ALSO WITH

Mixing CPV Decays

EXPERIMENTAL CHARM PHYSICS

BOSTJAN GOLOB UNIVERSITY OF LJUBLJANA/ JOZEF STEFAN INSTITUTE

University of Ljubljana

BELLE

"Jozef Stefan" Institute INTRODUCTION

FACILITIES

SPECTROSCOPY

MIXING

CPV

(RARE) DECAYS

2ND OPEN BELLE II PHYSICS WEEK KEK 28TH OCT - 1ST NOV 2019

Belle T

Belle Phys. Week, KEK, Oct 2019

DISCLAIMER

CHOICE OF SUBJECTS, AND ESPECIALLY EXAMPLES, HAD TO BE MADE;

SPEAKER IS TO BE BLAMED FOR NOT SHOWING YOUR FAVORITE MEASUREMENT

FREQUENTLY USED REFERENCES:

- PDG: M. TANABASHI ET AL. (PARTICLE DATA GROUP), PHYS. REV. D 98, 030001 (2018).
- HFLAV: HEAVY FLAVOR AVERAGING GROUP, HTTPS://HFLAV.WEB.CERN.CH/
- PBF: THE PHYSICS OF THE B FACTORIES, A. BEVAN, B. GOLOB, T. MANNEL. S. PRELL, B. YABSLEY EDS., EUR. PHYS. J. C 74 (2014).
- BIIPB: E. KOU, P. URQUIJO ETN AL. (BELLE II COLL.), ARXIV:1808.10567

T. PENG ET AL., (BELLE COLL.), PRD 89, 091103 (2014)

Introduction

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	D^{C}	⁹ Mixing E	ALITZ	
MULTI-BODY SELF	CONJUGATEI	O STATES			BIIPB
$D^0 \rightarrow K_S \pi^+ \pi^-$	0.14				
Belle II:	0.12		<i>σ</i> (x)[10 ⁻²]	
SYST. UNCERTAINTY					
DOMINATES @ FEW AB ⁻¹	0.10				
	0.08				
IN TURN, SYST. UNCERTA					
DOMINATED BY THE MOL			$\sigma(y)$	[10 ⁻²]	
UNCLIVIAINTI	0.04 -				
CAN THIS BE EVADED?	0.02				
	0.02				
BY MEASURING STRONG		<u></u>		<u></u>	· · · · ·
PHASE VARIATION ACROS	SS 10	20	30	40	50
DALITZ PLANE USING					L [ab ⁻]
COHERENT $D^0 D^0$ PAIRS (BES III)				

$$\begin{aligned} & \underset{\text{Spectroscopy}}{\text{Poccus}} & \underset{\text{D}^{O}}{\text{Poccus}} & \underset{\text{D}^{O} \text{MIXING DALITZ}}{\text{MULTI-BODY SELF CONJUGATED STATES}} \\ & \underset{\text{D}^{O} \rightarrow \mathcal{K}_{S} \pi^{+} \pi^{-}}{\text{D}^{O} (m_{S}^{2}, \pi^{+} \pi^{-})} & \underset{\text{A} \text{ BONDAR, A} \text{ POLIEKTOX AND V. VOROBELY, PRD 82, 034033 (2010)} \\ & \underset{\text{A} \text{GRE, Y. GROSSMAN, A} \text{ SOFTER, AND J. ZUPAN, PRD 68, 054018 (2000)} \\ & \underset{\text{MODEL INDEPENDENT METHOD}{\text{DALITZ- AND f DEPENDENT METHOD EUP TO } O(x^{2}, y^{2}) & \underset{\text{NOTATION:}}{\text{NOTATION:}} & \underset{p}{q} = r_{CP} e^{i\alpha_{CP}} \\ & p_{D^{0}}(m_{12}^{2}, m_{13}^{2}, t) = \Gamma e^{-\Gamma t} \left[a_{12,13}^{2} + r_{CP} a_{12,13} a_{13,12} \Gamma t \left\{ y_{D} \cos(\delta_{12,13} - \delta_{13,12} - \alpha_{CP}) \right\} \\ & \underset{\text{INTEGRATING OVER DALITZ- AND felsion}{\text{MULT}^{2}} & \underset{\text{L} \text{ SUS symmetric bins}}{\text{MULT}^{2}} \\ & \underset{\text{A} \left\{ (e^{-\Gamma t_{a}} - e^{-\Gamma t_{b}})T_{i} + \left[\Gamma (e^{-\Gamma t_{a}} t_{a} - e^{-\Gamma t_{b}} t_{b}) + (e^{-\Gamma t_{a}} - e^{-\Gamma t_{b}}) \right] \\ & \times \left\{ r_{CP} \sqrt{T_{i} T_{-i}} (y_{D} [c_{i} \cos(\alpha_{CP}) + s_{i} \sin(\alpha_{CP})] + x_{D} [s_{i} \cos(\alpha_{CP}) - c_{i} \sin(\alpha_{CP})] \right) \right\} \right\} \\ & \underset{\text{A} \left\{ i = \int_{a}^{1} a_{12,13}^{2} dm_{12}^{2} dm_{13}^{2}, & \underset{i, j = -S_{i}}{1} \\ & s_{i} = \frac{1}{\sqrt{T_{i} T_{-i}}} \int_{a}^{1} a_{12,13} a_{13,12} \cos(\delta_{12,13} - \delta_{13,12}) dm_{12}^{2} dm_{13}^{2}, \\ & s_{i} = \frac{1}{\sqrt{T_{i} T_{-i}}} \int_{a}^{1} a_{12,13} a_{13,12} \sin(\delta_{12,13} - \delta_{13,12}) dm_{12}^{2} dm_{13}^{2}, \\ & s_{i} = e^{-1} \int_{a} a_{12,13} a_{13,12} \sin(\delta_{12,13} - \delta_{13,12}) dm_{12}^{2} dm_{13}^{2}, \\ & s_{i} = \frac{1}{\sqrt{T_{i} T_{-i}}} \int_{a}^{1} a_{12,13} a_{13,12} \sin(\delta_{12,13} - \delta_{13,12}) dm_{12}^{2} dm_{13}^{2}, \\ & s_{i} = e^{-1} \int_{a} a_{i} a_{i}$$

D^O MIXING DALITZ

MULTI-BODY SELF CONJUGATED STATES $D^0 \rightarrow K_S \pi^+ \pi^-$

MODEL INDEPENDENT METHOD

BINNING OF DALITZ PLANE BASED ON A. POLUEKTOV ET AL. (BELLE COLL.), PR D 81, 112002 (2010) $(\Delta \delta \sim CONST. ACROSS BIN)$

RESULTS USING L=0.8 FB⁻¹

i	C_i	Si
	$\mathcal{N} = 4 \text{ equal } \Delta d$	δ_D bins
1	$0.858 \pm 0.059 \pm 0.034$	$0.309 \pm 0.248 \pm 0.180$
2	$0.176 \pm 0.223 \pm 0.091$	$0.992 \pm 0.473 \pm 0.403$
3	$-0.819 \pm 0.095 \pm 0.045$	$0.307 \pm 0.267 \pm 0.201$
4	$0.376 \pm 0.329 \pm 0.157$	$-0.133 \pm 0.659 \pm 0.323$
-		

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

METHOD P. 42 DALTZ *t*DEPENDENCE P. 44

UNCERTAINTIES ON c_i , s_i propagate to measured variables (as systematic uncertainty); STILL STATISTICS DOMINATED \rightarrow BESIII has 3 FB⁻¹ OF DATA, PLANNING TO

RECORD 10 FB⁻¹ MORE

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 6/42

Mixing CPV Deca<u>ys</u>

D^O MIXING DALITZ

Multi-body self conjugated states $D^0 \rightarrow K_S \pi^+ \pi^-$

MODEL INDEPENDENT METHOD

T. Peng et al., (Belle Coll.), PRD 89, 091103 (2014) : $1.33 \cdot 10^6 \text{ D}^* \text{ TAGGED } D^0 \rightarrow K_S \pi^+ \pi^- / \text{AB}^{-1}$

C. THOMAS, G. WILKINSON, JHEP 2012:185

LHCB NEED ADDITIONAL ~1 FB⁻¹ (IN ADDITION TO EXISTING 9 FB-¹) TO REACH THIS STAT. ACCURACY

: $100 \cdot 10^{6} D^{*}$ TAGGED $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$: $\sigma(x) = [\pm 0.017 \pm 0.076(c_{i}, s_{i})] 10^{-2}$ CLEO-C (0.8 FB⁻¹) $\sigma(y) = [\pm 0.019 \pm 0.087(c_{i}, s_{i})] 10^{-2}$

27 · 10⁶ D^* TAGGED $D^0 \rightarrow K_S \pi^+ \pi^-$: (Belle II @20 AB⁻¹) ~ $\sigma(\mathbf{x}) = [\pm 0.032 \pm 0.039(\mathbf{c}_i, \mathbf{s}_i)] \ 10^{-2}$ BESIII with 3 FB⁻¹ $\sigma(\mathbf{y}) = [\pm 0.036 \pm 0.045(\mathbf{c}_i, \mathbf{s}_i)] \ 10^{-2}$ (only simple Scaling with L)

D^O MIXING AVERAGE

WHERE DO WE STAND?

NO MIXING POINT

$$x = (0.50 \pm {}^{0.13}_{0.14})\%$$
$$y = (0.62 \pm 0.07)\%$$

REPEAT FROM P. 29, W/O ANY DISCLAIMER:

 D^{o} MESONS, LIKE OTHER M^{o} , DO MIX, WITH THE LOWEST PROBABILITY OF ALL

 $P(D^{O} \rightarrow \overline{D^{O}}) \sim 3 \cdot 10^{-5}$

 D^{O} MIXING IS DATA DRIVEN FIELD (N.B. X, YNEEDED FOR CPV PREDICTIONS)

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays	CHARM C	PV
IS SMALL			PBFB
CKM in Wolfenstein param. (το Ο (λ ³))	$\begin{pmatrix} 1-\lambda^2/2\\ -\lambda+ \end{pmatrix}$	$\lambda = \frac{1-\lambda^2/2}{2}$	$\left. \begin{array}{c} A\lambda^3(ho-i\eta) \\ A\lambda^2 \end{array} \right)$
	$\int A\lambda^3 [1 - (1 - \lambda^2/2)(\lambda/2)] d\lambda^3 [1 - (1 - \lambda^2/2)] d\lambda^$	$(\rho+i\eta)] -A\lambda^2 + $	1
CHARM ARE REAL			$+O(\lambda^4)$
\Rightarrow NO COMPLEX PHASE	NO CPV (IN SM)		

CPV IN CHARM SECTOR IS SMALL, ASYMMETRIES ~ $O(10^3)$ IN SM. POTENTIALLY GOOD PLACE TO LOOK FOR NP EFFECTS.

Belle Phys Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 10/42

Introduction	
Facilities	
Spectroscopy	

CHARM CPV PHENOMENOLOGY

 $\lambda_f = \frac{q}{p} \frac{A_f}{A_f}$

SOME REMINDERS

 $f = \overline{f} = f_{CP}$

$$\frac{dN(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} |A_{f}|^{2} \left[1 - y \operatorname{Re}(\lambda_{f})\overline{\Gamma}t + x \operatorname{Im}(\lambda_{f})\overline{\Gamma}t\right]$$

$$\frac{dN(\overline{D}^{0} \to f)}{dt} \propto e^{-\overline{\Gamma}t} |\overline{A}_{f}|^{2} \left[1 - y \frac{1}{|\lambda_{f}|^{2}} \operatorname{Re}(\lambda_{f})\overline{\Gamma}t - x \frac{1}{|\lambda_{f}|^{2}} \operatorname{Im}(\lambda_{f})\overline{\Gamma}t\right]$$

CPV IN DECAY (CPVDEC)

 $\left|\overline{A}_{f}\right| \neq \left|A_{f}\right|$

2) $|\lambda_f| \neq 1$, and Taking into account 1), $\left|\frac{q}{p}\right| \neq 1$ CPV in mixing (CPVMIX)

3) $\operatorname{Im}(\lambda_f) \neq 1$ CPV in interference between decays w/ and w/o mixing (CPVINT)

Mixing CPV Decays

CHARM CPV PHENOMENOLOGY

SOME REMINDERS

FOR CPV AT LEAST TWO PROCESSES WITH DISTINCT WEAK AND STRONG PHASE NECESSARY (EXAMPLE OF CPV IN DECAY)

$$\begin{split} A_{f} &= a_{1} + a_{2} = |a_{1}| e^{i(\delta_{1} + \varphi_{1})} + |a_{2}| e^{i(\delta_{2} + \varphi_{2})} \\ A_{CP} &= \frac{\Gamma(M \to f) - \Gamma(\overline{M} \to \overline{f})}{\Gamma(M \to f) + \Gamma(\overline{M} \to \overline{f})} = \frac{|A_{f} / \overline{A}_{\overline{f}}|^{2} - 1}{|A_{f} / \overline{A}_{\overline{f}}|^{2} + 1} = \\ &= \dots = \frac{2|a_{1}a_{2}|\sin(\delta_{2} - \delta_{1})\sin(\varphi_{2} - \varphi_{1})}{|a_{1}|^{2} + |a_{2}|^{2} + 2|a_{1}a_{2}|\cos(\delta_{2} - \delta_{1})\cos(\varphi_{2} - \varphi_{1})} \end{split}$$

IN *D* MESON DECAYS THIS IS ONLY POSSIBLE IN SCS DECAYS WITH CONTRIBUTION OF PENGUIN DECAYS (BESIDE TREE CONTRIB.)

Belle Phys Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 12/42

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

CHARM CPV CP EIGENSTATES

WITH CPV PARAMETRIZATION MORE INVOLVED (N.B. A_M , $A_{dir}^f \ll 1$)

A_M: CPVMIX A_{dir}^f: CPVDEC

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| e^{i\varphi} \quad \eta_{f} = \begin{cases} +1 & f = CP + \\ -1 & f = CP - \end{cases}$$
$$A_{m} = \left| \frac{q}{p} \right|^{2} - 1 \quad A_{dir}^{f} = \frac{\left| \overline{A}_{f} \right|^{2}}{\left| A_{f} \right|^{2}} - 1$$

EXPRESSION FOR **J**_{CP} GETS MODIFIED BY KEEPING TERMS **q/p** IN "MASTER" FORMULAE

ON P. 23:

$$y_{CP} = \eta_f \left[y \cos \phi - \frac{A_{dir}^f + A_m}{2} x \sin \phi \right]$$

~

Mixing

CPV

Decays

IN LIMIT OF NO CPV |q/p|=1, $\phi=0 \Rightarrow y_{CP}=y$;

$$\frac{dN(D^0 \to f_{CP}^+)}{dt} \neq \frac{dN(\overline{D}^0 \to f_{CP}^+)}{dt}$$

MOREOVER,

 $D^0 \rightarrow \overline{K^+ K^-}, \pi^+ \pi^-$

Mixing CPV Deca<u>ys</u>

CHARM CPV CP EIGENSTATES

NEGLECTING CPV

$$\frac{1}{\tau_{eff}^{fCP}} = \frac{1}{\overline{\tau}_{eff}^{fCP}} = \frac{1 + y_{CP}}{\tau}$$

ASSUMING CPV

IN LIMIT OF NO CPV |q/p|=1, $\phi=0 \Rightarrow A_{\Gamma}=0$

Belle Phys Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 14/42

CHARM CPV CP EIGENSTATES

$D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$

ASYMMETRY A_{Γ} MEASURED TOGETHER WITH y_{CP} (JUST DIVIDING THE SAMPLE INTO $D^{\circ} \land D^{\circ}$ TAGGED) M. STARIC ET AL. (BELLE COLL.), PLB 753, 412 (2016)

Mixing

CPV

Decays

$A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.07)\%$

SUBTLE / IMPORTANT EFFECTS OF SVD MISALIGNMENT; IN τ MEASUREMENTS O(%) EFFECTS MY BE INCLUDED IN SYST. UNCERTAINTY; IN DETERMINATION OF ‰ EFFECTS NOT

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

B FACTORIES:

$$A_{\Gamma} = \frac{\overline{\tau}_{fCP}^{eff} - \tau_{fCP}^{eff}}{\overline{\tau}_{fCP}^{eff} + \tau_{fCP}^{eff}}$$

USING PROMPT D^* 'S;

SIMILAR RESULT WITH

 $b \rightarrow c \mu X$

 $A_{\Gamma} = (1.3 \pm 3.5 \pm 0.07) \cdot 10^{-4}$

$$\begin{split} & \frac{LHCB:}{\left(\frac{dN(D^0 \to f)}{dt}\right) - \left(\frac{dN(\overline{D}^0 \to f)}{dt}\right)}{\left(\frac{dN(D^0 \to f)}{dt}\right) + \left(\frac{dN(\overline{D}^0 \to f)}{dt}\right)} \approx A_{dir}^f - \widetilde{A}_{\Gamma}\overline{\Gamma}t \end{split}$$

R. AAIJ ET AL. (LHCB COLL.), LHCB-PAPER-2019-032

CURRENT COMBINED EXP. SENSITIVITY O(10⁻⁴); TH. PREDICTIONS FOR $A_{\Gamma} \sim O(10^{-5})$ A. CERRI ET A

A. CERRI ET AL., ARXIV:1812.07638

Mixing

CPV

Decays

Belle Phys Week, KEK, Oct 2019

MORE P. 46

BELLE PHYS WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 17/42

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

t-INTEGRATED ASYMMETRY *A*_{CP}

$$A_{CP}^{f} \equiv \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

MEASUREMENT INCLUDES DETECTOR INDUCED ASYMMETRIES (EXAMPLE OF D^+)

 $|A_i| \ll 1$

FOR GENERAL f:
$$A_{CP}^{f} \sim A_{dh}^{f} + C_{1}y\cos\phi + C_{2}x\sin\phi$$

why? p. 48

$$f=f_{CP} \qquad A_{CP}^{f} \approx A_{d}^{f} - y\frac{A_{d}^{f} + A_{m}}{2}\cos\phi + x\sin\phi$$

$$A_{rec} = \frac{N(D^{+} \rightarrow Xh^{+}) - N(D^{-} \rightarrow Xh^{-})}{N(D^{+} \rightarrow Xh^{+}) + N(D^{-} \rightarrow Xh^{-})}$$

$$A_{rec} = A_{CP} + A_{FB} + A_{\epsilon}^{h^{+}}$$
PHYSICS ASYMM.
FORWARD-BACKWARD
ASYMM. IN e⁺e⁻ $\rightarrow c\bar{c}$;
VANISHES IF INTEGRATED
OVER FULL POLAR ANGLE

Introduction
Facilities
Spectroscopy

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

FORWARD BACKWARD ASYMMETRY A_{fb}

 $\begin{array}{l} \varepsilon \text{ ASYMMETRIES} \\ \text{EXAMPLE OF } D^{*+} \rightarrow D^0 (\rightarrow K^+ K^-, \pi^+ \pi^-) \pi_s^+ \\ D^{*-} \rightarrow \overline{D}^0 (\rightarrow K^+ K^-, \pi^+ \pi^-) \pi_s^- \end{array}$

NEED SAMPLE W/O PHYSICS ASYMM. TO CORRECT* OR TWO SAMPLES TO SUBTRACT $\rightarrow CF \ DECAYS$ $D^{*+} \rightarrow D^0 (\rightarrow K^{-}\pi^{+}) \pi_{s}^{+}$ $D^{0} \rightarrow K^{-}\pi^{+}$ $A_{rec}^{tag} = A_{CP}^{K\pi} + A_{FB} + A_{\epsilon}^{K\pi} + A_{\epsilon}^{\pi_{s}}$ $A_{rec}^{untag} = A_{CP}^{K\pi} + A_{FB} + A_{\epsilon}^{K\pi}$.

* MC TYPICALLY NOT RELIABLE AT $\leq O(\%)$

Belle Phys Week, KEK, Oct 2019

$$\frac{N_c(\cos\theta_c) - N_{\overline{c}}(\cos\theta_c)}{N_c(\cos\theta_c) + N_{\overline{c}}(\cos\theta_c)} = \frac{8A_{FB}^0\cos\theta_c}{3(1 + \cos^2\theta_c)}$$

$$A_{CP} = [A_{\text{rec}}^{\text{corr}}(\cos\theta^*) + A_{\text{rec}}^{\text{corr}}(-\cos\theta^*)]/2$$
$$A_{FB} = [A_{\text{rec}}^{\text{corr}}(\cos\theta^*) - A_{\text{rec}}^{\text{corr}}(-\cos\theta^*)]/2$$

$$A_{\rm rec} = A_{CP} + A_{FB} + A_{\epsilon}^{\pi_s}$$

B. GOLOB, CHARM EXP'S 20/42

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

ASYMMETRY $A_{\varepsilon}^{\pi s}$ DEPENDS ON π_{s} KINEMATICS \rightarrow BINNED IN $p_{\pi s}$, $\cos \theta_{\pi s}$... AND IN $\cos \theta_{D}^{*}$ WHY?

BECAUSE $\theta_{\pi s}$ CORRELATED WITH θ_{D}^{*}

INTEGRATION OVER θ_D^* IN A GIVEN BIN OF $\theta_{\pi s}$ DOES NOT COVER FULL θ_D^* INTERVAL \Rightarrow DOES NOT ASSURE VANISHING OF A_{FB}

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

Mixing

CPV Decays

ASYMMETRIES

B. GOLOB, CHARM EXP'S 22/42

Introduction
Facilities
Spectroscopy

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

OTHER INGENUINE METHODS TO DETERMINE UNWANTED ASYMMETRIES, E.G. LHCB:

 $\Delta A_{CP} = A_{CP}^{f} - A_{CP}^{f'}$

M. Schubiger, Beauty 2019 $f = K^+ K^-, f' = \pi^+ \pi^-$

R. AAIJ ET AL. (LHCB COLLAB.), PRL 122, 211803 (2019)

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

OTHER INGENUINE METHODS TO DETERMINE UNWANTED ASYMMETRIES, E.G. LHCB:

 $\Delta A_{CP} = A_{CP}^{f} - A_{CP}^{f}$

E791 1997 -FOCUS 2000 -CLEO 2001 -BaBar 2007 -Belle 2008 -CDF 2011 -LHCb 2011 -CDF 2012 -

> LHCb 2013 -LHCb 2014 -

LHCb 2016 -LHCb 2019 -

-2.0

M. SCHUBIGER, BEAUTY 2019

R. Aaij et al. (LHCb Collab.), PRL 122, 211803 (2019)

FIRST OBSERVATION OF CPV IN CHARM

-0.5

0.0

 ΔA_{CP} [%]

0.5

1.0

1.5

2.0

$$\Delta A_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$$

BELLE PHYS WEEK, KEK, OCT 2019

-1.0

FIRST OBSERVATION

OF CPV IN CHARM!

-1.5

B. GOLOB, CHARM EXP'S 24/42

Mixing CPV Decays

CHARM CPV A_{CP}

T-INDEPENDENT METHODS

OTHER INGENUINE METHODS TO DETERMINE UNWANTED ASYMMETRIES, E.G. BABAR IN $D^+ \rightarrow K_S \pi^+$: P. del Amo Sanchez, et al. (BaBar Collab.), PRD 83, 071103 (2011) $Y(4S) \rightarrow B\underline{B}$: STRONG INT. (NO CPV), ISOTROPIC DISTR. OF TRACKS IN B SYSTEM

THE SAME DOES NOT HOLD FOR $e^+e^- \rightarrow qq$!

USE INCLUSIVE SAMPLE OF TRACKS FROM $B\underline{B}$; DETERMINE ASYMMETRY OF π^{\pm} IN KINEMATIC BINS;

USE INCLUSIVE SAMPLE OF TRACKS FROM CONTINUUM; DETERMINE ASYMMETRY OF π^{\pm} IN KINEMATIC BINS;

DIFFERENCE IS

$$A_{det}(\pi^{\pm}kinematics)$$

 \rightarrow APPLY CORRECTION TO MEASURED ASYMM.

NEED TO BE CAREFUL NOT TO BIAS INCLUSIVNESS BY SELECTION

 $A_{rec} = A_{CP} + A_{FB} + A_{\varepsilon}^{\pi^{\pm}} + A_{\varepsilon}^{\pi_{s}}$ $A_{\rm det}$

Introduction Mixing CHARM CPV A_{CP} CPV Facilities Spectroscopy Decays COMPARISON TO PREDICTIONS $\Delta A_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$ DIFFICULT TO CALCULATE (ASK ALEXEY/ALEX/...)^{R. Aaij et al.} (LHCb Collab.), PRL 122, 211803 (2019) WITHIN $SU(3)_{FLAVOR}$: $A_{CP}^{KK} \sim -A_{CP}^{\pi+\pi}$ BUT THEN AGAIN, DATA SHOW $SU(3)_{FLAVOR}$ VIOLATED AT O(30%) IN AMPLITUDES U. NIERSTE, BEAUTY 2019 CP asymmetries of hadronic charm decays are proportional to $\text{Im} \frac{\lambda_b}{\lambda_{sd}} = -6 \cdot 10^{-4}$ in the Standard Model ... and probe new physics in flavour transitions of up-type quarks, ... are very difficult to predict in the Standard Model.

$$\operatorname{Im}\left(\frac{2V_{cb}^{*}V_{ub}}{V_{cs}^{*}V_{us} - V_{cd}^{*}V_{ud}}\right) \sim -6 \cdot 10^{-4}$$

Mixing CPV Decays

COMPARISON TO PREDICTIONS

SORRY, NEED TO DO (REPEAT!) A KIND JOKE:

U. NIERSTE, BEAUTY 2019

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

- within the Standard Model and
- as evidence for new physics!

And we are not stubborn at all: After new measurements we eagerly change our opinions!

Mixing CPV Decays

CHARM CPV A_{CP}

COMPARISON TO PREDICTIONS

U. NIERSTE, BEAUTY 2019

SO.....

... BUT THE PREFACTOR??

USING QCD SUM RULES

ACTUAL **PRE**DICTION

SIGN??

 $\left| A_{CP}^{f} \propto \text{Im} \left(\frac{2V_{cb}^{*}V_{ub}}{V_{cs}^{*}V_{us} - V_{cd}^{*}V_{ud}} \right) \sim -6 \cdot 10^{-4} \right|$

A. KHODJAMIRIAN, A.A. PETROV, PLB 774, 235 (2017)

$$A_{CP}^{KK} \sim -A_{CP}^{\pi\pi}$$

 $\Delta A_{CP} \sim 2.0 \cdot 10^{-4} \pm 0.3 \cdot 10^{-4}$

$$\Delta A_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$$

R. AAIJ ET AL. (LHCB COLLAB.), PRL 122, 211803 (2019)

NEED FURTHER EXPERIMENTAL INFORMATION / CLARIFICATION

SEPARATE A_{CP}^{KK} , $A_{CP}^{\pi+\pi}$

 A_{CP} SUM RULES P. 52

$$|a_{CP}^{\mathrm{dir}}(D^0 \rightarrow K_S K_S)| \leq 1.1\%$$

U. NIERSTE, ST. SCHACHT, PRD 92, 054036 (2015)

$$|a_{CP}^{\mathrm{dir}}(D^0
ightarrow \overline{K}^{*0}K_S)| \le 0.003$$

U. NIERSTE, ST. SCHACHT, PRL 119, 251801 (2017)

Belle Phys Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 28/42

Mixing CPV

Decay

dt

 $D^0 \rightarrow K^+ \pi^-$

t-DEPENDENT RATES FITTED SEPARATELY FOR D^0 AND D^0

MANY PARAMETERS...

$$\frac{dN(D^{0} \rightarrow f)}{dt} \propto e^{-\overline{\Gamma}t} \left[r^{2} - ry'\overline{\Gamma}t + \frac{x'^{2} + y'^{2}}{4}(\overline{\Gamma}t)^{2} \right]$$

$$\frac{dN(D^{0} \rightarrow f)}{dt} \propto e^{-\overline{\Gamma}t} \left[r_{+}^{2} - r_{+}y_{+}'\overline{\Gamma}t + \frac{x'_{+}^{2} + y'_{+}^{2}}{4}(\overline{\Gamma}t)^{2} \right]$$

$$\frac{dN(\overline{D}^{0} \rightarrow \overline{f})}{dt} \propto e^{-\overline{\Gamma}t} \left[r_{-}^{2} - r_{-}y_{-}'\overline{\Gamma}t + \frac{x'_{-}^{2} + y'_{-}^{2}}{4}(\overline{\Gamma}t)^{2} \right]$$

SIMILARLY IN $D^0 \rightarrow K_S \pi^+ \pi^-$ WHERE |q/p| and ϕ ENTER DIRECTLY AS FIT PARAMETERS

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| e^{i\varphi}$$

$$x'^{\pm} = \left[\frac{1 \pm A_M}{1 \mp A_M}\right]^{1/4} (x' \cos \phi \pm y' \sin \phi) \qquad A_{dir}^f = \frac{r_+ - r_-}{r_+ + r_-}$$
$$y'^{\pm} = \left[\frac{1 \pm A_M}{1 \mp A_M}\right]^{1/4} (y' \cos \phi \mp x' \sin \phi)$$

Belle Phys Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 29/42

Mixing CPV Decays

CHARM CPV AVERAGE

AVERAGES 69 MEAS. OF **INDIVIDUAL** PARAMETERS ENTER THE FIT;

10 FREE PARAM.

 $A_{dir}^{KK}, A_{dir}^{\pi\pi}$ ENTER FIT AS INDIVIDUAL FREE PARAMETERS;

BELLE PHYS WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 30/42

CHARM DECAYS (SEMI)LEPTON.

(SEMI)LEPTONIC DECAYS

BES III

Double tag Method

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 31/42

Mixing
CPV
Decays

CHARM DECAYS (SEMI)LEPTON.

(SEMI)LEPTONIC DECAYS

A. ZUPANC ET AL. (BELLE COLL.), JHEP 09, 139 (2013)

B-Factory method

 $N_{sig}(M_{miss}) / [\varepsilon(f) N_{sig}(M_{rec})] = Br(D_s \rightarrow f)$

Introduction		
Facilities		
Spectroscopy		

Mixing

CPV Decays

CHARM DECAYS (SEMI)LEPTON.

(SEMI)LEPTONIC DECAYS

B-Factory Method

$$\mathcal{B}(D_s^+ \to \ell^+ \nu_\ell) = \frac{\tau_{D_s} m_{D_s}}{8\pi} f_{D_s}^2 G_F^2 |V_{cs}|^2 m_\ell^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right)^2$$

 $N_{sig}(M_{miss}) \ / \ [\varepsilon \ (f) \ N_{sig}(M_{rec})] = Br(D_s \rightarrow f)$

LEPTONIC DECAYS:

A. ZUPANC ET AL. (BELLE COLL.), JHEP 09, 139 (2013)

MORE P. 57

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 33/42

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 34/42

Introduction	Mixing
Facilities	CPV
Spectroscopy	Decay

CHARM DECAYS (SEMI)LEPTON.

(SEMI)LEPTONIC DECAYS

B-Factory Method can be used for D^{o}/D_{s} decays to invisible final state

SENSITIVITY P. 59

SEVERAL IMPORTANT SOURCES OF SYS. UNCERTAINTIES:

 \mathcal{E}_{γ} on signal side ~ 1%

AMOUNT OF BKG. WITH UNMATCHED γ ON SIGNAL SIDE ~ 1%

CONTRIB. OF D_S RADIATIVE DECAYS $(D_S \rightarrow \mu v \gamma) \sim 1\%$

IF TOTAL UNCERTAINTY SCALABLE: $\sigma(BR)/BR \sim 0.024\%$ with 10 fb⁻¹ same as total uncertainty at Belle II @ 7 ab⁻¹

CHARM DECAYS LEPTONIC

M. ABLIKIM ET AL. (BESIII COLL.), PRL 122, 071802 (2019)

Introduction <i>Faciliti</i> es Spectroscopy	Mixing CPV Decays	CHARM	DECAYS LEPTONIC
BESIII LEPTONIC DECAYS		M. Ablikim et al. (BES	III Coll.) arXiv:1908.08877
$\mathcal{D}^+ \to \tau (\to \pi \nu) \nu$		μ ENHANCED	π ENHANCE

LARGEST SOURCES OF SYS. UNCERTAINTY: BR($D^+ \rightarrow \mu v$) ~ 7% BKG. SHAPE ~ 4%

FIRST OBSERVATION

$$Br(D^{+} \to \tau v) = (0.120 \pm 0.024 \pm 0.012)\%$$
$$R_{\tau/\mu} = \frac{Br^{PDG}(D^{+} \to \tau v)}{Br(D^{+} \to \mu v)} = 3.21 \pm 0.64 \pm 0.43$$
$$R_{\tau/\mu}^{SM} = 2.67$$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 38/42

Mixing CPV Decay<u>s</u>

CHARM DECAYS RADIATIVE

 $D^0 \rightarrow V\gamma$

RADIATIVE DECAYS $D^0 \rightarrow V\gamma$ $V = \rho^0, \phi, K^{*O}$

T. NANUT ET AL. (BELLE COLL.), PRL 118, 051801 (2017)

IMPROVED MEAS. OF BR'S, INCL. 1 ST OBSERVATION OF $D^0 \rightarrow \rho^0 \gamma$

NP COULD ENHANCE $A_{CP}(D^0 \rightarrow V\gamma) \sim O(O.1)$

G. ISIDORI, J.F. KAMENIK, PRL 109, 171801 (2012) J. LYON, R. ZWICKY, ARXIV:1210.6546 S. DE BOER, G. HILLER, JHEP08 (2017) 091

FIRST MEAS'S OF A_{CP}

MAIN BKG. $D^0 \rightarrow h^+ h^- \pi^0 (\rightarrow \gamma \gamma)$

IMPORTANT $\pi^{O} (\rightarrow \gamma \gamma)$ VETO TO REDUCE BACKGROUNDS NN VETO

B. GOLOB, CHARM EXP'S 39/42

Mixing CPV Decays

CHARM DECAYS RADIATIVE

BR AND CPV

RADIATIVE DECAYS $D^0 \rightarrow V\gamma$ $V=\rho^0, \phi, K^{*0}$

HELICITY ANGLE AND $M(D^{O})$ TO ISOLATE SIGNAL

BR (AND A_{CP}) DETERMINED W.R.T. NORMALIZATION MODES $\pi^{+}\pi^{-}$, $K^{+}K^{-}$, $K^{-}\pi^{+}$

$$\mathcal{B}(D^0 \to \rho^0 \gamma) = (1.77 \pm 0.30 \pm 0.07) \times 10^{-5},$$
$$\mathcal{B}(D^0 \to \phi \gamma) = (2.76 \pm 0.19 \pm 0.10) \times 10^{-5},$$
$$\mathcal{B}(D^0 \to \overline{K}^{*0} \gamma) = (4.66 \pm 0.21 \pm 0.21) \times 10^{-4}.$$

CALCULATIONS (0.1 - 1) 10⁻⁵ (0.1-2) 10⁻⁵ 10 χ φγ

S. DE BOER, G. HILLER, JHEP08 (2017) 091

 $ho^0\gamma \ \phi\gamma$

 $K^{*O}\gamma$

Belle Phys. Week, KEK, Oct 2019

T. NANUT ET AL. (BELLE COLL.), PRL 118, 051801 (2017)

B. GOLOB, CHARM EXP'S 40/42

Introduction	
Facilities	
Spectroscopy	

CHARM DECAYS RADIATIVE

BR AND CPV

RADIATIVE DECAYS $D^0 \rightarrow V\gamma$ $V = \rho^0, \phi, K^{*0}$

ASYMMETRIES OTHER THAN A_{CP} CANCELED BY NORMALIZATION MODES

$$\mathcal{A}_{CP}^{\mathrm{sig}} = A_{\mathrm{raw}}^{\mathrm{sig}} - A_{\mathrm{raw}}^{\mathrm{norm}} + \mathcal{A}_{CP}^{\mathrm{norm}}$$

 $\mathcal{A}_{CP} \left(D^0 \to \rho^0 \gamma \right) = +0.056 \pm 0.152 \pm 0.006,$ $\mathcal{A}_{CP} \left(D^0 \to \phi \gamma \right) = -0.094 \pm 0.066 \pm 0.001,$ $\mathcal{A}_{CP} \left(D^0 \to \overline{K}^{*0} \gamma \right) = -0.003 \pm 0.020 \pm 0.000,$

Mixing CPV Decays

NO SUMMARY

u, d 1968 ISOSPIN VIOLATED (ENLARGED TO SU(3)_{FLAVOR})

s 1964 CP violated

b 2001 LARGE CP VIOLATION PREDICTED BY M. GELL-MANN, G. Zweig

NOT PREDICTED

PREDICTED BY M. KOBAYASHI, T. MASKAWA

C ???? NOT PREDICTED

REMEMBER THE WORDS BY KARIM: "CHARM IS THE NEW BEAUTY!"

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 42/42

ADDITIONAL MATERIAL

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 43/42

ntroduction	Ν
Facilities	
pectroscopy	D

METHOD OF STRONG PHASE DIFFERENCE $D^{\circ} \nearrow \overline{D}^{\circ}$ DETERM. USING COHERENT PRODUCTION OF D MESON PAIRS J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

/lixing

CPV ecavs

 $\psi(3770) (CP=+1) \rightarrow D_1 D_2;$

if $D_1 \rightarrow CP + \Rightarrow D_2$ is CP-; (CP-TAGGED)

if $D_1 \rightarrow D^0 \rightarrow f_{flav} \Rightarrow D_2$ is D^0 (FLAVOR-TAGGED)

$$CP = CP(D_1)CP(D_2)(-1)^{\ell=1}$$

EVTS IN BIN *i* FOR FLAVOR TAGGED (D^0) DECAY:

$$K_{i} = A_{D} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})|^{2} dm_{+}^{2} dm_{-}^{2} = A_{D} F_{i}, \quad (\text{SAME FOR } \overline{D}^{0} \text{ with } m_{+} \leftrightarrow m_{-})$$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 44/42

Mixing CPV Decays

D^O MIXING DALITZ

J. LIBBY ET AL. (CLEO-C COLL.), PRD 82,112006 (2010)

DALITZ DIST. FOR CP TAGGED (CP+, CP-) DECAYS

$$f_{CP\pm}(m_{+}^{2}, m_{-}^{2}) = \frac{1}{\sqrt{2}}[f_{D}(m_{+}^{2}, m_{-}^{2}) \pm f_{D}(m_{-}^{2}, m_{+}^{2})]$$

EVTS IN BIN *i* FOR CP TAGGED (CP+, CP-) DECAY:

$$M_i^{\pm} = h_{CP\pm}(K_i) \pm 2c_i \sqrt{K_i K_{-i} + K_{-i}},$$

FLAVOR-TAGGED:

$$K_i = A_D \int_i |f_D(m_+^2, m_-^2)|^2 dm_+^2 dm_-^2 = A_D F_i$$

$$c_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \cos[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2},$$

$$s_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \sin[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2},$$

BACK

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 45/42

BELLE PHYS. WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 46/42

Introduction	
Facilities	
Spectroscopy	

CHARM CPV CP EIGENSTATES

CPV PARAMETRIZATION

- QUANTITY MEASURED BY B FACTORIES

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| e^{i\varphi}$$
$$A_{m} = \left| \frac{q}{p} \right|^{2} - 1 \quad A_{dir}^{f} = \frac{\left| \overline{A}_{f} \right|^{2}}{\left| A_{f} \right|^{2}} - 1$$

$$\begin{split} \frac{dN(D^0 \to f)}{dt} &\approx \left|A_f\right|^2 e^{-(1+y_D)\overline{\Gamma}t} \quad y_D \approx \eta_f \left(1 + \frac{A_{dir}^f + A_m}{2}\right) (y\cos\varphi - x\sin\varphi) \\ \frac{dN(\overline{D}^0 \to f)}{dt} &\approx \left|\overline{A}_f\right|^2 e^{-(1+y_{\overline{D}})\overline{\Gamma}t} \quad y_{\overline{D}} \approx \eta_f \left(1 - \frac{A_{dir}^f + A_m}{2}\right) (y\cos\varphi + x\sin\varphi) \\ y_{CP} &= \frac{y_D + y_{\overline{D}}}{2} \approx \eta_f \left[y\cos\varphi - \left(\frac{A_{dir}^f + A_m}{2}\right)x\sin\varphi\right] \\ A_{\Gamma} &= \frac{\tau_{\overline{D}} - \tau_D}{\tau_{\overline{D}} + \tau_D} \approx \frac{y_D - y_{\overline{D}}}{2} \approx \eta_f \left[\left(\frac{A_{dir}^f + A_m}{2}\right)y\cos\varphi - x\sin\varphi\right] \end{split}$$

BACK

Introduction	
Facilities	
Spectroscopy	

CHARM CPV CP EIGENSTATES

CPV parametrization

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| e^{i\varphi}$$
$$A_{m} = \left| \frac{q}{p} \right|^{2} - 1 \quad A_{dir}^{f} = \frac{\left| \overline{A}_{f} \right|^{2}}{\left| A_{f} \right|^{2}} - 1$$

QUANTITY MEASURED BY LHCB

$$\begin{split} & \left(\frac{dN(D^0 \to f)}{dt}\right) - \left(\frac{dN(\overline{D}^0 \to f)}{dt}\right) \\ & \left(\frac{dN(D^0 \to f)}{dt}\right) + \left(\frac{dN(\overline{D}^0 \to f)}{dt}\right) \approx A_{dir}^f - \widetilde{A}_{\Gamma}\overline{\Gamma}t \\ & \widetilde{A}_{\Gamma} = \left(\frac{A_m - A_{dir}^f}{2}\right) y \cos\phi - x \sin\phi = A_{\Gamma} - A_{dir}^f y \cos\phi \end{split}$$

BACK

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 48/42

Introduction	
Facilities	
Spectroscopy	

CHARM CPV CP EIGENSTATES

CPV parametrization

$$\left(\frac{dN(D^{0} \to f)}{dt}\right) - \left(\frac{dN(\overline{D}^{0} \to f)}{dt}\right) = \left(A_{dir}^{f} - \widetilde{A}_{\Gamma}\overline{\Gamma}t\right) \left[\left(\frac{dN(D^{0} \to f)}{dt}\right) + \left(\frac{dN(\overline{D}^{0} \to f)}{dt}\right)\right]$$

$$\int_{0}^{\infty} \frac{dN(D^{0} \to f)}{dt} dt = \int_{0}^{\infty} \left|A_{f}\right|^{2} e^{-\overline{\Gamma}t} (1 + y_{D}\overline{\Gamma}t) dt = \left|A_{f}\right|^{2} \overline{\tau} (1 + y_{D})$$

$$\int_{0}^{\infty} \frac{dN(\overline{D}^{0} \to f)}{dt} dt = \int_{0}^{\infty} \left|\overline{A}_{f}\right|^{2} e^{-\overline{\Gamma}t} (1 + y_{D}\overline{\Gamma}t) dt = \left|\overline{A}_{f}\right|^{2} \overline{\tau} (1 + y_{D})$$

$$\int_{0}^{\infty} t \frac{dN(D^{0} \to f)}{dt} dt = \int_{0}^{\infty} \left|A_{f}\right|^{2} e^{-\overline{\Gamma}t} (t + y_{D}\overline{\Gamma}t^{2}) dt = \left|A_{f}\right|^{2} \overline{\tau}^{2} (1 + 2y_{D})$$

$$\int_{0}^{\infty} t \frac{dN(\overline{D}^{0} \to f)}{dt} dt = \int_{0}^{\infty} \left|\overline{A}_{f}\right|^{2} e^{-\overline{\Gamma}t} (t + y_{D}\overline{\Gamma}t^{2}) dt = \left|\overline{A}_{f}\right|^{2} \overline{\tau}^{2} (1 + 2y_{D})$$

BACK

Introduction <i>Faciliti</i> es Spectroscopy	Mixing CPV Decays	CHARM CPV A _{CP}
INTEGRATED CPV		
$\Gamma(D \to f) - 1$	$\Gamma(\overline{D} o \overline{f})$ for	GENERAL <i>f</i> : $A_{CP}^{f} \sim A_{dir}^{f} + C_{1}y\cos\phi + C_{2}x\sin\phi$
$\Gamma_{CP} \equiv \overline{\Gamma(D \to f) + 1}$	$\Gamma(\overline{D} \to \overline{f}) f=f_{CF}$	$A_{ab}^{f} \approx A_{a}^{f} - v \frac{A_{d}^{f} + A_{m}}{\cos \varphi + x \sin \varphi}$

WHY IN CHARM SISTEM T-INTEGRATED ASYMMETRY (A_{CP}) BESIDE DIRECT RECEIVES CONTRIB. FROM INDIRECT CPV, WHILE IN B SYSTEM @ B-FACTORIES ONLY DIRECT CPV CONTRIBUTES?

NO **y** TERM BECAUSE $\mathbf{y} \propto \Delta \Gamma$ NEGLIGIBLE IN \mathbf{B}_d SYSTEM;

x TERM: IMPORTANT DIFFERENCE IN PRODUCTION OF $B\underline{B}$ and $c\underline{c}$ pairs: FORMER QUANTUM ENTANGLED \Rightarrow NOT t- BUT Δt -dependence of rates:

$$\frac{d\Gamma(P^{0} \to f_{CP})}{d(\Delta t)} = \frac{1}{2}|A_{f}|^{2}(1+|\lambda|^{2})\mathcal{N}e^{-\Gamma|\Delta t|}\left[1+\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}\cos\left(\Delta m\Delta t\right)-2\frac{\mathrm{Im}(\lambda)}{1+|\lambda|^{2}}\sin\left(\Delta m\Delta t\right)\right]
\frac{d\Gamma(\bar{P}^{0} \to f_{CP})}{d(\Delta t)} = \frac{1}{2}|A_{f}|^{2}(1+|\lambda|^{2})|\frac{p}{q}|^{2}\mathcal{N}e^{-\Gamma|\Delta t|}\left[1-\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}\cos\left(\Delta m\Delta t\right)+2\frac{\mathrm{Im}(\lambda)}{1+|\lambda|^{2}}\sin\left(\Delta m\Delta t\right)\right].$$
(3.46)

Introduction	
Facilities	
Spectroscopy	

t-INTEGRATED CPV

CHARM HADRONS PRODUCED IN FRAGMENTATION, NOT ENTANGLED, *t*-DEPENDENT RATE; INTEGRATION OVER Δt FOR *B* PAIRS [- ∞ , ∞]: $e^{-\Gamma |\Delta t|} \cos(\Delta m \Delta t) d(\Delta t) =$

 $-\infty$

PART $\propto Im(\lambda)$ VANISHES!

For charm mesons integration over $t[0, \infty]$:

$$\int_{-\infty}^{\infty} e^{-\Gamma|\Delta t|} \cos(\Delta m \Delta t) d(\Delta t) = \frac{2\Gamma}{\Gamma^2 + \Delta m^2}$$
$$\int_{-\infty}^{\infty} e^{-\Gamma|\Delta t|} \sin(\Delta m \Delta t) d(\Delta t) = 0$$

$$\int_{0}^{\infty} e^{-\Gamma|\Delta t|} \cos(\Delta m \Delta t) d(\Delta t) = \frac{\Gamma}{\Gamma^{2} + \Delta m^{2}}$$
$$\int_{0}^{\infty} e^{-\Gamma|\Delta t|} \sin(\Delta m \Delta t) d(\Delta t) = \frac{\Delta m}{\Gamma^{2} + \Delta m^{2}}$$

<u>BACK</u>

PART $\propto Im(\lambda)$ is proportional to Δm (~x), does not vanish; \Rightarrow term with x sin ϕ in A_{CP} !

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

t-INTEGRATED CPV

0.8

Introduction	
Facilities	
Spectroscopy	

CHARM CPV A_{CP}

INTERESTING ASYMMETRIES

SUM RULES FOR A_{CP} S. Müller et al., PRL 115, 251802 (2015) RELATING

- 1) $D^0 \to K^+ K^-, \pi^+ \pi^-, \pi^0 \pi^0$
- 2) $D^+ \rightarrow K^0 K^+$, $D_s^+ \rightarrow K^0 \pi^+$, $K^+ \pi^0$
- (W/O INCLUDING SU(3)_F breaking of penguin contr., up to 0.3 A_{CP})

OTHER INTERESTING PREDICTIONS

 $A_{CP}(D^0 \rightarrow K_s K_s) \leq \sim 0.01$ U. Nierste, S. Schacht, PRD 92, 054036 (2015)

 $A_{CP}(D^+ \to \pi^+ \pi^0) = O$ (UP TO $10^{-2} A_{CP}$)

F. BUCCELLA ET AL., PLB 302, 319 (1993)

Introduction	
Facilities	
Spectroscopy	

CPV IN CHARM

 $A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = O$

 $D^{*+} \rightarrow D^+ \pi^0, D^+ \rightarrow \pi^+ \pi^0$

 $\begin{aligned} \sigma(A_{CP}(D^+ \to \pi^+ \pi^0)) &\sim O.2\% - O.4\% @ 50 \ AB^{-1} \\ (A_{CP}^{SM}(D^+ \to \pi^+ \pi^0) &= O) \end{aligned}$

Mixing

CPV Decays

 $\begin{aligned} \sigma(A_{CP}(D^+ \to K_s K_s)) &\sim O.25\% \ @ 50 \ AB^{-1} \\ (A_{CP}^{SM}(D^+ \to K_s K_s) &\sim 1\%) \end{aligned}$

 A_{CP} IN SUM RULES

CHARM CPV A_{CP}

B. GOLOB, CHARM EXP'S 54/42

Introduction <i>Facilities</i> Spectroscopy	Mixing CPV Decays		CHARM CPV AVERAGE					
VERAGES		-			HFLA			
ESULTS	BACK							
Parameter	No CPV	No direct	CPV	CPV-allowed	CPV-allowed			
		in DCS de	ecays		95% CL Interval			
$x \ (\%)$	$0.50{}^{+0.13}_{-0.14}$	$0.43^{+0.}_{-0.}$	10 11	$0.39^{+0.11}_{-0.12}$	[0.16, 0.61]			
y~(%)	$0.62\ \pm 0.07$	0.63 ± 0	.06	$0.651 {}^{+0.063}_{-0.069}$	[0.51,0.77]			
$\delta_{K\pi}$ (°)	$8.9^{+8.2}_{-8.9}$	$9.3^{+8.3}_{-9.3}$	3 2	$12.1^{+8.6}_{-10.2}$	[-10.4, 28.2]			
$R_D~(\%)$	0.344 ± 0.002	0.344 ± 0.000	.002	0.344 ± 0.002	[0.339,0.348]			
$A_D~(\%)$	—	_		$-0.55^{+0.49}_{-0.51}$	[-1.5, 0.4]			
q/p	_	0.998 ± 0.000	.008	$0.969 {}^{+0.050}_{-0.045}$	[0.89, 1.07]			
ϕ (°)	—	0.08 ± 0	.31	$-3.9_{-4.6}^{+4.5}$	[-13.2, 5.1]			
$\delta_{K\pi\pi}$ (°)	$18.5^{+22.7}_{-23.4}$	22.1^{+22}_{-23}	.6 .4	$25.8^{+23.0}_{-23.8}$	[-21.3, 70.3]			
$A_{\pi}(\%)$	—	0.05 ± 0	.16	0.06 ± 0.16	[-0.25, 0.38]			
$A_K(\%)$	_	-0.11 ± 0	0.16	-0.09 ± 0.16	[-0.40, 0.22]			
x_{12} (%)	—	$0.43^{+0.}_{-0.}$	10 11		[0.22,0.63]			
$y_{12}~(\%)$	-	0.63 ± 0	.06		[0.50, 0.75]			
$\phi_{12}(^{\circ})$	-	-0.25^{+0}_{-0}	.96 .99		[-2.5,1.8]			

Belle Phys Week, KEK, Oct 2019

A

B. GOLOB, CHARM EXP'S 55/42

AVERAGES

CHARM CPV AVERAGE

HFLAV

χ^2			BACK		
Observable	χ^2	$\sum \chi^2$	$x_{K^+\pi^-\pi^0}$ Babar	7.10	18.17
$y_{CP} (K^+K^-, \pi^+\pi^-)$ World Average	0.35	0.35	$y_{K^+\pi^-\pi^0}$ Babar	3.91	22.08
A_{Γ} World Average	2.07	2.41	CLEOc		
$x_{K^0\pi^+\pi^-}$ Belle	0.71	3.12	$(x/y/R_D/\cos\delta/\sin\delta)$	10.53	32.60
$y_{K^0\pi^+\pi^-}$ Belle	4.42	7.54	$R_D^+/x'^{2+}/y'^+$ Babar	8.69	41.30
$ q/p _{K^0\pi^+\pi^-}$ Belle	0.48	8.02	$R_D^-/x'^{2-}/y'^-$ Babar	4.02	45.32
$\phi_{K^0\pi^+\pi^-}$ Belle	0.53	8.55	$R_D^+/x'^{2+}/y'^+$ Belle	1.88	47.20
$x_{CP} \left(K^0 \pi^+ \pi^- \right)$ LHCb	0.55	9.10	$R_D^-/x'^{2-}/y'^-$ Belle	2.36	49.56
$y_{CP} \left(K^0 \pi^+ \pi^- \right)$ LHCb	0.06	9.16	$R_D/x'^2/y'$ CDF	1.20	50.76
$\Delta x \left(K^0 \pi^+ \pi^- \right)$ LHCb	0.00	9.16	$R_D^+/x'^{2+}/y'^+$ LHCb	1.29	52.05
$\Delta y \left(K^0 \pi^+ \pi^- \right)$ LHCb	0.09	9.26	$R_D^-/x'^{2-}/y'^-$ LHCb	0.67	52.72
$x_{K^0h^+h^-}$ Babar	0.73	9.98	$A_{KK}/A_{\pi\pi}$ Babar	0.35	53.08
$y_{K^0h^+h^-}$ Babar	0.08	10.06	$A_{KK}/A_{\pi\pi}$ CDF	4.07	57.14
$x_{\pi^0\pi^+\pi^-}$ Babar	0.68	10.74	$A_{KK} - A_{\pi\pi}$ LHCb $(D^*, B^0 \rightarrow D^0 \mu X \text{ tags})$	0.05	57.19
$y_{\pi^0\pi^+\pi^-}$ Babar	0.19	10.93	$(x^2 + y^2)_{K^+\pi^-\pi^+\pi^-}$ LHCb	3.47	60.67
$(x^2 + y^2)_{K^+\ell^-\nu}$	0.14	11.07			

Mixing

CPV

Decays

BELLE PHYS WEEK, KEK, OCT 2019

B. GOLOB, CHARM EXP'S 56/42

Mixing CPV Decays

CHARM DECAYS (SEMI)LEPTON.

 \overline{p} (if Λ_c)

M_{miss}

M_{rec}

A. ZUPANC ET AL. (BELLE COLL.), JHEP 09, 139 (2013)

 $M_{miss}(D_{tag}K_{frag}X_{frag}\gamma)$ (GeV/c²)

DECAYS **B-FACTORY METHOD**

8 2103

10

Pull Events / (0.002 GeV/c²)

Events / (0.002 GeV/c²)

Pull

 $N_{sig}(f) / [\varepsilon(f) N_{sig}(M_{rec})] = Br(D_s \rightarrow f)$

BELLE PHYS. WEEK, KEK, OCT 2019

 $M_{miss}(D_{tag}K_{frag}X_{frag}\gamma)$ (GeV/c²)

B. GOLOB, CHARM EXP'S 57/42

Mixing CPV Decays

CHARM DECAYS (SEMI)LEPTON.

A. ZUPANC ET AL. (BELLE COLL.), JHEP 09, 139 (2013)

DECAYS B-Factory Method

For τv beside $M_{\rm miss}$ also $E_{\rm ecl}$ exploited

BACK

Mixing CPV Decays

CHARM DECAYS (SEMI)LEPTON.

DECAYS B-Factory method search for invisible *D* decays

$$N_{Ds}^{inc} \approx (94.3 \pm 1.3) \cdot 10^3$$

~ $10^5 N_{DS}^{INC} (1 \pm 0.015)$ / AB-1

@ 20 AB⁻¹ 2·10⁶(1 ± 0.003)

~ $\sigma(N_{SIG}^{ECL})$ @ 1 AB⁻¹~100 SENSITIVITY TO DECAYS TO INVISIBLE STATES (IF BKG LIKE IN τv CASE ?) ~ 20 · 100 / 2·10⁶ ~ 10⁻³

BACK

Introduction	
Facilities	
Spectroscopy	

CHARM DECAYS LEPTONIC

SEMILEPTONIC DECAYS $D^{O} \rightarrow K^{-} \mu^{+} v$

BELLE: $N_{S/G}(D_S \rightarrow \mu^+ \nu) @ 1 \text{ AB}^{-1} = 492 \pm 26$

A. ZUPANC ET AL. (BELLE COLL.), JHEP 09, 139 (2013)

Mixing

CPV Decays

$$N_{sig}(D^{0} \to K\mu\nu) \sim N_{sig}(D_{s} \to \mu\nu) \frac{\sigma(D^{*+})}{\sigma(D_{s}^{*})} \frac{Br(D^{*} \to D^{0}\pi)}{Br(D_{s}^{*} \to D_{s}\gamma)} \frac{Br(D^{0} \to K\mu\nu)}{Br(D_{s} \to \mu\nu)} \frac{\varepsilon_{K}\varepsilon_{\pi}}{\varepsilon_{\gamma}} \sim N_{sig}(D_{s} \to \mu\nu) \frac{\sigma(D^{*+})}{\underbrace{0.5\sigma(D_{s})}_{\sim 5}} \frac{Br(D^{*} \to D^{0}\pi)}{Br(D_{s}^{*} \to D_{s}\gamma)} \frac{Br(D^{0} \to K\mu\nu)}{Br(D_{s} \to \mu\nu)} \frac{\varepsilon_{K}\varepsilon_{\pi}}{\varepsilon_{\gamma}} \sim 20N_{sig}(D_{s} \to \mu\nu)$$

σ(D)/σ(D)* R. Seuster et al.. (Belle Coll.), Phys.Rev. D73, 032002 (2006)

BELLE II: $N_{SIG}(D^{O} \rightarrow K^{-}\mu^{+}\nu) @ 20 \text{ AB}^{-1} \sim 2 \cdot 10^{4}$

BACK

 D^0 , D^+ , $\Lambda_c (D_{tag})$

Belle Phys. Week, KEK, Oct 2019

B. GOLOB, CHARM EXP'S 60/42