An alternative paradigm of time-dependent fits at Belle II

Vladimir Chekelian Max Planck Institute for Physics, Munich

In the traditional approach for time-dependent fits (used at Belle and BaBar) the maximum of the unbinned likelihood is used $\max L = \prod_{i} P^{i}_{ev}(\Delta t) \quad with \quad P^{i}_{ev}(\Delta t) = \int_{-\infty}^{+\infty} d(\Delta t^{true}) P_{theory}(\Delta t^{true}) R(\Delta t - \Delta t^{true})$ assuming that **theory and detector effects are independent** and the Δt resolution function R does not depend on true Δt^{true}

- this "independence" is not granted at Belle II (see slides below)
- a new paradigm of time-dependent fits is proposed which could deal with correlations between theory and detector effects:
- VC, "The MPI Concept of Time-Dependent Fits at Belle II", BELLE2-NOTE-PH-2019-023
 VC, "The MPI Concept of Time-Dependent Fits at Belle II", xFitter Workshop, Minsk, March 2019
 https://indico.desy.de/indico/event/22011/session/7/contribution/24/material/slides/0.pdf
 VC, "First look at the time-dependent CP violation using early Belle II data", Lomonosov conference, Moscow, August 2019
 https://yadi.sk/i/aOVi-ybK0pwmKA
- + presentations of VC at the TDCPV WG meetings

Time-dependent CP violation analyses at the asymmetric B-factories

The B^0B^0 pairs from $\Upsilon(4S)$ are produced in a **coherent, entangled quantum mechanical state.** When $B^0(\overline{B^0})$ decays, the flavor wavefunction of other $\overline{B^0}(B^0)$ collapses and it propagates alone. One needs to measure decay times of both B⁰s to observe CP violation.

CP violation, mixing and lifetime are coming together and can be found in the fit to Δt distribution in data B^0 :

$$P_{sig}(\Delta t) = \frac{exp\left(-\frac{|\Delta t|}{\tau}\right)}{4\tau} \left(1 + q_{tag}\left(\begin{array}{c}A_{CP}\cos(\Delta m \Delta t) \\ A_{CP}: direct CPV\end{array}\right) + S_{CP}\sin(\Delta m \Delta t)\right)\right)$$

$$A_{CP}: direct CPV$$

$$Q_{tag} = -\xi_{CP} \text{ for } B^{0}_{tag} \qquad |B\rangle \xrightarrow{\neq} |f\rangle$$

$$q_{tag} = \xi_{CP} \text{ for } \overline{B}^{0}_{tag} \qquad |B\rangle \xrightarrow{\neq} |f\rangle$$

$$|B\rangle \xrightarrow{\neq} |f\rangle$$

$$|B\rangle \xrightarrow{\neq} |f\rangle$$

$$|B\rangle \xrightarrow{\neq} |f\rangle$$

Vladimir Chekelian 29.10.2019 Belle II 2nd Physics Week

An alternative paradigm of TD fits at Belle II

 $|f_{CP}\rangle$

New challenge for the time-dependent analysis

In the traditional approach for time-dependent fits (used at Belle and BaBar) the maximum of the unbinned likelihood is used $\max L = \prod_{i} P^{i}_{ev}(\Delta t) \quad with \quad P^{i}_{ev}(\Delta t) = \int_{-\infty}^{+\infty} d(\Delta t^{true}) P_{theory}(\Delta t^{true}) R(\Delta t - \Delta t^{true})$ assuming that **theory and detector effects are independent** and the Δt resolution function R does not depend on true Δt^{true}

→ this is not granted at Belle II because of the tiny size of the beam spot, excellent precision of PXD and a need to make use the beam spot information for improvement of the B⁰_{tag} vertex position on the tag side:

the beam information helps to select tracks directly from B^{0}_{tag} decay and remove displaced tracks from decays of charmed particles (Ds) or K_{s}^{0}

Several developments at Belle II to deal with the new challenge

- 1. Optimisation of the B⁰_{tag} vertexing on the tag side, e.g. "Btube constraint" (D. Sourav) applied to tag vertexing (T. Humair)
- 2. Further development of the traditional approach
- 3. A new paradigm of time-dependent fits

which is robust and could deal with correlations between theory and detector effects -

An alternative paradigm of time-dependent fits at Belle II

- $P_{ev}(\Delta t) \rightarrow$ calculated numerically using weighted MC events (i.e. use convolution of theory and detector from simulation)
- variation of input physics parameters (τ , Δm , S_{CP} and A_{CP}) \rightarrow by weighting of an auxiliary, "assistive" MC sample
- differences in the detector response between data and simulation → by downgrading (smearing) of the detector response in an auxiliary, "assistive" MC sample, using weighting of the simulated event
- physics parameters and the detector smearing → determined simultaneously in the TD CPV fit of the signal and control channels

New input physics parameters – analytic expression for weighting of MC

Input from generator to simulation: P_{the}

 $P_{theory}(t^{B^{0}first}, \Delta t) = \frac{exp\left(-\frac{|t^{B^{0}first}|}{\tau}\right)}{4\tau} \frac{exp\left(-\frac{|\Delta t|}{\tau}\right)}{4\tau} \left[1 + q\left(A\cos(\delta m \Delta t) + S\sin(\delta m \Delta t)\right)\right]$ $If values of t^{B^{0}first} and \Delta t are defined (and frozen):$ $\Rightarrow simulation of the detector effects does not depend on \tau, \delta m, A, S$ $\Rightarrow only probability of event with given t^{B^{0}first} and \Delta t depends on \tau, \delta m, A, S$

→ Thus, MC sample generated with τ_0 , δm_0 , A_0 , S_0 can be used to get MC sample equivalent to simulation with τ , δm , A, S by the weighting of MC events $w = P_{theory}(t^{B^0 first}, \Delta t; \tau, \delta m, A, S) / P_{theory}(t^{B^0 first}, \Delta t; \tau_0, \delta m_0, A_0, S_0)$

Treatment of discrepancies between data and MC in the detector response

prior the TD fit (once) \rightarrow smearing of reconstructed quantities (Δt) in the MC sample

- very flexible and can have any level of complexity if there is a model for downgrading of the detector resolution

- the simplest and also very efficient smearing model: $\Delta t' = \Delta t + G(\alpha_{smear} \cdot \delta(\Delta t))$ ($\delta(\Delta t) - uncertainty of \Delta t$)

during the TD fit (many times) → *approximation of the "simplest smearing model" by the weighting of the MC sample* - could be directly included in the TD fit with the smearing factor and the physics parameters determined simultaneously

First, determine a simplified Δt resolution function in a two gaussian fit of the simulated MC sample: $P_{res.func} (\Delta t - \Delta t_{true}) = f G_1(\mu_1, \sigma_1) + (1 - f) G_2(\mu_2, \sigma_2)$ where $\mu_i = \mu_i^{pull} \cdot \delta(\Delta t)$ and $\sigma_i = \sigma_i^{pull} \cdot \delta(\Delta t)$ determined separately for positive and negative Δt_{true}

Then, analytic expression for weighting of MC events $w = P_{res.func}^{new} / P_{res.func}$, where $P_{res.func}^{new} = f G_1(\mu_1, \sigma_1^{new}) + (1 - f) G_2(\mu_2, \sigma_2^{new})$ with $\sigma_i^{new} = \sqrt{\sigma_i^2 + (\alpha_{smear} \delta(\Delta t))^2}$

Vladimir Chekelian 29.10.2019 Belle II 2nd Physics Week

An example of alternative time-dependent CP violation fit of signal $B^0 \rightarrow J/\psi K_S^0$ and control $B^{\pm} \rightarrow J/\psi K^{\pm}$ channels for Belle II MC (500 fb⁻¹)

	$\tau(B^{\pm}) \ ps$	$ au(B^0) \ ps$	S	$\delta m(ps^{-1})$	α_{smear}
ass. $MC(BGx0) J/\psi(\mu\mu)K_S^0$		1.525	0	0	
$ass.MC(BGx0) J/\psi(ee)K_S^0$		1.525	0	0	
ass. $MC(BGx1) J/\psi(\mu\mu)K^{\pm}$	1.637				
expected	1.637	1.525	0.695	0.502	
$MC12b(BGx1) \ J/\psi(\mu\mu,ee)K_S^0$		1.554 ± 0.037	0.700 ± 0.059	0.536 ± 0.048	0 ± 0.63
$MC12b(BGx1) J/\psi(\mu\mu)K^{\pm}$	1.596 ± 0.036				0 ± 0.44
$MC12b(BGx1) \ combined$	1.596 ± 0.036	1.554 ± 0.037	0.701 ± 0.059	0.536 ± 0.048	0 ± 0.36

\rightarrow all results of the alternative TD CPV fits are consistent with the expectations within one sigma

Conclusions

- Large room for improvements of precision for the TD CPV measurements, by far not limited by systematics
 a long term Belle II project aiming for 50 ab⁻¹
- Ultimate precision will require best methods for time-dependent analyses
- New challenges and new developments related to TD CPV analyses at Belle II
 - precision measurement
 - possible correlations of physics parameters and detector effects, e.g. due to the tiny size of the beam spot
 - \rightarrow optimization of vertexing on tag side
 - \rightarrow traditional & alternative approaches for TD fits

Time-dependent CP violation and the CKM unitarity matrix

→ room for improvement of the CPV measurements at Belle II projections to 5 ab⁻¹ and 50 ab⁻¹ (arXiv:1808.10567)

	WA (2017)		5 ab^{-1}		$50 {\rm ~ab^{-1}}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K^0_S\pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Linearity checks - variations of $\tau(B^0)$, δm and S

"perfect flavor tagging": B^0 or $\overline{B}{}^0$ from MC

 \rightarrow excellent agreement in a wide range of $\tau(B^0)$, δm and S

	S	ΔS	au(ps)	$\Delta \tau (ps)$	$\delta m(ps^{-1})$	$\Delta(\delta m)$
assistive MC	0		1.525		0	
CPV	0.703		1.525		0.507	
	0.7024 ± 0.0029	-0.0006	1.5233 ± 0.0030	-0.0017	0.5089 ± 0.0023	+0.0019
$CPV \ Down$	0.65		1.500		0.485	
	0.6484 ± 0.0030	-0.0006	1.4944 ± 0.0030	-0.0056	0.4861 ± 0.0026	+0.0011
$CPV \ Up$	0.75		1.550		0.530	
	0.7480 ± 0.0028	-0.0020	1.5478 ± 0.0030	-0.0022	0.5325 ± 0.0021	+0.0025

TABLE VI: The MPI TD CPV fit results with the MC samples "CPV", "CPV Down" or "CPV Up" serving as data and with "no CPV" - as an assistive MC sample. The expected values of physics parameters and differences between fitted and expected values are shown as well.

Vladimir Chekelian B2GM 17.06.2019

11

← no CPV

Treatment of differences in detector response between data and MC

Vladimir Chekelian B2GM 17.06.2019

TABLE XII: The MPI TD CPV fit results for the "Ph3 bkg2" sample with an extra free parameter, α_{smear} , and with smearing of the assistive MC sample, "no CPV", prior the fit. The expected values of physics parameters and differences between fitted and expected values are shown as well.