2nd Belle II Physics week

October 28–November 1, 2019 KEK, Tsukuba, Japan

Charm physics at LHCb

(from the perspective of a former LHCb member that recently joined Belle II)

Angelo Di Canto BROOKHEVEI

NATIONAL LABORATORY

The beauty of the LHC

RICHes

K identification efficiency ~95% for ~5% $\pi \rightarrow K$ mis-id probability

Muon stations

 µ identification efficiency
 ~97% for 1-3% π→µ misid probability

Calorimeters

Particle identification

and energy

measurements for

electrons/photons

1%+10%/√(*E*[GeV])

Vertex locator 20 µm impact parameter resolution, corresponding to ~45 fs decay-time resolution for *b/c* hadrons

Dipole + tracking stations $\Delta p/p = 0.4-0.6\%$ at 5-100 GeV/c

nt. J. Mod. Phys. A 30 (2015) 1530022

Finally two concurrent beauty factories

LHCb

- Huge advantage in production rate, but also large backgrounds — stringent online selections
- Superior decay-time resolution and access to larger decay times (boost)
- ...but tricky efficiency effects (*e.g.* decay-time acceptance)

Belle II

- Cleaner environment allows for more generous selections milder efficiency effects
- Better reconstruction of final states with neutrals/invisible particles
- Much easier separation between promptly produced charm and secondary (from-*B*) decays

Prospects of data collection

does not hold for charm

$D^{*+} \rightarrow D^{0} (\rightarrow K^{+}\pi^{-})\pi^{+}$

Charm Physics program at LHCb

Mixing & CPV

- Time-dependent
 - $D^0 \rightarrow h^-h'^+$
 - $D^0 \rightarrow K_{\rm S}h^-h^+$
- Time-integrated
 - *ΔA*_{CP}

- $D^+ \rightarrow K_{\rm S}h^+, \eta'h^+$
- Local CPV in multibody decays
- CPV in baryons

Production & spectroscopy

- Cross sections
- Masses, lifetimes
- Amplitude analyses
- $D_{(S)J}$ states
- Charmed baryons

. . .

 Production asymmetries

Rare decays

- LFV, LNV
 - $D^{O} \rightarrow e^{-}\mu^{+}$
- $D_{(s)} \rightarrow h^- \mu^+ \mu^+$
- FCNC
 - $D^{O} \rightarrow \mu^{-} \mu^{+}$
 - $D^{O} \rightarrow h^{-}h^{+}\mu^{-}\mu^{+}$
 - $D_{(s)} \rightarrow h^+ \mu^- \mu^+$

Charm Physics program at LHCb

Mixing & CPV

- Time-dependent
 - $D^0 \rightarrow h^-h'^+$
- $D^0 \rightarrow K_{\rm S}h^-h^+$
- Time-integrated
 - $\Delta A_{\rm CP}$
- $D^+ \rightarrow K_{\rm S}h^+, \eta'h^+$
- Local CPV in multibody decays
- *CPV* in baryons

- Cross sections
- Masses, lifetimes
 Amplitude analyses
 Any states
 Chamed

Direct CP violation

What do we measure?

$$A_{CP}(D^0 \to h^+ h^-) = \frac{\Gamma(D^0 \to h^+ h^-) - \Gamma(\overline{D}{}^0 \to h^+ h^-)}{\Gamma(D^0 \to h^+ h^-) + \Gamma(\overline{D}{}^0 \to h^+ h^-)}$$

$$A(D^{0} \to h^{+}h^{-}) = \frac{N(D^{0} \to h^{+}h^{-}) - N(\overline{D}^{0} \to h^{+}h^{-})}{N(D^{0} \to h^{+}h^{-}) + N(\overline{D}^{0} \to h^{+}h^{-})}$$

$$A(D^{0} \to h^{+}h^{-}) = \frac{N(D^{0} \to h^{+}h^{-}) - N(\overline{D}^{0} \to h^{+}h^{-})}{N(D^{0} \to h^{+}h^{-}) + N(\overline{D}^{0} \to h^{+}h^{-})}$$

 $\approx \underline{A_{CP}(h^+h^-)} + \underline{A_D} + \underline{A_P}$

The *CP* asymmetry we want to measure

Detection asymmetry of tagging particle (π^+ or μ^-) — D^0 final state does not contribute being charge symmetric

Production asymmetry of parent hadron (D^{*+} or \overline{B})

$$A(D^0 \to h^+ h^-) = \frac{N(D^0 \to h^+ h^-) - N(\overline{D}^0 \to h^+ h^-)}{N(D^0 \to h^+ h^-) + N(\overline{D}^0 \to h^+ h^-)}$$
$$\approx \frac{A_{CP}(h^+ h^-) + A_D}{A_{D} + A_P}$$

The *CP* asymmetry we want to measure

Detection asymmetry of tagging particle (π^+ or μ^-) — D^0 final state does not contribute being charge symmetric

Production asymmetry of parent hadron (D^{*+} or \overline{B})

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = A(K^+K^-) - A(\pi^+\pi^-)$

$$\begin{split} A(D^0 \to h^+ h^-) &= \frac{N(D^0 \to h^+ h^-) - N(\overline{D}{}^0 \to h^+ h^-)}{N(D^0 \to h^+ h^-) + N(\overline{D}{}^0 \to h^+ h^-)} \\ &\approx A_{CP}(h^+ h^-) + A_D + A_P \\ \end{split}$$
The CP asymmetry we want to measure
$$\begin{array}{l} \text{Detection asymmetry of tagging} \\ \text{particle } (\pi^+ \text{ or } \mu^-) - D^0 \text{ final} \\ \text{state does not contribute being} \\ \text{charge symmetric} \end{array} \begin{array}{l} \text{Production asymmetry of} \\ \text{parent hadron } (D^{*+} \text{ or } \bar{B}) \end{array}$$

$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = A(K^+K^-) - A(\pi^+\pi^-)$

• In the limit of SU(3)/U-spin symmetry, $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$ have same magnitude and opposite signs \implies in addition to be robust against experimental biases, ΔA_{CP} provides 2× enhanced sensitivity to *CP* violation

Fiducial requirements

 For specific regions of phase space, the soft pion of a given charge is kicked out of the detector acceptance by the magnetic field

• O(1) detection asymmetries break the linear decomposition of the raw asymmetry

Production asymmetry

- In *pp* collision charm quarks are produced mostly through gluon fusion (which is charge symmetric)
- However, the c and the c̄ quarks may "recombine" with some of the proton valence quarks (beam-drag effect) creating an asymmetric production of charm mesons or baryons
- The effect is enhanced in the forward region, where the charm pair is collinear with the protons' direction

Kinematic weighting

- Detection and production asymmetries are expected to depend on kinematics
- Their cancelation may not be accurate if the kinematic distributions of the reconstructed $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ candidates differ
- Observed differences are removed through a weighting procedure the resulting net effect on ΔA_{CP} is anyhow marginal (below 10⁻⁴)

$\Delta A_{CP} [10^{-4}]$ $-18.2 \pm 3.2 (\text{stat}) \pm 0.9 (\text{syst}) \qquad \pi \text{ tagged (Run 2)}$ $-9 \pm 8 (\text{stat}) \pm 5 (\text{syst}) \qquad \mu \text{ tagged (Run 2)}$

-18.2	2 ±	3.2	$2 (stat) \pm 0.9$	9 (syst)	π tagged (Run 2)
-9	±	8	(stat) ± 5	(syst)	μ tagged (Run 2)
-10	±	8	$(stat) \pm 3$	(syst)	π tagged (Run 1) [PRL 116 (2016) 191601]
-14	±	16	(stat) ± 8	(syst)	µ tagged (Run 1) [JHEP 07 (2014) 041]

 5.3σ deviation from zero first observation of *CP* violation in charm

Charming "triangle analyses"?

Now what?

- Measured value is in the ballpark of the standard model value
- Difficult to say if new physics is at play. Need better control of the QCD effects
- Experimentally look for *CP* violation in radiative decays, test isospin sum rules and SU(3) related modes
- Huge program of measurements, where Belle II role with neutrals will be crucial

from Alexey's talk yesterday

– several final states possible, for $\mathsf{D} o \pi^{\mathsf{i}} \pi^{\mathsf{k}}$

$$rac{1}{\sqrt{2}}A^{+-} = A^{+0} - A^{00}, \ rac{1}{\sqrt{2}}\overline{A}^{-+} = \overline{A}^{-0} - \overline{A}^{00},$$

arn

Gronau, London Bevan, Meadows

- others include $D \rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$

CP violation in $D^+ \rightarrow \pi^+ \pi^0$ decays

- In the standard model ΔA_{CP} comes from $\Delta U=0$ transitions
- *CP* violation in $\Delta U=1$, *e.g.* in $D^+ \rightarrow \pi^+ \pi^0$, would unambiguously be new physics
- Current best measurement from Belle (1/ab)

 $A_{CP} = (2.3 \pm 1.2 \pm 0.2)\%$

- D*+ tagging crucial in suppressing the background
- Similar performances expected for Belle II.
 Sensitivity with 50/ab ~0.17%, maybe possible at LHCb but difficult

[PRD 97 (2018) 011101(R)]

LHCb-PUB-2018-009

Prospects for direct CP violation

The Belle II Physics Book

Decay mode	Current best sensitivity (stat + syst) [10 ⁻³]		LHCb 300/fb (stat only) [10-3]	Belle II 50/ab (stat+syst) [10 ⁻³]
ΔA_{CP}	0.29	LHCb (9/fb)	0.03	0.6
<i>D</i> ⁰ → <i>K</i> + <i>K</i> -	1.8	LHCb (3/fb)	0.07	0.3
<i>D</i> ⁰ →π+π ⁻	1.8	LHCb (3/fb)	0.07	0.5
$D^0 \rightarrow \pi^0 \pi^0$	6.5	Belle (1/ab)	(?)	0.9
<i>D</i> ⁰ → <i>K</i> +π ⁻	9.1	LHCb (5/fb)	0.5	(4.0)
D⁰→KsKs	15	Belle (1/ab)	2.8	2.1
D _s →K _S π+	18	LHCb (6.8/fb)	0.32	2.9
D+→KsK+	0.76	LHCb (6.8/fb)	0.12	0.4
D ⁰ →φγ	66	Belle (1/ab)	(?)	10
$D^0 \rightarrow \rho^0 \gamma$	150	Belle (1/ab)	(?)	20
D +→φπ+	0.49	LHCb (4.8/fb)	0.06	0.4
$D^+ \rightarrow \pi^0 \pi^+$	13	Belle (1/ab)	(?)	1.7

CPV in multi-body decays

- Enriched dynamics of multi-body decays allows to look for CP violation in subregions of the phase space
 - Additional sensitivity with respect to global asymmetries (which could average to zero for small values of δ)

 $A_{CP} \sim \sin \phi \sin \delta$

- Mostly insensitive to production and detection asymmetries
- Both model-dependent and modelindependent measurements are possible
- 4-body final states give also access to CP violation in P-odd amplitudes ($\sim \cos \delta$)

Search for "local" CP violation across Dalitz plot

- Compute local *CP* asymmetry in different bins of the Dalitz plot
- In absence of *CP* violation, the distribution of local asymmetry is Gaussian with zero mean and unit variance
- Get *p*-value from $\chi^2 = \sum_i (S_{CP}^i)^2$
- Test several binning schemes (same number of events/same strong phase) to enhance sensitivity

Binned (a.k.a. Miranda) method

Local *CPV* in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ decays

[PLB 769 (2017) 345]

 Statistical comparison of two distributions based on distance in phase space between pairs of particles

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}},$$

- Compare with *T* distribution of no *CP*-violation case (randomize *D* flavor)
- Consistent with CP symmetry (in P-even amplitudes)

Local *CPV* in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ decays

[PLB 769 (2017) 345]

 Statistical comparison of two distributions based on distance in phase space between pairs of particles

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}},$$

- Compare with *T* distribution of no *CP*-violation case (randomize *D* flavor)
- Use triple product to access P-odd CP violation

$$C = \vec{p}_{\pi^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$$
$$\bar{C} = \vec{p}_{\pi^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+})$$

Results is marginally consistent with CP symmetry (2.7σ)

Experimental status

[PRD 97 (2018) 031101(R)]

Mixing with $D^0 \rightarrow K^+\pi^-$

$$R(t) = \frac{\Gamma(D^0 \to K^+ \pi^- | t)}{\Gamma(D^0 \to K^- \pi^+ | t)} \approx R_D + \sqrt{R_D} y' \left(\frac{t}{\tau}\right) + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

 The latest analysis from LHCb (5/fb) measures

 $\begin{aligned} x'^2 &= (3.9 \pm 2.7) \times 10^{-5} \\ y' &= (5.28 \pm 0.52) \times 10^{-3} \end{aligned}$

and provides stringent bounds on direct *CPV* in DCS decays and *CPV* in mixing

 $1.00 < |q/p| < 1.35 @ 68\% Cl_{2,1}$

No CPV

- 99.73% C.L.

-95.45% C.L.

-68 27% C L

 Belle II sensitivity with 50/ab not sufficient to compete with LHCb

Measurement of *y*_{CP}

• Effective lifetime of decays to *CP*even final state (relative to *CP*-mixed)

$$y_{CP} \equiv \frac{\tau(K^-\pi^+)}{\tau(h^+h^-)} - 1$$

- Equal to y in case of CP symmetry
- Use µ-tagged decays to reduce biases on D⁰ decay time
- Result with Run 1 data is as precise as the world average
- If LHCb does not manage to analyze the π-tagged sample, could be a measurement where Belle II can
 27 compete

Measurement of *y*_{CP}

• Effective lifetime of decays to *CP*even final state (relative to *CP*-mixed)

$$y_{CP} \equiv \frac{\tau(K^-\pi^+)}{\tau(h^+h^-)} - 1$$

- Equal to y in case of CP symmetry
- Use µ-tagged decays to reduce biases on D⁰ decay time
- Result with Run 1 data is as precise as the world average
- If LHCb does not manage to analyze the π-tagged sample, could be a measurement where Belle II can
 compete

Time-dependent *CP* asymmetry in $D^0 \rightarrow h^+h^-$

 Small D⁰-D

⁰ mixing rate implies that time-dependent CP asymmetries can be approximated as

$$A_{CP}(h^+h^-) \approx a_{CP}^{\mathrm{dir}}(h^+h^-) - \frac{t}{\tau}A_{\Gamma}$$

- Mixing-induced CP violation results in a nonzero value of the linear term
- Standard model expectation is at least one order of magnitude below the current experimental sensitivity

Detection asymmetries

LHCb-CONF-2019-001

- Time-dependent detection asymmetries studied with large-yield samples of $D^0 \rightarrow K^-\pi^+$ decays
- Removed by equalizing the 3D momentum distributions of D^0 and \overline{D}^0 candidates (separately for data-taking period and magnet polarity)

LHCb preliminary

Time-dependent *CP* asymmetry in $D^{0} \rightarrow h^{+}h^{-}$

Time-dependent CP asymmetry in $D^0 \rightarrow h^+h^-$

 Averaging the four samples and combining with Run 1 [PRL 118 (2017) 261803, JHEP 04 (2015) 043]
 PRELIMINARY

 $A_{\Gamma} = [-1.1 \pm 1.7 \text{ (stat)} \pm 0.5 \text{ (stat)}] \times 10^{-4}$

Experimental status

x is the key

- Experimental sensitivity to the *CP*-violation in mixing limited by the knowledge of $x_{12} \approx x$
 - $A_{\Gamma} \approx -X_{12} \sin \phi_{12}$ (superweak approx.)
 - Available mixing measurements are mostly based on decays to two-body final states (y_{CP}≈y, y'≈y)
 - Need more measurements with multi-body final states

 $\phi_{12} = (-0.25 \,{}^{+\,0.99}_{-\,0.96})^{\circ}$

[PRD 89 (2014) 091103]

Mixing with $D^0 \rightarrow K_{\rm S} \pi^+ \pi^-$

Multiple interfering amplitudes
 enhance the sensitivity to mixing

 $\mathcal{P}_{D^0} \propto e^{-\Gamma t} \{ |\mathcal{A}_{D^0}|^2 - \operatorname{Re} \left[\mathcal{A}_{D^0}^* \mathcal{A}_{\overline{D}^0}(y + ix) \right] \Gamma t \}$

- Requires a time-dependent Dalitz-plot analysis
- Pioneered by CLEO in 2005, then followed by *B* factories with larger yi is
- Belle 1/a government of x
 long the best determination of x
 available 5000

Belle

m² (GeV²/c⁴

m² (GeV²/c⁴)

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
	q/p	$0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$
	$\arg(q/p)(^{\circ})$	$-6 \pm 11 \pm 3^{+3}_{-4}$

$D^0 \rightarrow K_{\rm S} \pi^+ \pi^-$ at LHCb

- $K_{\rm S} \rightarrow \pi^+ \pi^-$ are difficult to reconstruct in LHCb
 - In the early stages of the trigger only $K_{\rm S}$ decaying inside the VELO ($t < 0.5 \ \tau_{\rm Ks}$) can be reconstructed
 - Trigger relies mostly on the two pions from the D^0 decay \implies non-uniform efficiency over the Dalitz plot (which is also correlated with the D^0 decay time)
- Could be overcome using μ -tagged D^0 decays \implies reduced efficiency and larger background levels
- A time-dependent amplitude analysis is very challenging at LHCb

$D^0 \rightarrow K_{\rm S} \pi^+ \pi^-$ with a model-independent approach

 Avoid amplitude analysis by integrating over Dalitz-plot bins with constant strong-phase variation

$$\mathcal{P}_{D^0} \propto e^{-\Gamma t} \left[F_b - \sqrt{F_b F_{-b}} (c_b y - s_b x) \Gamma t \right]$$

 Constrain hadronic parameters (*c_b*, *s_b*) using measurements with quantum-correlated *D^oD^o* pairs, *i.e.* at CLEO and BESIII

$$F_{b} = \int_{b} |\mathcal{A}_{D^{0}}|^{2} dm_{+}^{2} dm_{-}^{2}$$
$$c_{b} - is_{b} \propto \int_{b} \mathcal{A}_{D^{0}}^{*} \mathcal{A}_{\bar{D}^{0}} dm_{+}^{2} dm_{-}^{2}$$

Bin-flip method

• Inspired by the WS $D^0 \rightarrow K\pi$ analysis: ratio of events in bin -b to events in bin b to suppress effects due to non-uniform efficiency variations and enhance sensitivity to x

$$R_b \approx r_b - \sqrt{r_b} \big[(1 - r_b) c_b y - (1 + r_b) s_b x \big] \Gamma t$$

- Mixing parameters from simultaneous fit to all bins. Split in D^o and D
 [¯] to access also indirect CP violation
- Model-independent and completely data driven
- Comes with the price of degraded sensitivity to mixing effects from CP-even/ odd amplitudes (*i.e.* to y)

Bin-flip method

• Inspired by the WS $D^0 \rightarrow K\pi$ analysis: ratio of events in bin -b to events in bin b to suppress effects due to non-uniform efficiency variations and enhance sensitivity to x

$$R_b \approx r_b - \sqrt{r_b} \big[(1 - r_b)c_b y - (1 + r_b)s_b x \big] \Gamma t$$

- Mixing parameters from simultaneous fit to all bins. Split in D^o and D
 [¯] to access also indirect CP violation
- Model-independent and completely data driven
- Comes with the price of degraded sensitivity to mixing effects from CP-even/ odd amplitudes (*i.e.* to y)

[PRL 122 (2019) 231802]

Parameter	Value	Stat. correlations			Syst. correlations			
	$[10^{-3}]$	y_{CP}	Δx	Δy	y_{CP}	Δx	Δy	
x_{CP}	$2.7 \pm 1.6 \pm 0.4$	-0.17	0.04	-0.02	0.15	0.01	-0.02	
y_{CP}	$7.4 \pm 3.6 \pm 1.1$		-0.03	0.01		-0.05	-0.03	
Δx	$-0.53 \pm 0.70 \pm 0.22$			-0.13			0.14	
Δy	$0.6 \pm 1.6 \pm 0.3$							

Bin-flip $D^0 \rightarrow K_{\rm S}\pi^+\pi^-$ at LHCb

 $-0.53 \pm 0.70 \pm 0.22$

 $0.6 \pm 1.6 \pm 0.3$

 Δx

 Δy

[PRL 122 (2019) 231802]

0.14

-0.13

Parameter	Value	95.5% CL interval
$x [10^{-2}]$	$0.27^{+0.17}_{-0.15}$	[-0.05, 0.60]
$y \ [10^{-2}]$	$0.74 {\pm} 0.37$	[0.00, 1.50]
q/p	$1.05 {}^{+ 0.22}_{- 0.17}$	[0.55, 2.15]
ϕ	$-0.09^{+0.11}_{-0.16}$	[-0.73, 0.29]

Impact on world average

Impact on world average

Impact on world average

Prospects for $D^0 \rightarrow K_{\rm S} \pi^+ \pi^-$

- In Run 1+2 LHCb has collected ~36M π -tagged $D^0 \rightarrow K_{\rm S}\pi^+\pi^-$ decays and ~10M μ -tagged decays
 - Expected sensitivity (my own extrapolation, not official)

Uncertainty (×10-3)	XCP	Уср	Δx	Δy
CLEO inputs	0.3	1.0	0.07	0.13
Data statistics	0.4	0.8	0.16	0.34
Total	0.5	1.3	0.18	0.39

- Belle II will collect ~50M (π -tagged) decays with 50/ab. Difficult to compete if LHCb keeps same efficiency in the Upgrade
- Can Belle II do $D^0 \rightarrow K_{\perp}\pi^+\pi^-$? (it is being considered for γ/φ 3)

[arXiv:1808.10567]

More multibodies

- Lots of other promising final states not yet explored/fully exploited experimentally: *e.g.* $D^0 \rightarrow K^+\pi^-\pi^0$, $D^0 \rightarrow K_{\rm S}\pi^+\pi^-\pi^0$, $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$, ...
- Model-independent analyses would have to rely on BESIII measurements of the strong-phase parameters

Summary

- Observed (direct) CP violation in charm decays
 - Measured asymmetry seems consistent with standard model, although predictions suffer from large uncertainties due to stronginteraction effects
 - Additional searches for *CP* violation in different decay modes can help to clarify the picture, together with improved theory calculations
- Yet no signs for mixing-induced CP violation. Precision still ~10× larger than naive standard model expectation, so plenty of room for new physics
- Huge experimental progress expected in the next decade(s) at LHCb and Belle II (with valuable inputs from BESIII) if we fully exploit the excellent complementarity between the two experiments

"Charm is the new beauty!"

Charm is more valuable than beauty. You can resist beauty, but you can't resist charm.

— Audrey Tautou —

Rare charm decays at LHCb

• A rainbow of different physics, ranging from forbidden to (not-so-rare) radiative decays

$D^{0} \rightarrow \mu^{+}e^{-}$ $D^{0} \rightarrow pe^{-}$ $D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$				I	$D^+_{(s)} \rightarrow D^+_{(s)} \rightarrow D^0_{(s)} \rightarrow K^- \pi D^0 \rightarrow K^- \pi K^- \pi D^0 \rightarrow K^- \pi K^- $	$\pi^+ l^+ l^-$ $K^+ l^+ l^-$ $r^+ l^+ l^-$ $r^0 l^+ l^-$		$D^{0} \rightarrow \pi$ $D^{0} \rightarrow \mu$ $D^{0} \rightarrow \mu$ $D^{0} \rightarrow \varphi$	$\pi^{-}\pi^{+}V(\rightarrow V(\rightarrow K^{+}K^{-}V))$	→ II) > II) (→ II) (→ II)	$D^0 - D^0 \rightarrow (\phi, \mu)$ $D_s^+ \rightarrow \pi^+ \phi$	→ K ^{*0} γ ν,ω) γ (→ ll)
LFV, LNV,	BNV		FC	NC				VMD	:	Radi	ative	
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³ 10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴	
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			$D^0 \to ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi^{*}$ $D^{0} \to \rho^{*}$ $D^{0} \to K^{*}$ $D^{0} \to \phi^{*}$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $K^{-}l^{+}l^{-}$ $l^{+}l^{-}$	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(\cdot)}{\overline{K}^{*0}}V(\rightarrow)$	→ II) D II) D D	$D^+ \to \pi^+$ $D^0 \to K^-$ $D^0 \to K^{*}$	$\phi(\rightarrow ll)$ $\pi^+ V(\rightarrow ll)$ $V(\rightarrow ll)$	

- So far LHCb focused mostly on final states with 2 muons:
 - Best limit on $D^0 \rightarrow \mu^+ \mu^-$ [PLB 725 (2013) 15], $D_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$, $\pi^- \mu^+ \mu^+$ [PLB 724 (2013) 203], $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ [PLB 728 (2014) 234], $D^0 \rightarrow e^+ \mu^-$ [PLB 754 (2016) 167], $\Lambda_c \rightarrow \rho \mu^+ \mu^-$ [PRD 97 (2018) 091101]
 - First observation of $D^0 \rightarrow K^-\pi^+ V(\rightarrow \mu^+\mu^-)$ [PLB 757 (2016) 558], $K^+K^-V(\rightarrow \mu^+\mu^-)$, $\pi^+\pi^-V(\rightarrow \mu^+\mu^-)$ [PRL 119 (2017) 181805, PRL 121 (2018) 091801], $\Lambda_c \rightarrow pV(\rightarrow \mu^+\mu^-)$ [PRD 97 (2018) 091101]

The richness of $D^0 \rightarrow h^+h^-\mu^+\mu^-$ decays

- Overwhelming contribution from long-distance amplitudes proceeding through intermediate vector resonances in the dimuon spectrum
- Such penalty is overly compensated by the rich and diverse dynamics of multibody decays

- Access to angular and CP asymmetries can greatly increase sensitivity to shortdistance physics
- O(1%) asymmetries may be generated by NP [JHEP 04 (2013) 135, PRD 87 (2013) 054026, PRD 98 (2018) 035041]

Rarest charm-hadron decays ever observed:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

where the uncertainties are statistical, systematic and due to the BF of the normalization decay

$D^0 \rightarrow h^+h^-\mu^+\mu^-$: angular and *CP* asymmetries

[PRL 121 (2018) 091801]

Which final states for Belle II?

- Electron modes to test LFU: *e.g.* $D_{(s)} \rightarrow h^+e^+e^-, D^0 \rightarrow h^-h^+e^+e^ D^0 \rightarrow \pi^0e^+e^-, \dots$
 - First observation of $D^0 \rightarrow K^ \pi^+e^+e^-$ at BaBar with 0.5/ab

$$\mathcal{B}(D^0 \to K^- \pi^+ [e^+ e^-]_{\rho^0/\omega}) = (4.0 \pm 0.5) \times 10^{-6}$$

• Radiative and neutrals: *e.g.* $D^0 \rightarrow V^0 \gamma, D^0 \rightarrow \gamma \gamma, D_{(s)} \rightarrow K \pi \pi \gamma, \dots$

[PRL 122 (2019) 081802]

Backup slides

$D^{0} \rightarrow h^{+}h^{-}$ decays at LHCb

- Prompt charm (π tagged): well identified kaons/pions forming a displaced secondary vertex, paired with low-momentum pion to form a D*+ vertex that coincides with the primary vertex
- From semileptonic *B* decays (*µ* tagged): well identified and displaced muon paired with *D*^o candidate, requirement on corrected mass to (partly) compensate for undetected neutrino

	L · · ·	
Source	π -tagged	μ -tagged
Fit model	0.6	2
Mistag		4
Weighting	0.2	1
Secondary decays	0.3	
B fractions		1
B reco. efficiency		2
Peaking background	0.5	
Total	0.9	5

[10-4]

Fit model

- Mass model with O(10M) candidates is never perfect
- Impact on asymmetries is generally marginal
- However, mass shapes may also be charge asymmetric (momentum scale/resolution is slightly asymmetric)
- Tested a variety of alternative models, bias on signal asymmetry estimated using pseudoexperments

[PRL 122 (2019) 211803]

- Backgrounds due to $D^{*+} \rightarrow D^0 \pi^+$ decays, where the D^0 is mis- or partially reconstructed would peak in $m(D^0 \pi^+)$
- Bias on signal asymmetry estimated by measuring backgrounds asymmetry and contamination in the D⁰-mass signal region

Measured value of \(\Delta A_{CP}\) studied as a function of several variables (e.g., magnet polarity, data-taking period, kinematics)

• No evidence found for unexpected dependences

Interpretation of ΔA_{CP}

• The time-integrated asymmetry receives contribution from *CP* violation in the decay amplitudes (direct) and in $D^0-\overline{D}^0$ mixing (indirect)

$$A_{CP}(h^+h^-) \approx a_{CP}^{\text{dir}}(h^+h^-) + \frac{\langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

- Indirect contribution is to a good approximation independent of the decay mode
- Since $\Delta \langle t \rangle \sim 0.1 \tau$, ΔA_{CP} is mostly a measurement of direct CP violation $\Delta A_{CP} \approx \Delta a_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$
Experimental status of CP violation in $D^0 \rightarrow h^+h^-$

60

Run 1 (3/fb) [PLB 767 (2017) 177]

• Use large samples of Cabibbo-favored $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$ and $D^+ \rightarrow \bar{K}^0\pi^+$ decays (where no *CPV* is expected) to cancel detector and production asymmetries

 $A_{\rm CP}(D^0 \rightarrow K^+ K^-) = (1.4 \pm 1.5 \pm 1.0) \times 10^{-3}$ $A_{\rm CP}(D^0 \rightarrow \pi^+ \pi^-) = (2.4 \pm 1.5 \pm 1.1) \times 10^{-3}$

m_{+}^{2} [GeV²/ c^{4}]

Phase-space binning

$$c_b \equiv \frac{1}{\sqrt{F_b F_{-b}}} \int_b dm_+^2 dm_-^2 \left| A_f(m_+^2, m_-^2) \right| \left| A_f(m_-^2, m_+^2) \right| \cos[\Delta \delta(m_+^2, m_-^2)], \quad (26)$$

$$s_b \equiv \frac{1}{\sqrt{F_b F_{-b}}} \int_b dm_+^2 dm_-^2 \left| A_f(m_+^2, m_-^2) \right| \left| A_f(m_-^2, m_+^2) \right| \sin[\Delta \delta(m_+^2, m_-^2)], \quad (27)$$

where $\Delta\delta(m_+^2, m_-^2) = \delta(m_+^2, m_-^2) - \delta(m_-^2, m_+^2)$ and $\delta(m_+^2, m_-^2)$ is the phase of $A_f(m_+^2, m_-^2)$.

I

$$2\pi(b-3/2)/n < \Delta\delta(m_+^2, m_-^2) < 2\pi(b-1/2)/n, \quad b=1,...,n.$$

b	C_b	s_b
1	$0.655 \pm 0.036 \pm 0.042$	$-0.025 \pm 0.098 \pm 0.043$
2	$0.511 \pm 0.068 \pm 0.063$	$0.141 \pm 0.183 \pm 0.066$
3	$0.024 \pm 0.140 \pm 0.080$	$1.111 \pm 0.131 \pm 0.044$
4	$-0.569 \pm 0.118 \pm 0.098$	$0.328 \pm 0.202 \pm 0.072$
5	$-0.903 \pm 0.045 \pm 0.042$	$-0.181 \pm 0.131 \pm 0.026$
6	$-0.616 \pm 0.103 \pm 0.072$	$-0.520 \pm 0.196 \pm 0.059$
7	$0.100 \pm 0.106 \pm 0.124$	$-1.129 \pm 0.120 \pm 0.096$
8	$0.422 \pm 0.069 \pm 0.075$	$-0.350 \pm 0.151 \pm 0.045$

[PRD 82 (2010) 112006]

• Generated 1M signal-only $D^0 \rightarrow K_{S}\pi^+\pi^-$ decays using the BaBar amplitude model and compared sensitivity to *x* and *y* with different analysis methods (all other nuisance parameters fixed)

Analysis method	$\sigma(x)$	$\sigma(y)$
Model-dependent	0.11%	0.10%
Original model-independent	0.20%	0.18%
Bin-flip model-independent	0.15%	0.29%

- Bin-flip method gives better sensitivity to *x* than the original modelindependent method
- Similar ratios of sensitivities hold for the *CP*-violation parameters when fitting D^0 and \overline{D}^0 decays separa

$$\begin{array}{rcc} x & \longrightarrow & x^{\pm} = x_{CP} \pm \Delta x \\ y & \longrightarrow & y^{\pm} = y_{CP} \pm \Delta y \end{array}$$

$$z_{CP} \pm \Delta z = -(q/p)^{\pm 1}(y + ix)$$

$$\begin{aligned} x_{CP} &= -\Im(z_{CP}) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta x &= -\Im(\Delta z) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ y_{CP} &= -\Re(z_{CP}) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta y &= -\Re(\Delta z) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \end{aligned}$$