

Tracking at Belle II and beam spot parameter measurement

Cyrille Praz on behalf of the Tracking Group

2019.11.01

C. Praz

2nd Belle II Physics Week: tracking

2019.11.01 1 / 15

Outline

Introduction

- SuperKEKB and the nano-beam scheme
- Belle II tracking

Transverse impact parameter resolution

Beam spot parameter determination

- Selection and reconstruction
- Demonstration: analysis with Jupyter Notebook + Pandas

SuperKEKB

- e^+e^- collider.
- $\sqrt{s} = 10.6 \,\mathrm{GeV} = \mathrm{m}(\Upsilon(4S))c^2$.
- BR $(\Upsilon(4S) \rightarrow B\overline{B}) > 96\%$.
- Projection:

•
$$\int_{2019}^{2027} L \,\mathrm{dt} \approx 50 \,\mathrm{ab}^{-1}.$$

Nano-beam scheme (idea from Pantaleo Raimondi)

- Half crossing angle:
 - $\phi_x \approx 40 \,\mathrm{mrad.}$
- Nominal beam spot parameters:
 - $\sigma_x \approx 10 \,\mu{\rm m}.$
 - $\sigma_z^{eff} = \frac{\sigma_x}{\sin \phi_x} \approx 0.25 \,\mathrm{mm}.$
 - $\sigma_v \approx 50 \,\mathrm{nm}.$

Belle II tracking

The Belle II detector

- Pixel detector (PXD).
- Silicon Vertex Detector (SVD).
- Central Drift Chamber (CDC).
- Calorimeter (ECL).
- Aerogel Ring-Imaging Cherenkov (ARICH).
- Time-Of-Propagation (TOP) counter.
- K_L^0 and μ detection (KLM).

Belle II tracking

Tracking subdetectors

- Pixel detector (PXD).
- Silicon Vertex Detector (SVD).
- Central Drift Chamber (CDC).
- Calorimeter (ECL).
- Aerogel Ring-Imaging Cherenkov (ARICH).
- Time-Of-Propagation (TOP) counter.
- K_L^0 and μ detection (KLM).

VXD (=PXD+SVD)

- PXD.
 - Pixel detector.
 - 2 layers.
 - Radii: 14, 22 mm.
- SVD.
 - Double-sided silicon strips.
 - 4 layers.
 - Radii: 39 to 135 mm.

CDC

- Drift chamber.
- \approx 50 000 wires.
- 56 layers.
 - Radii: 168 to 1111.4 mm.
- 9 superlayers.
 - axial orientation (A).
 - stereo orientation (U,V).
- Configuration:
 - AUAVAUAVA.

Charged particles from simulated $\Upsilon(4S)$ events

- $p_{\rm T} < 100 \, {\rm MeV}/c$:
 - Track not seen by the CDC.
- $p_{\mathrm{T}} \in [100, 300] \,\mathrm{MeV}/c$:
 - Track can curl inside the CDC volume.

Particle type	Average fraction
π^{\pm}	72.8%
κ^{\pm}	14.9%
e^{\pm}	5.8%
μ^{\pm}	4.7%
ρ^{\pm}	1.8%

Belle II tracking

Track reconstruction steps

[BELLE2-PTHESIS-2019-002]

Track parametrisation: 2D picture

- Blue area¹: high and low energy beams overlap.
- ϕ_0 : azimutal angle at the point of closest approach (POCA).
- d_0 : Transverse impact parameter at the POCA.

¹In practice, the center of the overlap region is displaced with respect to the origin and d_0 needs to be corrected for this offset.

C. Praz

2nd Belle II Physics Week: tracking

2019.11.01 11 / 15

Transverse impact parameter resolution

[BELLE2-NOTE-TE-2019-01]

• Select tracks in 2 track events.

Variable	Requirement	Unit
d ₀	< 3	mm
z ₀	< 1	$^{\mathrm{cm}}$
# selected tracks in the event	= 2	
$p_{\rm T}$	> 1	GeV/c
$ \theta_0 - \pi/2 $	< 0.5	
$p\beta \sin(\theta_0)^{3/2}$	> 2	GeV/c
# PDX hits	≥ 1	
# SVD hits	≥ 8	
# CDC hits	> 20	
# selected tracks in the event	= 2	
product of the charges in the event	< 0	C^2

 σ₆₈(.): half of the symmetric range around the median containing 68% of the distribution.

C. Praz

ϕ_0 -dependence of $\sigma_{68}(d_0)$

• $\sigma_{68}(d_0)$ depends on the intrinsic detector resolution σ_i and the beam spot size:

•
$$\sigma_{68}(d_0) = \sqrt{\sigma_i^2 + (\sigma_x \sin \phi_0)^2 + (\sigma_y \cos \phi_0)^2}.$$

• The effect of the beam profile alone is given by the equation above when $\sigma_i = 0 \,\mu m$ (infinite detector resolution).

Beam spot parameter determination

Select tracks in dimuon events requiring:

- $p > 1 \operatorname{GeV}/c$.
- $dr < 0.5 \,\mathrm{cm}$ and $|dz| < 2 \,\mathrm{cm}$.
- #PXD hits ≥ 1 and #SVD hits ≥ 8 and #CDC hits ≥ 20 .

Onstruct primary vertex candidates of 2 tracks satisfying:

- $9.5 < M < 11.5 \,\text{GeV}/c^2$.
- Solution \mathbf{S} Exclude events with >1 candidates.
- Extract the beam spot parameters from the distribution of the primary vertex position.

Demonstration

- Let's have a look at an example of analysis.
- Repository: https://stash.desy.de/users/prazcyri/repos/tutorials/ browse/determination_of_the_beam_spot_parameters.