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Introduction

In the SM, CP violation (CPV) in D0 −D0 mixing and D decays enters at
O(VcbVub/VcsVus) ∼ 10−3, due to weak phase γ, yielding all 3 types of CPV:

direct CPV (dCPV)

CPV in pure mixing (CPVMIX): due to interference between dispersive and
absorptive mixing amps

CPV in the interference of decays with and without mixing (CPVINT)

Our interest here is in CPVMIX and CPVINT, both of which result from mixing, and
which we refer to as “indirect CPV"



Questions:

How large are the indirect CP asymmetries in the SM?

What is the appropriate minimal parametrization of indirect CPV?

How large is the current window for new physics (NP)?

Can this window be closed in the Belle-II / LHCb Precision Era ?

Answers:

obtained via description of CPVINT in terms of pairs of dispersive and absorptive
CPV phases φM

f and φΓ
f , for CP conjugate final states f , f̄

they parametrize CPVINT contributions from interference of D0 decays with and
without dispersive mixing, and with and without absorptive mixing

they are separately measurable

SM estimates of φM
f , φΓ

f , and final state dependence (approximate universality)

obtained from comparison to two “theoretical phases” φ2
M , φ2

Γ



Absorptive and Dispersive CPV



time-evolution of linear combination a|D0〉+ b|D0〉 follows from Schrodinger equation,
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transition amplitudes

〈D0|H|D0〉 = M12 −
i

2
Γ12 , 〈D0|H|D0〉 = M∗

12 −
i

2
Γ∗
12

M12 is the dispersive mixing amplitude

Γ12 is the absorptive mixing amplitude

Mass eigenstates |D1,2〉 = p|D0〉 ± q|D
0
〉:

mass and width differences expressed in terms of parameters x, y

x =
m2 −m1

ΓD
, y =

Γ2 − Γ1

2ΓD



M12 is dispersive mixing: due to long-distance exchange of off-shell intermediate
states; and short-distance effects

long distance dominates in SM

significant short distance would be new physics (NP)

Γ12 is absorptive mixing: due to long distance exchange of on-shell intermediate
states



introduce three “theoretical" physical mixing parameters

x12 ≡ 2|M12|/ΓD , y12 ≡ |Γ12|/ΓD , φ12 ≡ arg(M12/Γ12)

φ12 is the CPV phase responsible for CPVMIX, e.g. ASL

CP conserving observables: |x| = x12 +O(CPV2), |y| = y12 +O(CPV2)

Time-evolved meson solutions, for t . τD :

For D0(0) = D0, the mixed component at time t,

〈D0|D0(t)〉 = e
−i

(

MD−i
ΓD
2

)

t
(

e−iπ/2M∗
12 − 1

2
Γ∗
12

)

t, ...

the phase π/2 is a CP-even “dispersive strong phase", originating from the time
derivative. It contributes to strong phase differences required for non-vanishing
time dependent CPV



The CPVMIX “wrong sign" semileptonic CP asymmetry:

aSL ≡
Γ(D0(t) → ℓ−X)− Γ(D0(t) → ℓ+X)

Γ(D0(t) → ℓ−X) + Γ(D0(t) → ℓ+X)
,

=
|〈D0|D0(t)〉|2 − |〈D0|D0(t)〉|2

|〈D0|D0(t)〉|2 + |〈D0|D0(t)〉|2
.

The semileptonic decay amplitude factors are cancelled in second relation, given
negligible direct CPV |Āℓ−X | = |Aℓ+X |.

Solutions for mixed components 〈D0|D0(t)〉, 〈D0|D0(t)〉 ⇒

aSL =
2x12 y12

x2
12 + y212

sinφ12 .

The CP-even phase difference between the interfering dispersive and absorptive
mixing amplitudes, required to obtain CPVMIX, provided by the
dispersive mixing phase π/2



The dispersive and absorptive CPV phasesφM
f , φΓ

f in hadronic decays

Hadronic D0(t), D0(t) decay amplitudes sum over contributions with/without mixing:

A(D0(t) → f) = Āf 〈D0|D0(t)〉+Af 〈D0|D0(t)〉,

A(D0(t) → f) = Af 〈D0|D0(t)〉+ Āf 〈D0|D0(t)〉 .

where Af ≡ 〈f |H|D0〉 , Āf ≡ 〈f |H|D̄0〉 are the decay ampltiudes

φM
f and φΓ

f are the CPV phase differences between the two interfering amplitudes



Relation to “phenomenological” CPVINT parameters

The more familiar “phenomenological" CPV observables are

CPVMIX :

∣

∣

∣

∣

q

p

∣

∣

∣

∣

− 1

CPVINT : φλf
= arg

(

q

p

Af

Af

)

, up to strong phase difference, for f 6= f̄

Relation to absorptive and dispersive CPVINT phases

∣

∣

∣

∣

q

p

∣

∣

∣

∣

− 1 =
x12 y12 sinφ12

x2
12 + y212

+O(CPV3), where φ12 = φM
f − φΓ

f

sin 2φλf
= −

(

x2
12 sin 2φM

f + y212 sin 2φΓ
f

x2
12 + y212

)

+O(CPV3)

φλf
is a sum over φM

f and φΓ
f , weighted by the the relative dispersive and

absorptive contributions to the CP averaged mixing probability, x2
12/(x

2
12 + y212)

and y212/(x
2
12 + y212)

φ12 = φM
f − φΓ

f ⇒ same number of CPV quantities in each description



Time dependent CPV
phenomenology



I. Phenomenology of SCS decays to CP eigenstates

The phases φM
f , φΓ

f enter the decay widths via the dimensionless observables λM
f , λΓ

f :

for SCS decays to CP -eigenstate final states:

f̄ = ηCP
f f , where ηCP

f = +(−) for f a CP-even (odd) final state

λM
f ≡

M12

|M12|

Af

Af

= ηCP
f

∣

∣

∣

∣

∣
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Af
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∣

∣

∣

∣

ei φ
M
f , λΓ

f ≡
Γ12

|Γ12|

Af

Af

= ηCP
f

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

ei φ
Γ
f .

recall CP asymmetries require both a CPV phase difference (φ), and a CP-even
phase difference (δ), between interfering amplitudes ⇒ ACP ∝ sinφ sin δ

Trivial strong phase difference between Af , Af ⇒ the only CP-even phase
available for generation of CP asymmetries is the dispersive phase π/2

Therefore, for CP -eigenstate final states, in general, CPVINT is
purely dispersive and ∝ x12 sinφM

f



General expressions for time-dependent decay widths in terms of λM
f , λΓ

f follow from

|A(D0(t) → f)|2, etc. (modified expressions for decays to K0X, K0X)

Γ(D0(t) → f) = e−τ |Āf |
2

{

1 + τ Re
[

e−iδM λM
f x12 − λΓ

f y12
]

+
τ2

4

(

|λM
f |2x2

12 + |λΓ
f |

2y212 + 2x12 y12 Im
[

λM
f

∗
λΓ
f

]

)}

,

with similar expressions for Γ(D0(t) → f), Γ(D0(t) → f̄), Γ(D0(t) → f̄)



time-dependent decay widths for SCS decays to CP eigenstates (τ ≡ ΓDt),
e.g. f = K+K−, π+π−, ρ0π0, K∗+K∗−, ρ+ρ−

Γ(D0(t) → f) = e−τ |Af |
2
(

1 + c+f τ + c′+f τ2
)

,

Γ(D0(t) → f) = e−τ |Āf |
2
(

1 + c−f τ + c′−f τ2
)

,

where the coefficients c±f , c′±f satisfy

c±f = ηfCP

[

∓x12 sinφM
f − y12 cosφ

Γ
f (1∓ adf )

]

,

c′±f = 1
4
(x2

12 + y212)
(

1± aSL ∓ 2adf

)

,

and the direct CP asymmetry adf ≡ 1−
∣

∣Āf/Af

∣

∣ = −2rf sinφf sin δf

traditional to express SCS widths as exponentials, neglecting O(τ2) dependence:

Γ(D0(t) → f) = |Af |
2 exp[−Γ̂D0→f τ ], Γ(D0(t) → f) = |Āf |

2 exp[−Γ̂
D0→f

τ ],

where Γ̂D0/D0→f = 1− c±

(should revisited in the precision era, for the CP conserving part)



The time-dependent CPVINT asymmetry:

∆Yf = −AΓ ≡
(c+f − c−f )

2
=

Γ̂
D

0
→f

− Γ̂D0→f

2

In terms of the CPVINT parameters,

∆Yf = ηfCP (−x12 sinφM
f + adf y12)

confirmation that CPVINT is purely dispersive (up to dCPV effects)

can only probe φΓ
f with non-CP eigenstate final states

the dCPV contribution is disentangled via time-integrated measurements

Compare to phenomenological parametrization:

∆Yf =
y

2
cosφλf

(∣
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p
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∣

∣

∣

−

∣

∣

∣

∣

p
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∣

∣

∣

∣

)

−
x

2
sinφλf

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

+ adf |y|

the physical interpretation is obscured



The CP conserving observable yfCP (for CP-eigenstate final states),

yfCP ≡ −
(c+f + c−f )

2
=

Γ̂D0→fCP
+ Γ̂

D0→fCP

2
− 1

In terms of the CPVINT parameters

yfCP = ηCP
f y12 cosφ

Γ
f

exp. avg. over f = K+K−, π+π− ⇒ yfCP /ηCP
f > 0

combining with global fit result φ12 = φM
f − φΓ

f ≈ 0 (rather than π), we learn
that

φM
f ≈ 0, φΓ

f ≈ 0

(rather than ≈ π)



II. Phenomenology of CF/DCS Decays toK±X

For CF/DCS decays to K±X, e.g. K+π− , K+π−π0 (and SCS decays to non-CP
eigenstates, e.g. KKππ, ππππ), have two pairs of observables: one for f , one for f̄ :

λM
f ≡

M12

|M12|

Af

Af

= −

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

ei(φ
M
f −∆f ) , λΓ

f ≡
Γ12

|Γ12|

Af

Af

= −

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

ei(φ
Γ
f−∆f )

λM
f̄

≡
M12

|M12|

Af̄

Af̄

= −

∣

∣

∣

∣

∣

Af̄

Af̄

∣

∣

∣

∣

∣

ei(φ
M
f +∆f ) , λΓ

f̄
≡

Γ12

|Γ12|

Af̄

Af̄

= −

∣

∣

∣

∣

∣

Af̄

Af̄

∣

∣

∣

∣

∣

ei(φ
Γ
f+∆f ) .

,

∆f = strong phase difference between Af (DCS) and Af (CF), and
between Af̄ (DCS) and Af̄ (CF)

the total CP-even phase difference between decays with and without mixing is
∆f − π/2 (dispersive) and ∆f (absorptive) ⇒

the time dependent CPVINT asymmetries are

∝ x12 sinφM
f cos∆f (dispersive mixing)

∝ y12 sinφΓ
f sin∆f (absorptive mixing)



in the SM, and NP models with negligible dCPV in CF/DCS decays, the
time-dependent decay widths for the “wrong sign” decays D0 → f̄ and D0 → f , e.g.
f̄ = K+π−, are:

Γ(D0(t) → f̄) = e−τ |Af |
2
(

Rf +
√

Rf c
+
f τ + c′+f τ2

)

,

Γ(D0(t) → f) = e−τ |Af |
2
(

Rf +
√

Rf c
−

f τ + c′−f τ2
)

,

Rf = |Af̄/Af |
2 = O(λ2) (ratio of DCS to CF decay widths), and the coefficients

satisfy,

c±f = −
[

x12 sin∆f + y12 cos∆f

]

∓ x12 sinφM
f cos∆f ± y12 sinφΓ

f sin∆f ,

c′±f = 1
4
(x2

12 + y212) [1± aSL] .



the wrong sign CP asymmetry at linear order in τ :

δcf ≡ 1
2
(c+f − c−f ) = −x12 sinφM

f cos∆f + y12 sinφΓ
f sin∆f

confirms expected ∆f dependence for dispersive and absorptive CPV

as expected, non-CP eigenstate final states (non-trivial ∆f ) yield sensitivity to φΓ
f

the expression for the CP asymmetry in the (|q/p|, φλf
) parametrization is a

mess, again obscuring the physics

−2 δcf =

[

x cosφλf
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∣

∣
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∣

∣
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∣

∣

∣

p

q

∣

∣

∣

∣

)

+ y sinφλf

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)]

sin∆f

+

[

y cosφλf

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

−

∣

∣

∣

∣

p

q

∣

∣

∣

∣

)

− x sinφλf

(∣

∣

∣

∣

q

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p

q

∣

∣

∣

∣
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cos∆f



III. Phenomenology of CF/DCS decays toK0X, K0X, e.g. KS π+π−

two-step transitions D0 → [KS,L → π+π−] +X, to CP conjugate final states

f = [π+π−]X, f̄ = [π+π−]X

for example, for X = π+π−, f̄ and f related by interchanging the Dalitz plot
variables: (pK + pπ+)2 ↔ (pK + pπ−)2

Extra care is required for these decays: must account for CPV in K0 −K0 mixing,
i.e. ǫK , in order to achieve sensitivity to charm CPVINT in the SM

the neutral K mass eigenstates are given by

|KS〉 = pK |K0〉+ qK |K0〉, |KL〉 = pK |K0〉 − qK |K0〉 .

To excellent approximation,

qK

pK
=

A0

A0

(1− 2 ǫK) ,

∣

∣

∣

∣

qK

pK

∣

∣

∣

∣

= 1− 2Re[ǫK ]

ǫK ∼= (1.62 + i 1.53)× 10−3, and A0 denotes the K0 → (ππ)I=0 amplitude



CF/DCS decays to K0X ,K0X, in general, have four pairs of CPVINT observables,

λM
KaX , λΓ

KaX and λM
KaX

, λΓ
KaX

, a = S ,L

In the SM, and for negligible new weak phases in CF/DCS decays, the DCS
amplitudes can be neglected to very good approximation (will quantify later)

in this limit, the CPVINT observables reduce to two pairs,

λ
M (Γ)
f ≡ λ

M,(Γ)
KSX = −λ

M,(Γ)
KLX =

∣

∣

∣

∣

∣

pK AK0X

qK AK0X

∣

∣

∣

∣

∣

e
i(φ

M (Γ)
f

−∆f )
,

λ
M (Γ)

f̄
≡ λ

M,(Γ)

KSX
= −λ

M,(Γ)

KLX
=

∣

∣

∣

∣

∣

pK AK0X

qK AK0X

∣

∣

∣

∣

∣

e
i(φ

M (Γ)
f

+∆f )
,

for CP conjugate final states f = [π+π−]X, f̄ = [π+π−]X

Note that Im[ǫK ] feeds into φM
f , φΓ

f via arg(pK/qK)



the time dependent decay widths depend on two elapsed time intervals:
t and t′, at which the D and K decay, following their respective production

Kaon time evolution conveniently described in the mass basis:

|KS(t)〉 = e−iMSte−ΓSt/2|KS〉 , |KL(t)〉 = e−iMLte−ΓLt/2|KL〉

the time dependent decay amplitudes, e.g. for

D0(t) → [KS,L(t
′) → π+π−] +X ,

are obtained by summing over the intermediate KSX and KLX states, evolved
over time interval t′

the absolute value squared of the decay amplitudes, e.g.

Af (t, t
′) =

∑

a=S,L

A(Ka → π+π−) ×

e−(iMa+ 1
2
Γa)t

′

(AKaX〈D0|D0(t)〉+AKaX〈D0|D0(t)〉 ) ,

expressed in terms of λM,Γ
KS,LX , λM,Γ

KS,LX
, yields decay widths in terms of φM,Γ

f and ǫK



for example, the resulting decay width for D0(t) → f = [π+π−]X (τ ≡ ΓDt):

Γf (t, t
′) = e−τ |A+−|2|AK0X |2

{

e−ΓSt′
[

c+ +
√

Rf c+f τ +Rf c′+ τ2
]

+

e−ΓK t′
[

(b+ +
√

Rf b+f τ + Rf b′+τ2 ) cos(∆MKt′)

+ (d++
√

Rf d+f τ + Rf d′+τ2 ) sin(∆MK t′)

]}

,

A+− ≡ 〈π+π−|H|K0〉, Rf ≡
∣

∣AK0X/AK0X

∣

∣

2
is the ratio of CF decay rates,

∆MK ≡ ML −MS , ΓK ≡ (ΓL + ΓS)/2 ,

c+ = 1 + 2Re[ǫK ], b, d = O(ǫK)

c+f = (x12 − y12 sinφΓ
f ) sin∆f − (y12 + x12 sinφM

f ) cos∆f

the pure KS contribution is ∝ e−ΓSt′ ,

the KL −KS interference contribution is ∝ e−ΓK t′ , and is O(ǫK),

the pure KL contribution is O(ǫ2K) and negligible

CP asymmetries will be discussed in the context of approximate universality, also
taking into account the ǫK dependence of φM,Γ

f



Approximate Universality



we have parameterized indirect CPV in terms of final state dependent pairs of
dispersive and absorptive phases φM

f , φΓ
f .

to arrive at a minimal parametrization of indirect CPV effects in the precision era, we
need to understand the final state dependence

accomplished via a U -spin flavor symmetry decomposition of the SM mixing
amplitudes - this also yields estimates of φM

f , φΓ
f in the SM

can write the SM D0 −D0 mixing amplitudes as, (CKM factors λi ≡ VciV
∗
ui)

ΓSM
12 = −

∑

i,j=d,s

λiλjΓij , MSM
12 = −

∑

i,j=d,s,b

λiλjMij

at quark level, Γij , Mij identified with (ūc)2 box diagrams, containing internal i
and j quarks

they have internal quark flavor structures

Γss,Mss ∼ (s̄s)2 , Γdd,Mdd ∼ (d̄d)2 , Γsd,Msd ∼ (s̄s)(d̄d) ,



U-spin decomposition (SU(2) for d− s rotations)

using CKM unitarity (λd + λs + λb = 0), obtain

ΓSM
12 =

(λs − λd)
2

4
Γ2 +

(λs − λd)λb

2
Γ1 +

λ2
b

4
Γ0

Γ2,1,0 are the ∆U3 = 0 elements of ∆U= 2, 1, 0 multiplets, respectively

can be seen from their flavor structures

Γ2 = Γss + Γdd − 2Γsd ∼ (s̄s− d̄d)2 = O(ǫ2) ,

Γ1 = Γss − Γdd ∼ (s̄s− d̄d)(s̄s+ d̄d) = O(ǫ) ,

Γ0 = Γss + Γdd + 2Γsd ∼ (s̄s+ d̄d)2 = O(1) .

the orders in the U -spin breaking parameter ǫ are shown, corresponding to the
power of the U -spin breaking “spurion” ∼ ǫ (s̄s− d̄d) required to construct each
Γi

decomposition of MSM
12 is analogous (with exception of contributions to M1, M0

containing internal b quarks)



CPV in mixing

small |λb/λs| ∼ 0.7× 10−3 ⇒ mass and width differences (x12 , y12) are
due to M2 and Γ2, even though O(ǫ2)

U -spin breaking is large:

inclusive OPE approach yields Γij ∼ ΓD ⇒ ǫ2 = O(20%) in Γ2

exclusive approach: consensus that y12 ∼ 1% requires high multiplicity
final states, due to large U -spin breaking near threshold

CPV in mixing arises at O(ǫ), due to Γ1 and M1 (λb ∝ ei γ )

neglect the O(λ2
b) effects of Γ0,M0



introduce the “theoretical” phases

φΓ
2 ≡ arg

[

Γ12

(λs − λd)2 Γ2

]

, φM
2 ≡ arg

[

M12

(λs − λd)2 M2

]

,

φ2 ≡ arg

[

q

p
(λs − λd)

2 Γ2

]

φΓ
2 , φM

2 , φ2 are the theoretical analogs of φM
f , φΓ

f , φλf
, respectively

they are defined w.r.t the direction of the dominant ∆U = 2 mixing amplitudes in
the complex plane ∝ (λs − λd)

2, rather than Af/Af

they sum over the contributions of all intermediate states relative to this direction

can ultimately be measured on the lattice for SM

the phases are related as

sin 2φ2 = −
x2
12 sin 2φM

2 + y212 sin 2φΓ
2

x2
12 + y212

+O(CPV3)



rough SM estimates of φΓ
2 , and similarly for φM

2 :

φΓ
2 ≈ Im

(

2λb

λs − λd

Γ1

Γ2

)

∼

∣

∣

∣

∣

λb

θc

∣

∣

∣

∣

sin γ ×
1

ǫ
,

used Γ1/Γ2 , M1/M2 = O(1/ǫ)

CKM fits yield

φΓ
2 ∼ φM

2 ∼ (2.2× 10−3)×

[

0.3

ǫ

]

,

and φ2, φ12 of same order, barring large cancelations

alternative SM estimate of φΓ
2 , via the relation |Γ2| ∼= |y|ΓD/λ2

s

|φΓ
2 | =

∣

∣

∣

∣

λb λs sin γ

y

∣

∣

∣

∣

|Γ1|

ΓD
≈ 0.005

|Γ1|

ΓD
∼ 0.005 ǫ ,

in last relation used Γ1 ∼ ǫΓD (recall Γij ∼ ΓD in inclusive approach)

the two estimates for φΓ
2 are consistent (they coincide for ǫ ≈ 0.4)



Approximate Universality in the SM

the misalignments δφf between the measured phases φM
f , φΓ

f , φλf
, and their

theoretical counterparts are equal in magnitude,

δφf = φΓ
f − φΓ

2 = φM
f − φM

2 = φ2 − φλf
,

in general, up to strong phases, δφf = arg

[

Af

Af
(λs − λd)

2

]

what are the misalignments in the various classes of decays? or, what is the
uncontrolled theoretical error on measurements of φM

2 , φΓ
2 ?

CF/DCS decays to K±X, e.g. K+π−, K+π−π0:

δφf = arg

[

−
V ∗
csVud

VcdV ∗
us

(λs − λd)
2

]

= O

(

λ2
b

λ2
s

)

∼ 4× 10−5

the misalignment is negligible, i.e. δφf ∼ 10−2 φM,Γ
2



CF/DCS decays to K0X, K0X, e.g. KSπ
+π−: including the effects of kaon CPV,

δφf = 2 Im[ǫK ] +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ = 3.7× 10−3,

is precisely known, up to two corrections of O(0.1 φM,Γ
2 ) which can be neglected:

an O(λ2) multiplicative final state dependent DCS amplitude correction,
∼ 2λ2Im[ǫK ] ∼ 1.5× 10−3

a contribution of O(10−4) related to ǫ′/ǫ



SCS decays, e.g. K+K−, π+π−: for CP eigenstate final states

δφf = −2rf cos δf sin γ = −adf cot δf ∼ adf

and the CP asymmetry is corrected as,

∆Yf/η
f
CP = −x12(sinφM

f + 2rf cos δf sin γ)− 2 y12 rf sin δf sin γ

rf = |P/T | is the relative magnitude of the subleading QCD penguin amplitude,
φf and δf are the weak and strong phase differences

formally, δφf/φ
M,Γ
2 = O(ǫ), but U -spin ⇒ δφK+K− ∼ −δφπ+π− , or

1

2
(φM,Γ

K+K−
+ φM,Γ

π+π−
) = φM,Γ

2 [1 +O(ǫ2)]

while ǫ could be large, e,.g. ∼ 0.4, an O(ǫ2) suppression of QCD penguin
pollution in the average is beneficial



Approximate universality generalizes beyond the SM under conservative assumptions
regarding subleading decay amplitudes containing new weak (CPV) phases:

they can be neglected in CF/DCS decays: exotic flavor structure would be
required to evade ǫK constraint

in SCS decays, they are of similar magnitude to, or smaller than SM QCD
penguins, as hinted at by ∆ACP

these assumptions can ultimately be tested via dCPV measurements

NP is most likely to appear in φM
2 via dispersive short distance mixing amplitudes

Exotic invisible or missing energy D0 decays, e.g. to axions, would contribute to
both φM

2 and φΓ
2



CPVINT in D0 → KSπ
+π−

we can now incorporate ǫK into the KSπ
+π− time dependent CP asymmetries. For

example, [asymmetries entering at O(τ2) are negligible]

Γf − Γf̄ = −2 e−τ |A+−|2|AK0X |2
{

ǫR F0(t
′) +

√

Rf τ

[

(x12 cos∆f + y12 sin∆f ) ǫI F1(t
′)

+

(

x12 cos∆f sin
(

φM
2 +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ
)

+ y12 sin∆f sin
(

φΓ
2 +

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

sin γ
)

)

e−ΓSt′
]}

,

where ǫR ≡ Re[ǫK ], ǫI ≡ Im[ǫK ], and

F0(t) = −e−ΓSt + e−ΓK t

(

cos∆mK t+
ǫI

ǫR
sin∆mK t

)

,

F1(t) = e−ΓSt − e−ΓK t

(

cos∆mK t−
ǫR

ǫI
sin∆mK t

)

F0 is associated with dCPV, agrees with Grossman, Nir 2012

F1 and e−ΓSt′ are associated with the contributions of ǫK and φM,Γ
2

ǫR/ǫI = 1 up to a ≈ 5% correction
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Shown are F0(t), F1(t), and exp[−ΓSt], plotted over a short time interval of relevance to
LHCb (left), and a longer time interval of relevance to Belle-II (right)

over the time scale for observed K0’s at LHCb, e.g. t′ . 0.5τS , F1 is suppressed
down to the few percent level, while e−ΓSt′ = O(1)

ǫK effects in the CPVINT asymmetries can be neglected at LHCb

over the Belle-II time scale, e.g. t′ . 10τS , the cancelation in F1 subsides, and ǫK
ultimately dominates the SM CPVINT asymmetries.

at Belle-II, ǫK is an important, but its a precisely known systematic effect



Current Status

Superweak Approximation: in the past, sensitivity to φ12 of O(100) mrad probed
short-distance NP

was appropriate to neglect the effects of weak phases in subleading decay
ampltiudes in indirect CPV observables. In this limit,

φM
f = φM

2 = φ12, φΓ
f = 0 , φλf

= φ2

e.g. ∆YF = −ηCP x12 sinφM
2

the superweak global fit is highly constrained, since there is only one CPV phase
controlling all indirect CPV phenomena

currently, HFLAV obtains

φM
2 = −0.004± 0.016 (1σ)

comparison with the SM estimate, φM
2 = O(0.2%), implies that there is an

order of magnitude window for NP at 95% CL



Approximate Universality global fit

the approximate universality global fit is less constrained, given there are now two
CPVINT phases, φM

2 and φΓ
2

0.4− 0.2− 0 0.2 0.4

12
Γ

φ

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.41
2

M
φ

Preliminary: φΓ
2 vs. φM

2 at 68% CL, 95% CL

error on φM
2 ≈ ±0.027 [rad] is approximately a factor of three smaller than on φΓ

2

largely due to the observable ∆Yf = −AΓ, which only depends on φM
2



Conclusion

the description of indirect CPV in terms of the absorptive and dispersive phases φM
f ,

φΓ
2 is simpler, and far more physically transparent than φλf

, |q/p| − 1

ultimately, the goal is to measure the two corresponding theory phases φM
2 , φΓ

2

approximate universality: fortunately, there is minimal uncontrolled pollution from the
decay amplitudes

CF/DCS decays: to excellent approximation, it is negligible in the CF/DCS decays
in the SM, and in models with negligible new weak phases in these decays

SCS decays: there is uncontrolled final state dependent pollution, formally of O(ǫ)

for individual modes, and of O(ǫ2) for the sum φM,Γ

K+K−
+ φM,Γ

π+π−

in the future, at SM sensitivity, it will be instructive to compare the SCS and
CF/DCS measurements

φM
2 and φΓ

2 can, in principle, be measured on the lattice - this will become crucial for a
precision test of the SM
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