}_{R}^{\alpha}c_{L}^{\alpha}\bar{u}_{L}^{\beta}c_{R}^{\beta}, \\ Q_{5}^{cu} &= \bar{u}_{R}^{\alpha}c_{L}^{\beta}\bar{u}_{L}^{\beta}c_{R}^{\alpha}, \end{aligned}$$

★ ... which are

$$\begin{split} |z_1| &\lesssim 5.7 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_2| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_3| &\lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_4| &\lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_5| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{split}$$

New Physics is either at a very high scales

tree level:	$\Lambda_{NP} \ge (4 - 10) \times 10^3 \text{ TeV}$
loop level:	$\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$

or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

 \star Constraints on particular NP models available

* Assume that direct CP-violation is absent (Im $(\Gamma_{12}^* \bar{A}_f / A_f) = 0$, $|\bar{A}_f / A_f| = 1$)

- experimental constraints on x, y, φ , |q/p| exist

- can obtain generic constraints on Im parts of Wilson coefficients

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^8 z_i(\mu) Q_i'$$

 \star In particular, from $x_{12}^{
m NP}\sin\phi_{12}^{
m NP}\lesssim 0.0022$

$$\begin{split} \mathcal{I}m(z_1) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_2) &\lesssim 2.9 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_3) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_4) &\lesssim 1.1 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_5) &\lesssim 3.0 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{split}$$

New Physics is either at a very high scales

tree level:	$\Lambda_{NP} \ge (4 - 10) \times 10^3 \text{ TeV}$
loop level:	$\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$
have highly au	nnnagad countings to shark

or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

★ Constraints on particular NP models possible as well

CP-violation I: beyond "superweak"

 $\mathbf{2}$

* Look at parameterization of CPV phases; separate absorptive and dispersive

See A. Kagan's talk

$$\lambda_f^2 = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}} \left(\frac{\overline{A}_f}{A_f}\right)$$

– consider f= CP eigenstate, can generalize later: $\lambda_{CP}^2 = R_m^2 e^{2i\phi}$

$$\phi_{12f}^{M} = \frac{1}{2} \arg \left[\frac{M_{12}}{M_{12}^{*}} \left(\frac{A_f}{\overline{A}_f} \right)^2 \right] \qquad \qquad \phi_{12f}^{\Gamma} = \frac{1}{2} \arg \left[\frac{\Gamma_{12}}{\Gamma_{12}^{*}} \left(\frac{A_f}{\overline{A}_f} \right)^2 \right]$$

- CP-violating phase for the final state f is then

$$\phi_{12} = \phi_{12f}^M - \phi_{12f}^\Gamma$$

 \bigstar Can we put a Standard Model theoretical bound on ϕ^M_{12f} or ϕ^Γ_{12f} ?

CP-violation I: beyond "superweak"

★ Let us define convention-independent universal CPV phases. First note that – for the absorptive part: $\Gamma_{12} = \Gamma_{12}^0 + \delta\Gamma_{12}$ $\Gamma_{12}^0 = -\lambda_s(\Gamma_{ss} + \Gamma_{dd} - 2\Gamma_{sd})$ $\delta\Gamma_{12} = 2\lambda_b\lambda_s(\Gamma_{sd} - \Gamma_{ss}) + O(\lambda_b^2)$

– ... and similarly for the dispersive part: $M_{12}=M_{12}^0+\delta M_{12}$

 \star CP-violating mixing phase can then be written as

$$\phi_{12} = \arg \frac{M_{12}}{\Gamma_{12}} = \operatorname{Im}\left(\frac{\delta M_{12}}{M_{12}^0}\right) - \operatorname{Im}\left(\frac{\delta \Gamma_{12}}{\Gamma_{12}^0}\right) \equiv \phi_{12}^M - \phi_{12}^\Gamma$$

 \star These phases can then be constrained; e.g. the absorptive phase

$$|\phi_{12}^{\Gamma}| = 0.009 \times \frac{|\Gamma_{sd}|}{\Gamma} \times \left|\frac{\Gamma_{sd} - \Gamma_{dd}}{\Gamma_{sd}}\right| < 0.01$$
 See A. Kagan's talk!

 \star Currently, $\phi_{12}=0.2\pm1.7$ Need improvement!

2. Time-independent (direct) CP-violation

★ Direct CP-violating asymmetries probe CP-violation in ΔC=1 amplitudes

• CP-asymmetries compare partial rates of CP-conjugated decays

$$a_{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

(both charged and neutral D's)

- a non-vanishing decay asymmetry requires that a decay amplitude
 - contain several components each of which has its own strong and weak phases
 - strong phases: do not change under CP transformation of the decay amplitude
 - weak phases: flip sign under CP transformation of the decay amplitude

$$A(D \to f) \equiv A_f = |A_{f1}|e^{i\delta_1}e^{i\theta_1} + |A_{f2}|e^{i\delta_2}e^{i\theta_2}$$

• Now we can form the CP-asymmetry

$$a_{CP}(f) = 2r_f \sin(\theta_1 - \theta_2) \sin(\delta_1 - \delta_2) \quad \text{with} \quad r_f = \left|\frac{A_{f2}}{A_{f1}}\right|$$
weak strong

Direct CP-violation in charm: realities of life

★ IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \rightarrow \pi\pi \text{ vs } D \rightarrow \text{KK!}$ For each final state the asymmetry D^0 : no net

D°: no neutrals in the final state!

$$a_{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \longrightarrow a_{f} = a_{f}^{d} + a_{f}^{m} + a_{f}^{i}$$

direct mixing interference

* A reason: $a^{m}_{KK}=a^{m}_{\pi\pi}$ and $a^{i}_{KK}=a^{i}_{\pi\pi}$ (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel $(r_{f}=P_{f}/A_{f})!$

$$a_f^d = 2r_f \sin\phi_f \sin\delta_f$$

★ ... and the resulting DCPV asymmetry is $(\Delta a_{CP} = a_{KK}^d - a_{\pi\pi}^d \approx 2a_{KK}^d)$ (double!)

$$A_{KK} = \frac{G_F}{\sqrt{2}} \lambda \left[(T + E + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$
$$A_{\pi\pi} = \frac{G_F}{\sqrt{2}} \lambda \left[(-(T + E) + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$

 \star ... so it is doubled in the limit of SU(3)_F symmetry

SU(3) is badly broken in D-decays

Experimental analysis from LHCb

* Since we are comparing rates for D^o and anti-D^o: need to tag the flavor at production

 $D^{*+} \rightarrow D^0 \pi_s^+$ "D*-trick" -- tag the charge of the slow pion (or muon for D's produced in B-decays)

 \star The difference Δa_{CP} is also preferable experimentally, as

★ D* production asymmetry and soft pion asymmetries are the same for KK and $\pi\pi$ final states-- they cancel in $\Delta a_{CP}!$

★ Integrate over time,

$$a_{CP, f} = \int_0^\infty a_{CP}(f; t) D(t) dt = a_f^d + \frac{\langle t \rangle}{\tau} a_f^{ind}$$

distribution of proper decay time

★ Viola! Report observation!

Moriond 2019 announcement

- Experimental results
 - note that while the new result does constitute an observation of CP-violation in the difference...

$$\Delta a_{CP}^{dir} = a_{CP}(K^-K^+) - a_{CP}(\pi^-\pi^+) = (-0.156 \pm 0.029)\%$$
 LHCb 2019

- ... it is not yet so for the individual decay asymmetries

$$a_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%,$$

 $a_{CP}(\pi^-\pi^+) = (0.07 \pm 0.14 \text{ (stat)} \pm 0.11 \text{ (syst)})\%.$

LHCb 2017

- Need confirmation from other experiments (Belle II)
- What does this result mean? New Physics? Standard Model?

Theoretical troubles

ΔA_{CP} within the Standard Model and beyond

Mikael Chala, Alexander Lenz, Aleksey V. Rusov and Jakub Scholtz

Institute for Particle Physics Phenomenology, Durham University, DH1 3LE Durham, United Kingdom

Implications on the first observation of charm CPV at LHCb

Hsiang-nan Li^{1*}, Cai-Dian Lü^{2†}, Fu-Sheng Yu^{3‡}

¹Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

The Emergence of the $\Delta U = 0$ Rule in Charm Physics

Yuval Grossman^{*} and Stefan Schacht[†]

Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA

Revisiting *CP* violation in $D \rightarrow PP$ and *VP* decays

Hai-Yang Cheng Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, ROC

Cheng-Wei Chiang Department of Physics, National Taiwan University, Taipei, Taiwan 10617, ROC

Theoretical troubles

★ These asymmetries are notoriously difficult to compute

\star In the Standard Model

- need to estimate size of penguin/penguin contractions vs. tree

- unknown penguin contributions

- SU(3) analysis: some ME are enhanced? Golden & Grinstein PLB 222 (1989) 501; Pirtshalava & Uttayarat 1112.5451
- could expect large 1/m_c corrections (E/PE/PA/...) Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000
- flavor-flow diagrams

Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng & Chiang 1205.0580; 1909.03063; Gronau, Rosner

\star General comments on SU(3)/flavor flow — type analyses

- fit both SM and (possible) NP parts of the amplitudes: can one claim SM-only?
- many parameters: can one claim $O(10^{-4})$ precision if rates are known to $O(10^{-2})$?

★ Need direct calculations of amplitudes/CPV-asymmetries

- QCD sum rule calculations of Δa_{CP} Khodjamirian, AAP
- SU(3) breaking analyses of $D \rightarrow PV$, VV
- constant (but slow) lattice QCD progress in D $ightarrow \pi\pi$, $\pi\pi\pi$

Hansen, Sharpe

Effective Hamiltonian for singly Cabibbo-suppressed (SCS) decays

- drop all "penguin" operators (Q_i for i \geq 3) as C_i are small, $\lambda_q = V_{uq}V_{cq}^*$,

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \begin{bmatrix} \sum_{q=d,s} \lambda_q \left(C_1 \mathcal{Q}_1^q + C_2 \mathcal{Q}_2^q \right) - \lambda_b \sum_{i=2,\dots,6,8g} C_i \mathcal{Q}_i \end{bmatrix}$$
$$\mathcal{Q}_1^q = \left(\bar{u} \Gamma_\mu q \right) \left(\bar{q} \Gamma^\mu c \right), \qquad \mathcal{Q}_2^q = \left(\bar{q} \Gamma_\mu q \right) \left(\bar{u} \Gamma^\mu c \right)$$
recall that $\sum_{q=d,s,b} \lambda_q = 0 \text{ or } \lambda_d = -(\lambda_s + \lambda_b) \text{ and } \mathcal{O}^q \equiv \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i \mathcal{Q}_i^q, \quad \text{with } q = d, s.$

without QCD

q=d,s,b

with QCD

Amplitude decomposition

- Recipe for calculation of CPV asymmetry
 - prepare decay amplitudes (and using $\lambda_d = -(\lambda_s + \lambda_b)$)

$$A(D^{0} \to \pi^{-}\pi^{+}) = \lambda_{d} \langle \pi^{-}\pi^{+} | \mathcal{O}^{d} | D^{0} \rangle + \lambda_{s} \langle \pi^{-}\pi^{+} | \mathcal{O}^{s} | D^{0} \rangle$$
$$A(D^{0} \to K^{-}K^{+}) = \lambda_{s} \langle K^{-}K^{+} | \mathcal{O}^{s} | D^{0} \rangle + \lambda_{d} \langle K^{-}K^{+} | \mathcal{O}^{d} | D^{0} \rangle$$

– add and subtract $\ \lambda_b \ \langle \pi^-\pi^+ | {\cal O}^s | D^0
angle$, put in a new form

$$A(D^{0} \to \pi^{-}\pi^{+}) = -\lambda_{s}\mathcal{A}_{\pi\pi} \left[1 + \frac{\lambda_{b}}{\lambda_{s}} \left(1 + r_{\pi} \exp(i\delta_{\pi})\right)\right]$$
$$A(D^{0} \to K^{-}K^{+}) = -\lambda_{s}\mathcal{A}_{KK} \left[1 - \frac{\lambda_{b}}{\lambda_{s}}r_{K} \exp(i\delta_{K})\right]$$

- define things we cannot compute (extract from branching ratios)

$$\mathcal{A}_{\pi\pi} = \langle \pi^{-}\pi^{+} | \mathcal{O}^{d} | D^{0} \rangle - \langle \pi^{-}\pi^{+} | \mathcal{O}^{s} | D^{0} \rangle$$
$$\mathcal{A}_{KK} = \langle K^{-}K^{+} | \mathcal{O}^{s} | D^{0} \rangle - \langle K^{-}K^{+} | \mathcal{O}^{d} | D^{0} \rangle$$

- ... and things we can $\mathcal{P}^s_{\pi\pi} = \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle$, $\mathcal{P}^d_{KK} = \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle$

$$r_{\pi} = \left| rac{\mathcal{P}_{\pi\pi}^s}{\mathcal{A}_{\pi\pi}}
ight|, \quad r_K = \left| rac{\mathcal{P}_{KK}^d}{\mathcal{A}_{KK}}
ight|$$
 KEK Physics Week, Oct. 2019

- QCD-based calculation of direct CPV asymmetry
 - each amplitude has two parts with own weak and strong phases

$$A(D^{0} \to \pi^{-}\pi^{+}) = -\lambda_{s}\mathcal{A}_{\pi\pi} \left[1 + \frac{\lambda_{b}}{\lambda_{s}} \left(1 + r_{\pi} \exp(i\delta_{\pi}) \right) \right]$$
$$A(D^{0} \to K^{-}K^{+}) = -\lambda_{s}\mathcal{A}_{KK} \left[1 - \frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp(i\delta_{K}) \right]$$

– this implies for the direct CP-violating asymmetries ($r_b e^{-i\gamma} = \frac{\lambda_b}{\lambda_c}$)

$$a_{CP}^{dir}(K^-K^+) = -2r_b r_K \sin \delta_K \sin \gamma$$

$$a_{CP}^{dir}(\pi^-\pi^+) = 2r_b r_\pi \sin \delta_\pi \sin \gamma$$

… and for their difference

$$\Delta a_{CP}^{dir} = -2r_b \sin\gamma (r_K \sin\delta_K + r_\pi \sin\delta_\pi)$$

• We need to compute $r_{\pi(K)}$ and $\delta_{\pi(K)}$

- Some things to keep in mind
 - "penguin-type amplitudes" $\mathcal{P}_{\pi\pi}^s$ and \mathcal{P}_{KK}^d denote matrix elements of operators that contain quark-antiquark pair that does not match the valence content of the final state mesons; otherwise no relation to penguin topological amplitudes

$$\mathcal{P}^s_{\pi\pi} = \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle , \quad \mathcal{P}^d_{KK} = \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle \ \& \ r_\pi = \left| \frac{\mathcal{P}^s_{\pi\pi}}{\mathcal{A}_{\pi\pi}} \right| , \quad r_K = \left| \frac{\mathcal{P}^d_{KK}}{\mathcal{A}_{KK}} \right|$$

– calculate $\mathcal{P}^s_{\pi\pi}$ and \mathcal{P}^d_{KK} using a modified light-cone QCD sum rules

$$\delta_{\pi(K)} = \arg \left[\mathcal{P}_{\pi\pi(KK)}^{s(d)} \right] - \arg \left[\mathcal{A}_{\pi\pi(KK)} \right]$$

- extract $\mathcal{A}_{\pi\pi}$ and \mathcal{A}_{KK} amplitudes from measured branch. fractions $|\mathcal{A}_{\pi\pi}| \simeq \lambda_s^{-1} |A(D \to \pi^- \pi^+)| = (2.10 \pm 0.02) \times 10^{-6} \text{ GeV},$ $|\mathcal{A}_{KK}| \simeq \lambda_s^{-1} |A(D \to K^- K^+)| = (3.80 \pm 0.03) \times 10^{-6} \text{ GeV}.$

Khodjamirian, NPB 605 (2001) 558

• Use modified light-cone QCD Sum Rule (LCSR) method

- start with the correlation function ($j_5^{(D)} = im_c \bar{c} \gamma_5 u$ and $j_{\alpha 5}^{(\pi)} = \bar{d} \gamma_{\alpha} \gamma_5 u$)

$$F_{\alpha}(p,q,k) = i^{2} \int d^{4}x e^{-i(p-q)x} \int d^{4}y e^{i(p-k)y} \langle 0| T \left\{ j_{\alpha 5}^{(\pi)}(y) \mathcal{Q}_{1}^{s}(0) j_{5}^{(D)}(x) \right\} |\pi^{+}(q) \rangle$$
$$= (p-k)_{\alpha} F((p-k)^{2}, (p-q)^{2}, P^{2}) + \dots,$$

 use dispersion relation in (p-k) and (p-q), perform Borel transform, extract matrix element:
 Khodjamirian, Mannel, Melic, PLB571 (2003) 75

$$\langle \pi^{-}(-q)\pi^{+}(p)|\mathcal{Q}_{1}^{s}|D^{0}(p-q)\rangle = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds e^{-s/M_{1}^{2}} \int_{m_{c}^{2}}^{s_{0}^{D}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}\operatorname{Im}_{s}F(s,s',m_{D}^{2}) = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}\operatorname{Im}_{s'}\operatorname{Im}_{s'}F(s,s',m_{D}^{2}) = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}\operatorname{Im}_{s'}F(s,s',m_{D}^{2}) = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}\operatorname{Im}_{s'}F(s,s',m_{D}^{2}) = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}F(s,s',m_{D}^{2}) = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds' e^{(m_{D}^{2}$$

- perform LC expansion of F(s, s' m_D²) to get $\mathcal{P}^{s}_{\pi\pi}$
- note that $C_1 \mathcal{Q}_1^s + C_2 \mathcal{Q}_2^s = 2C_1 \widetilde{\mathcal{Q}}_2^s + \left(\frac{C_1}{3} + C_2\right) \mathcal{Q}_2^s$ with $\widetilde{\mathcal{Q}}_2^s = \left(\bar{s}\Gamma_\mu \frac{\lambda^a}{2}s\right) \left(\bar{u}\Gamma^\mu \frac{\lambda^a}{2}c\right)$

thus
$$\mathcal{P}^s_{\pi\pi}=rac{2G_F}{\sqrt{2}}\;C_1\langle\pi^+\pi^-|\widetilde{\mathcal{Q}}^s_2|D^0
angle$$

dCPV: calculating matrix elements

- Evaluate (leading) diagrams contributing to the correlation function
 - calculate OPE in terms of known LC DAs Khodjamirian, AAP: PLB774 (2017) 235

- analytically continue from the space-like region of P²=(p-k-q)² (with auxiliary 4-momentum k≠0) to P² = m_D², relying on the local quark-hadron duality
- extract absolute value and the phase of matrix element $\mathcal{P}^s_{\pi\pi}$
- vary parameters of the calculation to estimate uncertainties

dCPV predictions

• As a result... $\langle \pi^+\pi^- | \widetilde{\mathcal{Q}}_2^s | D^0 \rangle = (9.50 \pm 1.13) \times 10^{-3} \exp[i(-97.5^o \pm 11.6)] \,\text{GeV}^3$ $\langle K^+K^- | \widetilde{\mathcal{Q}}_2^d | D^0 \rangle = (13.9 \pm 2.70) \times 10^{-3} \exp[i(-71.6^o \pm 29.5)] \,\text{GeV}^3$

• Thus,
$$r_{\pi} = \frac{|\mathcal{P}_{\pi\pi}^{s}|}{|\mathcal{A}_{\pi\pi}|} = 0.093 \pm 0.011$$
, $r_{K} = \frac{|\mathcal{P}_{KK}^{d}|}{|\mathcal{A}_{KK}|} = 0.075 \pm 0.015$

and with $\Delta a_{CP}^{dir} = -2r_b \sin \gamma (r_K \sin \delta_K + r_\pi \sin \delta_\pi)$

• Phases of $r_{\pi\pi(KK)}$ are given by the phases of $\mathcal{P}^{s(d)}_{\pi\pi(KK)}$?

	$\left a_{CP}^{dir}(\pi^{-}\pi^{+})\right < 0.012 \pm 0.001\%,$		$a_{CP}^{dir}(\pi^{-}\pi^{+}) = -0.011 \pm 0.001\%,$
No:	$\left a_{CP}^{dir}(K^-K^+)\right < 0.009 \pm 0.002\%,$	Yes:	$a_{CP}^{dir}(K^-K^+) = 0.009 \pm 0.002\%.$
	$\left \Delta a_{CP}^{dir}\right < 0.020 \pm 0.003\%.$		$\Delta a_{CP}^{dir} = 0.020 \pm 0.003\%$.

Khodjamirian, AAP: PLB774 (2017) 235

• Again, experiment: $\Delta a_{CP}^{dir} = (-0.156 \pm 0.029)\%$

Error budget: parameter uncertainties

Parameter values	Parameter rescaled
and references	to $\mu = 1.5 \text{ GeV}$
$lpha_s(m_Z) = 0.1181 \pm 0.0011$ [6]	0.351
$\bar{m}_c(\bar{m}_c) = 1.27 \pm 0.03 \text{ GeV} [6]$	$1.19~{ m GeV}$
$\bar{m}_s(2{ m GeV}) = 96^{+8}_{-4}{ m MeV}~[6]$	105 MeV
$\langle \bar{q}q \rangle (2{ m GeV}) = (-276^{+12}_{-10}{ m MeV})^3[6]$	$(-268{ m MeV})^3$
$\langle ar{s}s angle = (0.8\pm 0.3)\langlear{q}q angle ~~[21]$	$(-249 {\rm ~MeV})^3$
$a_2^{\pi}(1{ m GeV}) = 0.17\pm 0.08~~[22]$	0.14
$a_4^{\pi}(1{ m GeV}) = 0.06 \pm 0.10~[22]$	0.045
$\mu_{\pi}(2{ m GeV}) = 2.48 \pm 0.30{ m GeV}~[6]$	$2.26{ m GeV}$
$f_{3\pi}(1{ m GeV}) = 0.0045 \pm 0.015{ m GeV}^2$ [19]	$0.0036{ m GeV^2}$
$\omega_{3\pi}(1{ m GeV}) = -1.5\pm 0.7~[19]$	-1.1
$a_1^K(1{ m GeV}) = 0.10\pm 0.04~~[23]$	0.09
$a_2^K(1{ m GeV}) = 0.25 \pm 0.15~[19]$	0.21
$\mu_K(2{ m GeV}) = 2.47^{+0.19}_{-0.10}~{ m GeV}~[6]$	2.25
$f_{3K}=f_{3\pi}$	$0.0036{ m GeV^2}$
$\omega_{3K}(1{ m GeV}) = -1.2 \pm 0.7$ [19]	-0.99
$\lambda_{3K}(1{ m GeV}) = 1.6\pm 0.4~[19]$	1.5

Error budget: parameter uncertainties

• For example, probability distribution for KK final state:

- Analysis of possible higher-order effects (Chala et al):
 - ...resulting in $|\Delta A_{CP}| \le (2.0 \pm 1.0) \times 10^{-4}$

$$\begin{split} \left| \frac{P}{T} \right|_{\pi^+\pi^-} &= & 0.093 \pm 0.030 \,, \\ \left. \frac{P}{T} \right|_{K^+K^-} &= & 0.075 \pm 0.035 \,, \end{split}$$

★ "Triangle analyses" require a lot of data, but only rely on isospin relations

– several final states possible, for $\mathsf{D} \to \pi^{\mathsf{i}} \; \pi^{\mathsf{k}}$

$$\begin{split} &\frac{1}{\sqrt{2}}A^{+-} = A^{+0} - A^{00}, \\ &\frac{1}{\sqrt{2}}\overline{A}^{-+} = \overline{A}^{-0} - \overline{A}^{00}, \end{split}$$

Gronau, London Bevan, Meadows

- others include
$$D \rightarrow \pi\pi$$
, $\rho\pi$, $\rho\rho$

👻 Pic	onic modes	
Γ_1	$\pi^+\pi^-$	$(1.420 \pm 0.025) \times 10^{-3}$
Γ_2	2 π^0	$(8.25 \pm 0.25) \times 10^{-4}$
Γ_3	$\pi^+\pi^-\pi^0$	$(1.47 \pm 0.09)\%$
Γ_4	$ ho^+\pi^-$	$(1.00 \pm 0.06)\%$
Γ_5	$ ho^0 \pi^0$	$(3.82 \pm 0.29) \times 10^{-3}$
Γ_6	$ ho^-\pi^+$	$(5.09 \pm 0.34) \times 10^{-3}$

Other observables can be constructed for baryons, e.g.

$$A(\Lambda_{c} \rightarrow N\pi) = \overline{u}_{N}(p,s) [A_{S} + A_{P}\gamma_{5}] u_{\Lambda_{c}}(p_{\Lambda},s_{\Lambda})$$

These amplitudes can be related to "asymmetry parameter"

$$\alpha_{\Lambda_c} = \frac{2 \operatorname{Re} \left(A_S^* A_P \right)}{\left| A_S \right|^2 + \left| A_P \right|^2}$$

... which can be extracted from

$$\frac{dW}{d\cos\vartheta} = \frac{1}{2} \left(1 + P\alpha_{\Lambda_c} \cos\vartheta \right)$$

Same is true for Λ_c -decay

If CP is conserved $\alpha_{\Lambda_c} \stackrel{CP}{\Rightarrow} - \stackrel{-}{\alpha}_{\Lambda_c}$, thus CP-violating observable is

$$A_f = \frac{\alpha_{\Lambda_c} + \overline{\alpha}_{\Lambda_c}}{\alpha_{\Lambda_c} - \overline{\alpha}_{\Lambda_c}}$$

FOCUS[2006]: A_{Δπ}=-0.07±0.19±0.24

Things to take home

Computation of charm amplitudes is a difficult task

- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
- D-mixing is a second order effect in SU(3) breaking $(x, y \sim 1\%)$ in the SM)

For indirect CP-violation studies

- constraints on Wilson coefficients of generic operators are possible, point to the scales much higher than those directly probed by LHC
- consider new parameterizations that go beyond the "superweak" limit

For direct CP-violation studies

- unfortunately, large DCPV signal is no more; need more results in individual channels, especially including baryons
- hit the "brown muck": future observation of DCPV does not give easy interpretation in terms of fundamental parameters
- need better calculations: lattice?
- > Lattice calculations can, in the future, provide a result for a_{CP}!
- > Need to give more thought on how large SM CPV can be...

Things to take home

Theory/Experiment relation:

Theory X Experiment X	Theory X Experiment V
Not a very interesting case	SM wins again?
Theory V Experiment	Theory ✓ Experiment ✓
SM wins again!	New Physics!

- Observation of CP-violation in the current round of experiments could have provided a "smoking gun" signals for New Physics
 - But latest LHCb observation seem to be broadly consistent (?) with SM

 $\Delta a_{CP}^{dir} = (-0.156 \pm 0.029)\%$ LHCB-PAPER-2019-006

- Maybe if we only have a reliable calculation of the SM effects...

 $\left|\Delta a_{CP}^{dir}\right| < 0.020 \pm 0.003\%$ Khodjamirian, AAP: PLB774 (2017) 235 $\left|\Delta A_{CP}\right| \le (2.0 \pm 1.0) \times 10^{-4}$ Chala, Lenz, Rusov, Scholtz: JHEP 1907 (2019) 161

• Light cone distribution amplitudes

$$\begin{split} \varphi_{\pi}(u) &= 6u\bar{u}\left(1 + a_{2}^{\pi}C_{2}^{3/2}(u-\bar{u}) + a_{4}^{\pi}C_{4}^{3/2}(u-\bar{u})\right)\\ \phi_{3\pi}^{p}(u) &= 1 + 30\frac{f_{3\pi}}{\mu_{\pi}f_{\pi}}C_{2}^{1/2}(u-\bar{u}) - 3\frac{f_{3\pi}\omega_{3\pi}}{\mu_{\pi}f_{\pi}}C_{4}^{1/2}(u-\bar{u}),\\ \phi_{3\pi}^{\sigma}(u) &= 6u(1-u)\left(1 + 5\frac{f_{3\pi}}{\mu_{\pi}f_{\pi}}\left(1 - \frac{\omega_{3\pi}}{10}\right)C_{2}^{3/2}(u-\bar{u})\right) \end{split}$$

$$\varphi_K(u) = 6u\bar{u}\left(1 + a_1^K C_1^{3/2}(u - \bar{u}) + a_2^K C_2^{3/2}(u - \bar{u})\right)$$