TOP

Oskar Hartbrich

University of Hawaii at Manoa For the TOP Grou[

Belle II TRG/DAQ WS Yonsei University 08/26/2019

Belle II Detector Upgrade

Belle II Barrel PID: A DIRC Derivate I

- DIRC: "Detector for Internally Reflected Cherenkov Light"
 - B. Ratcliff, SLAC PUB637 1
- Excellent solution to barrel PID needs in B-factories
 - Thin: Only radiator + casing in front of calorimeter, sensors outside of barrel region

Belle II Barrel PID: A DIRC Derivate II

- DIRC: "Detector for Internally Reflected Cherenkov Light"
 - B. Ratcliff, SLAC PUB637 1
- Excellent solution to barrel PID needs in B-factories
 - Thin: Only radiator + casing in front of calorimeter, sensors outside of barrel region

The "Time of Propagation" (TOP) Detector I

- A DIRC, but smaller: use timing instead of large expansion volume
- Instead of reconstructing the full ring image, measure time of propagation (path length) of individual Cherenkov photons.
 - Cherenkov photons from lighter particles arrive earlier on average
 - Since collision timing is well known (in principle), measure ToF at the same time
 - Chromatic dispersion is really not making this easier...

The "Time of Propagation" (TOP) Detector II

- 16 quartz Cherenkov radiator bars arranged around IP
- Forward side: spherical mirror
 - Effectively removes bar thickness for reflected photons
 - Different wavelengths are focused on slightly different points
- Backward side: small expansion prism, sensors, readout electronics
 Bar/mirror width

TOP: Total Internal Reflection

TOP: Total Internal Reflection II

TOP Readout: Requirements

- Goal: <100ps single optical photon time resolution
- Sensor requirements:
 - single photon efficiency
 - <50ps single photon time resolution
 - ~few mm spatial resolution
 - Operation in 1.5T B-field
- Electronics requirements:
 - 30kHz trigger rate
 - <50ps electronics time resolution
 - <30ps clock distribution jitter

TOP Readout: Micro-Channel-Plate PMTs

- Very fast amplification, but not well controlled
 - Good time resolution, single photon efficiency, but large output spread
- (Mostly) resistant to B-fields
- Pixelated anodes for spatial resolution

Hamamatsu MCP-PMTs

- Measured single photon time resolution <40ps
- Lifetime (integrated charge) is limited
 - Original version ~1C/cm² (~50% of TOP)
 - ALD and LE-ALD versions: >10C/cm² (other ~50% of TOP)

TOP Readout: Electronics

- Reads MCP-PMT signals
- Time resolution <50ps
 - ~GSa/s sampling
 - ~500MHz bandwidth

TOP Readout: Electronics

- Reads MCP-PMT signals
- Time resolution <50ps
 - ~GSa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable
- Low power
- Small form factor
- Online data processing
- etc. etc.

Readout: Electronics

- "Oscilloscope on a Chip": IRSX ASIC
 - Designed by IDLAB, UH (Prof. Gary Varner)
- Operated at 2.7GSa/s in TOP
 - ~600MHz analog bandwidth
 - 32k analog buffer cells (~10us)
 - 12 bit digitisation w/o deadtime
- Power budget ~600mW/ch
 - ASIC: ~125mW/ch
 - Preamp: ~150mW/ch
 - FPGAs: ~300mW/ch

Online Data Reduction

- Whole TOP stores 22x10¹² samples every second
- Only digitise relevant ASIC samples
 - Based on global trigger, local channel triggers
- Apply all raw data conditioning in frontend
 - Pedestal subtraction
 - Time base calibrations
- Extract waveform features in frontend
 - Photon timing, pulse shape parameters
- Write out only feature parameters
- Powerful frontend processing: 320 FPGAs, 640 ARM cores
 - Based on Xilinx Zynq SoCs: FPGA + ARM CPU

TOP Frontend Readout Modules

- Carrier: 4 ASICs, Zynq 7030
- SCROD: Zyng 7045
- Module: SCROD + 4 Carriers
 - 64 modules in total (4 per bar)

Readout Dataflow

- Carrier FPGAs control ASICs, push waveform segments to SCROD
- Feature extraction on SCROD ARM CPU

TOP Event Timing for Trigger

- Precise event time is important for SVD readout: 25ns frame spacing, can afford only few ns of jitter
 - ECAL and drift chamber trigger timing but resolution is ~tens of ns
- Why not use TOP information for L1 T₀ estimate?
- Complicated photon timing structure due to reflections etc.
 - Live likehood analysis of streamed TOP hit timings (no geometric info available)
 - No tracking information on trigger level
 - Estimated to produce <3ns T0 resolution (eventually)
- FPGA Infrastructure is set up, successfully used TOP timing for cosmics trigger
 - TOPTRG b2link readout it set up and included in local/global data taking

Readout Status

- SCROD CPU crashes at ~1 BS/day
 - Recover by powercycle of the frontend (~20min)
 - Strong dependence on background conditions: happens more often when background rates are high and "spiky"
 - Don't the know the exact reason, difficult to debug, cannot reproduce reliably
 - Maybe SEUs? Implementing SEU detection cores and DDR error checking into FW now. (but issue also happens in null runs without beam, though very rarely)
- Some ASICs self-masking in some runs (no response from ASIC within timeout)
 - Negligible hit loss, mostly recovered on run restart/SALS
- Configuration/pedestal acquisition works through slowcontrol system, will be tested and refined until beam start.

Operations

- Stable Readout with injected occupancy (>>average physics occupancy) tested and verified at 20kHz
 - However: we don't have a good idea how to generate "spiky"
 "beam-background-like" occupancy for testing
- TOP conditions are fully monitored through nsm2 network
- TOP configuration and "setup for data taking" is now implemented and confirmed working from the TOP copper library
 - Needs some more testing
 - Frontend programming daq_slc app still missing (but simple)

PMT Degradation and Replacement Plans QE degradation (15th MC + 4 MHz/PMT)

Summary

- TOP is the first detector of its kind
 - Novelties in design and implementation
 - Cutting edge performance requirements

- TOP was basically stable in Phase 3 so far...
 - ... except for crashing boardstacks, losing about 30-45min of luminosity per day for power cycling frontends.
- TOP PID performance is approaching MC predictions
 - Finally getting complex calibrations under control

Hawaii Waveform Sampling ASICs

- Hawaii Instrumentation Development Lab spinoff: Nalu Scientific
 - Founded by Isar Mostafanezhad (ex-postdoc of IDLab)
- Commercialisation of switched capacitor waveform sampling ASICs based on IDLab designs
- Three ASICs available:
 - SiRead: 32 channels, ~1 GSa/s
 - ASoC: 8 Channels, ~3 GSa/s
 - Aardvarc: 4 Channels, ~14 Gsa/s

Nalu Scientific

Data Acquisition Systems isar@naluscientific.com

Single Photon Time Resolution

- Intrinsic resolution <100ps on most channels
 - Laser jitter, pulser reference included (but small)
- Dominated by electronic noise in signal chain due to PMT operation at low gain

TOP "Cherenkov Rings" I

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing prism-side of TOP bar
 - Little room for Cherenkov cone to open up
 - PDF differences dominated by ToF offset

TOP "Cherenkov Rings" II

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing mirror-side of TOP bar
 - PDF differences dominated by shape

TOP PID Peformance: K- π Separation

VERY PRELIMINARY

VERY PRELIMINARY

TOP PID Peformance: K- π Separation II

VERY PRELIMINARY

VERY PRELIMINARY

